
Chapter 16

Convergence of Random
Walks

This lecture examines the convergence of random walks to the
Wiener process. This is very important both physically and statis-
tically, and illustrates the utility of the theory of Feller processes.

Section 16.1 finds the semi-group of the Wiener process, shows
it satisfies the Feller properties, and finds its generator.

Section 16.2 turns random walks into cadlag processes, and gives
a fairly easy proof that they converge on the Wiener process.

16.1 The Wiener Process is Feller

Recall that the Wiener process W (t) is defined by starting at the origin, by
independent increments over non-overlapping intervals, by the Gaussian distri-
bution of increments, and by continuity of sample paths (Examples 38 and 79).
The process is homogeneous, and the transition kernels are (Section 11.2)

µt(w1, B) =
∫

B
dw2

1√
2πt

e−
(w2−w1)2

2t (16.1)

dµt(w1, w2)
dλ

=
1√
2πt

e−
(w2−w1)2

2t (16.2)

where the second line gives the density of the transition kernel with respect to
Lebesgue measure.

Since the kernels are known, we can write down the corresponding evolution
operators:

Ktf(w1) =
∫

dw2f(w2)
1√
2πt

e−
(w2−w1)2

2t (16.3)

We saw in Section 11.2 that the kernels have the semi-group property, so
(Lemma 121) the evolution operators do too.
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Let’s check that {Kt} , t ≥ 0 is a Feller semi-group. The first Feller property
is easier to check in its probabilistic form, that, for all t, y → x implies Wy(t) d→
Wx(t). The distribution of Wx(t) is just N (x, t), and it is indeed true that y → x
implies N (y, t) → N (x, t). The second Feller property can be checked in its
semi-group form: as t → 0, µt(w1, B) approaches δ(w−w1), so limt→0 Ktf(x) =
f(x). Thus, the Wiener process is a Feller process. This implies that it has
cadlag sample paths (Theorem 193), but we already knew that, since we know
it’s continuous. What we did not know was that the Wiener process is not just
Markov but strong Markov, which follows from Theorem 194.

To find the generator of {Kt} , t ≥ 0, it will help to re-write it in an equivalent
form, as

Ktf(w) = E
[
f(w + Z

√
t)

]
(16.4)

where Z is an independent N (0, 1) random variable. (We saw that this was
equivalent in Section 11.2.) Now let’s pick an f ∈ C0 which is also twice
continuously differentiable, i.e., f ∈ C0 ∩ C2. Look at Ktf(w) − f(w), and
apply Taylor’s theorem, expanding around w:

Ktf(w)− f(w) = E
[
f(w + Z

√
t)

]
− f(w) (16.5)

= E
[
f(w + Z

√
t)− f(w)

]
(16.6)

= E
[
Z
√

tf ′(w) +
1
2
tZ2f ′′(w) + R(Z

√
t)

]
(16.7)

=
√

tf ′(w)E [Z] + t
f ′′(w)

2
E

[
Z2

]
+ E

[
R(Z

√
t)

]
(16.8)

Recalling that E [Z] = 0, E
[
Z2

]
= 1,

lim
t↓0

Ktf(w)− f(w)
t

=
1
2
f ′′(w) + lim

t↓0

E
[
R(Z

√
t)

]

t
(16.9)

So, we need to investigate the behavior of the remainder term R(Z
√

t).
We know from Taylor’s theorem that

R(Z
√

t) =
tZ2

2

∫ 1

0
du f ′′(w + uZ

√
t)− f ′′(w) (16.10)

(16.11)

Since f ∈ C0∩C2, we know that f ′′ ∈ C0. Therefore, f ′′ is uniformly continuous,
and has a modulus of continuity,

m(f ′′, h) = sup
x,y: |x−y|≤h

|f ′′(x)− f ′′(y)| (16.12)
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which goes to 0 as h ↓ 0. Thus
∣∣∣R(Z

√
t)

∣∣∣ ≤ tZ2

2
m(f ′′, Z

√
t) (16.13)

lim
t→0

∣∣R(Z
√

t)
∣∣

t
≤ lim

t→0

Z2m(f ′′, Z
√

t)
2

(16.14)

= 0 (16.15)

Plugging back in to Equation 16.9,

Gf(w) =
1
2
f ′′(w) + lim

t↓0

E
[
R(Z

√
t)

]

t
(16.16)

=
1
2
f ′′(w) (16.17)

That is, G = 1
2

d2

dw2 , one half of the Laplacian. We have shown this only for
C0 ∩ C2, but this is clearly a linear subspace of C0, and, since C2 is dense in
C, it is dense in C0, i.e., this is a core for the generator. Hence the generator is
really the extension of 1

2
d2

dw2 to the whole of C0, but this is too cumbersome to
repeat all the time, so we just say it’s the Laplacian.

16.2 Convergence of Random Walks

Let X1, X2, . . . be a sequence of IID variables with mean 0 and variance 1. The
random walk process Sn is then just

∑n
i=1 Xi. It is a discrete-time Markov

process, and consequently also a strong Markov process. Imagine each step of
the walk takes some time h, and imagine this time interval becoming smaller
and smaller. Then, between any two times t1 and t2, the number of steps of
the random walk will be about t2−t1

h , which will go to infinity. The increment
of the random walk from t1 to t2 will then be a sum of an increasingly large
number of IID random variables, and by the central limit theorem will approach
a Gaussian distribution. Moreover, if we look at the interval of time from t2 to
t3, we will see another Gaussian, but all of the random-walk steps going into
it will be independent of those going into our first interval. So, we expect that
the random walk will in some sense come to look like the Wiener process, no
matter what the exact distribution of the X1. (We saw some of this in Section
11.3.) Let’s consider this in more detail.

Definition 209 (Continuous-Time Random Walk (Cadlag)) Let X1, X2, . . .
be an IID sequence of real-valued random variables with mean 0 and variance 1.
Define S(m) as X1 + X2 . . . + Xm, and X0 = 0. The corresponding continuous-
time random walks (CTRWs) are the processes

Yn(t) ≡ 1
n1/2

&nt'∑

i=0

Xi (16.18)

= n−1/2S(+nt,) (16.19)
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Remark 1: You should verify (Exercise 16.3) that continuous-time random
walks are inhomogeneous Markov processes with cadlag sample paths.

Remark 2: We will later see CTRWs with continuous sample paths, obtained
by linear interpolation, but these, with their piece-wise constant sample paths,
will do for now.

As has been hinted at repeatedly, random walks converge in distribution on
the Wiener process. There are, broadly speaking, two ways to show this. One is
to use the Feller process machinery of Chapter 15, and apply Corollary 206. The
other is to directly manipulate the criteria for convergence of cadlag processes.
Both lead to the same conclusion.

16.2.1 Approach Through Feller Processes

The processes Yn are not homogeneously Markovian, though the discrete-time
processes n−1/2S(m) are. Nonetheless, we can find the equivalent of their evo-
lution operators, and show that they converge on the evolution operators of the
Wiener process. First, let’s establish a nice property of the increments of Yn.

Lemma 210 (Increments of Random Walks) For a continuous-time ran-
dom walk, for all n,

Yn(t + h)− Yn(t) = n−1/2S′(+n(t + h), − +nt,) (16.20)

where S′(m) ≡
∑m

i=0 X ′
i and the IID sequence X ′ is an independent copy of X.

Proof: By explicit calculation. For any n, for any t and any h > 0,

Yn(t + h) =
1

n1/2

&n(t+h)'∑

i=0

Xi (16.21)

= Yn(t) + n−1/2
&n(t+h)'∑

i=&nt'+1

Xi (16.22)

= Yn(t) + n−1/2
&n(t+h)'−&nt'∑

i=0

X ′
i (16.23)

using, in the last line, the fact that the Xi are IID. Eq. 16.20 follows from the
definition of S(m). !

Lemma 211 (Continuous-Time Random Walks are Pseudo-Feller) Ev-
ery continuous-time random walk has the Feller properties (but is not a homo-
geneous Markov process).

Proof: This is easiest using the process/probabilistic forms (Definition 177)
of the Feller properties.
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To see that the first property (Eq. 14.3) holds, we need the distribution of
Yn,y(t), that is, the distribution of the state of Yn at time t, when started from
state y (rather than 0). By Lemma 210,

Yn,y(t) d= y + n−1/2S′(+nt,) (16.24)

Clearly, as y → x, y + n−1/2S′(+nt,) d→ x + n−1/2S′(+nt,), so the first Feller
property holds.

To see that the second Feller property holds, observe that, for each n, for all
t, and for all ω, Yn(t + h, ω) = Yn(t, ω) if 0 ≥ h < 1/n. This sure convergence
implies almost-sure convergence, which implies convergence in probability. !

Lemma 212 (Evolution Operators of Random Walks) The “evolution”
(i.e., conditional expectation) operators of the random walk Yn, Kn,t, are given
by

Kn,tf(y) = E [f(y + Y ′
n(t))] (16.25)

where Y ′
n is an independent copy of Yn.

Proof: Substitute Lemma 210 into the definition of the evolution operator.

Kn,hf(y) ≡ E [f(Yn(t + h))|Yn(t) = y] (16.26)
= E [f (Yn(t + h) + Yn(t)− Yn(t)) |Yn(t) = y] (16.27)

= E
[
f

(
n−1/2§′(+nt,)

)
+ Yn(t)|Yn(t) = y

]
(16.28)

= E
[
f(y + n−1/2S′(+nt,))

]
(16.29)

In words, the transition operator simply takes the expectation over the incre-
ments of the random walk, just as with the Wiener process. Finally, substitution
of Y ′

n(t) for n−1/2S′(+nt,) is licensed by Eq. 16.19. !

Theorem 213 (Functional Central Limit Theorem (I)) Yn
d→ W in D.

Proof: Apply Theorem 206. Clause (4) of the theorem says that if any of
the other three clauses are satisfied, and Yn(0) d→ W (0) in R, then Yn

d→ W
in D. Clause (2) is that Kn,t → Kt for all t > 0. That is, for any t > 0, and
f ∈ C0, Kn,tf → Ktf as n → ∞. Pick any such t and f and consider Kn,tf .
By Lemma 212,

Kn,tf(y) = E
[
f(y + n−1/2S′(+nt,))

]
(16.30)

As n →∞, n−1/2 → t1/2+nt,−1/2. Since the Xi (and so the X ′
i) have variance

1, the central limit theorem applies, and +nt,−1/2S′(+nt,) d→ N (0, 1), say Z.
Consequently n−1/2S′(+nt, d→

√
tZ. Since f ∈ C0, it is continuous and bounded,

hence, by the definition of convergence in distribution,

E
[
f

(
y + n−1/2S′(+nt,)

)]
→ E

[
f

(
y +

√
tZ

)]
(16.31)
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But E
[
f(y +

√
tZ)

]
= Ktf(y), the time-evolution operator of the Wiener pro-

cess applied to f at y. Since the evolution operators of the random walks con-
verge on those of the Wiener process, and since their initial conditions match,
by the theorem Yn

d→ W in D. !

16.2.2 Direct Approach

The alternate approach to the convergence of random walks works directly with
the distributions, avoiding the Feller properties. It is not quite so slick, but
provides a comparatively tractable example of how general results about con-
vergence of stochastic processes go.

We want to find the limiting distribution of Yn as n → ∞. First of all,
we should convince ourselves that a limit distribution exists. But this is not
too hard. For any fixed t, Yn(t) approaches a Gaussian distribution by the
central limit theorem. For any fixed finite collection of times t1 ≤ t2 . . . ≤ tk,
Yn(t1), Yn(t2), . . . Yn(tk) approaches a limiting distribution if Yn(t1), Yn(t2) −
Yn(t1), . . . Yn(tk)−Yn(tk−1) does, but that again will be true by the (multivari-
ate) central limit theorem. Since the limiting finite-dimensional distributions
exist, some limiting distribution exists (via Theorem 23). It remains to convince
ourselves that this limit is in D, and to identify it.

Lemma 214 (Convergence of Random Walks in Finite-Dimensional
Distribution) Yn

fd→ W .

Proof: For all n, Yn(0) = 0 = W (0). For any t2 > t1,

L (Yn(t2)− Yn(t1)) = L



 1√
n

&nt2'∑

i=&nt1'

Xi



 (16.32)

d→ N (0, t2 − t1) (16.33)
= L (W (t2)−W (t1)) (16.34)

Finally, for any three times t1 < t2 < t3, Yn(t3) − Yn(t2) and Yn(t2) − Yn(t1)
are independent for sufficiently large n, because they become sums of disjoint
collections of independent random variables. The same applies to large groups
of times. Thus, the limiting distribution of Yn starts at the origin and has
independent Gaussian increments. Since these properties determine the finite-
dimensional distributions of the Wiener process, Yn

fd→ W . !

Theorem 215 (Functional Central Limit Theorem (II)) Yn
d→ W .

Proof: By Proposition 200, it is enough to show that Yn
fd→ W , and that

any of the properties in Proposition 201 hold. The lemma took care of the
finite-dimensional convergence, so we can turn to the second part. A sufficient
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condition is property (1) in the latter theorem, that |Yn(τn +hn)−Yn(τn)| P→ 0
for all finite optional times τn and any sequence of positive constants hn → 0.

|Yn(τn + hn)− Yn(τn)| = n−1/2 |S(+nτn + nhn,)− S(+nτn,)| (16.35)
d= n−1/2 |S(+nhn,)− S(0)| (16.36)
= n−1/2 |S(+nhn,)| (16.37)

= n−1/2

∣∣∣∣∣∣

&nhn'∑

i=0

Xi

∣∣∣∣∣∣
(16.38)

To see that this converges in probability to zero, we will appeal to Chebyshev’s
inequality: if Zi have common mean 0 and variance σ2, then, for every positive
ε,

P
(∣∣∣∣∣

m∑

i=1

Zi

∣∣∣∣∣ > ε

)
≤ mσ2

ε2
(16.39)

Here we have Zi = Xi/
√

n, so σ2 = 1/n, and m = +nhn,. Thus

P
(
n−1/2 |S(+nhn,)| > ε

)
≤ +nhn,

nε2
(16.40)

As 0 ≤ +nhn, /n ≤ hn, and hn → 0, the bounding probability must go to zero
for every fixed ε. Hence n−1/2 |S(+nhn,)|

P→ 0. !

16.2.3 Consequences of the Functional Central Limit The-
orem

Corollary 216 (The Invariance Principle) Let X1, X2, . . . be IID random
variables with mean µ and variance σ2. Then

Yn(t) ≡ 1√
n

&nt'∑

i=0

Xi − µ

σ
d→ W (t) (16.41)

Proof: (Xi − µ)/σ has mean 0 and variance 1, so Theorem 215 applies. !
This result is called “the invariance principle”, because it says that the

limiting distribution of the sequences of sums depends only on the mean and
variance of the individual terms, and is consequently invariant under changes
which leave those alone. Both this result and the previous one are known as the
“functional central limit theorem”, because convergence in distribution is the
same as convergence of all bounded continuous functionals of the sample path.
Another name is “Donsker’s Theorem”, which is sometimes associated however
with the following corollary of Theorem 215.

Corollary 217 (Donsker’s Theorem) Let Yn(t) and W (t) be as before, but
restrict the index set T to the unit interval [0, 1]. Let f be any function from
D([0, 1]) to R which is measurable and a.s. continuous at W . Then f(Yn) d→
f(W ).
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Proof: Exercise. !
This version is especially important for statistical purposes, as we’ll see a

bit later.

16.3 Exercises

Exercise 16.1 (Example 167 Revisited) Go through all the details of Ex-
ample 167.

1. Show that FX
t ⊆ FW

t for all t, and that
{
FX

t

}
⊂

{
FW

t

}
.

2. Show that τ = inft X(t) = (0, 0) is a
{
FX

t

}
-optional time, and that it is

finite with probability 1.

3. Show that X is Markov with respect to both its natural filtration and the
natural filtration of the driving Wiener process.

4. Show that X is not strongly Markov at τ .

5. Which, if either, of the Feller properties does X have?

Exercise 16.2 (Generator of the d-dimensional Wiener Process) Con-
sider a d-dimensional Wiener process, i.e., an Rd-valued process where each
coordinate is an independent Wiener process. Find the generator.

Exercise 16.3 (Continuous-time random walks are Markovian) Show
that every continuous-time random walk (as per Definition 209) is an inhomogeneous
Markov process, with cadlag sample paths.

Exercise 16.4 (Donsker’s Theorem) Prove Donsker’s Theorem (Corollary
217).

Exercise 16.5 (Diffusion equation) The partial differential equation

1
2

∂2f(x, t)
∂x2

=
∂f(x, t)

∂t

is called the diffusion equation. From our discussion of initial value problems
in Chapter 12 (Corollary 159 and related material), it is clear that the function
f(x, t) solves the diffusion equation with initial condition f(x, 0) if and only if
f(x, t) = Ktf(x, 0), where Kt is the evolution operator of the Wiener process.

1. Take f(x, 0) = (2π10−4)−1/2
e−

x2

2·10−4 . f(x, t) can be found analytically;
do so.



CHAPTER 16. CONVERGENCE OF RANDOM WALKS 122

2. Estimate f(x, 10) over the interval [−5, 5] stochastically. Use the fact that
Ktf(x) = E [f(W (t))|W (0) = x], and that random walks converge on the
Wiener process. (Be careful that you scale your random walks the right
way!) Give an indication of the error in this estimate.

3. Can you find an analytical form for f(x, t) if f(x, 0) = 1[−0.5,0.5](x)?

4. Find f(x, 10), with the new initial conditions, by numerical integration on
the domain [−10, 10], and compare it to a stochastic estimate.

Exercise 16.6 (Functional CLT for Dependent Variables) Let Xi, i =
1, 2, . . ., be a weakly stationary but dependent sequence of real-valued random
variables, with mean 0 and standard deviation 1. (Note that any weakly-stationary
sequence with finite variance can be normalized into this form.) Let Yn be the
corresponding continuous-time random walk, i.e.,

Yn(t) =
1

n1/2

&nt'∑

i=0

Xi

Suppose that, despite their interdependence, the Xi still obey the central limit
theorem,

1
n1/2

n∑

i=1

Xi
d→ N (0, 1)

Are these conditions enough to prove a functional central limit theorem, that
Yn

d→ W? If so, prove it. If not, explain what the problem is, and suggest an
additional sufficient condition on the Xi.


