
Chapter 17

Diffusions and the Wiener
Process

Section 17.1 introduces the ideas which will occupy us for the
next few lectures, the continuous Markov processes known as diffu-
sions, and their description in terms of stochastic calculus.

Section 17.2 collects some useful properties of the most important
diffusion, the Wiener process.

Section 17.3 shows, first heuristically and then more rigorously,
that almost all sample paths of the Wiener process don’t have deriva-
tives.

17.1 Diffusions and Stochastic Calculus

So far, we have looked at Markov processes in general, and then paid particular
attention to Feller processes, because the Feller properties are very natural con-
tinuity assumptions to make about stochastic models and have very important
consequences, especially the strong Markov property and cadlag sample paths.
The natural next step is to go to Markov processes with continuous sample
paths. The most important case, overwhelmingly dominating the literature, is
that of diffusions.

Definition 177 (Diffusion) A stochastic process X adapted to a filtration F
is a diffusion when it is a strong Markov process with respect to F , homogeneous
in time, and has continuous sample paths.1

Diffusions matter to us for several reasons. First, they are very natural
models of many important systems — the motion of physical particles (the

1Having said that, I should confess that some authors don’t insist that diffusions be ho-
mogeneous, and some even don’t insist that they be strong Markov processes. But this is the
general sense in which the term is used.
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source of the term “diffusion”), fluid flows, noise in communication systems,
financial time series, etc. Probabilistic and statistical studies of time-series data
thus need to understand diffusions. Second, many discrete Markov models have
large-scale limits which are diffusion processes: these are important in physics
and chemistry, population genetics, queueing and network theory, certain as-
pects of learning theory2, etc. These limits are often more tractable than more
exact finite-size models. (We saw a hint of this in Section 15.3.) Third, many
statistical-inferential problems can be described in terms of diffusions, most
prominently ones which concern goodness of fit, the convergence of empirical
distributions to true probabilities, and nonparametric estimation problems of
many kinds.

The easiest way to get at diffusions is to through the theory of stochas-
tic differential equations; the most important diffusions can be thought of as,
roughly speaking, the result of adding a noise term to the right-hand side of a
differential equation. A more exact statement is that, just as an autonomous
ordinary differential equation

dx

dt
= f(x), x(t0) = x0 (17.1)

has the solution

x(t) =
∫ t

t0

f(x)ds + x0 (17.2)

a stochastic differential equation

dX

dt
= f(X) + g(X)

dY

dt
, X(t0) = x0 a.s. (17.3)

where X and Y are stochastic processes, is solved by

X(t) =
∫

f(X)ds +
∫

g(X)dY + x0 (17.4)

where
∫

g(X, t)dY is a stochastic integral. It turns out that, properly con-
structed, this sort of integral, and so this sort of stochastic differential equation,
makes sense even when dY/dt does not make sense as any sort of ordinary
derivative, so that the more usual way of writing an SDE is

dX = f(X)dt + g(X)dY, X(t0) = x0 a.s. (17.5)

even though this seems to invoke infinitessimals, which don’t exist.3

2Specifically, discrete-time reinforcement learning converges to the continuous-time repli-
cator equation of evolutionary theory.

3Some people, like Ethier and Kurtz (1986), prefer to talk about stochastic integral equa-
tions, rather than stochastic differential equations, because things like 17.5 are really short-
hands for “find an X such that Eq. 17.4 holds”, and objects like dX don’t really make much
sense on their own. There’s a certain logic to this, but custom is overwhelmingly against
them.
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The fully general theory of stochastic calculus considers integration with re-
spect to a very broad range of stochastic processes, but the original case, which
is still the most important, is integration with respect to the Wiener process,
which corresponds to driving a system with white noise. In addition to its
many applications in all the areas which use diffusions, the theory of integra-
tion against the Wiener process occupies a central place in modern probability
theory; I simply would not be doing my job if this course did not cover it.
We therefore begin our study of diffusions and stochastic calculus by reviewing
some of the properties of the Wiener process — which is also the most important
diffusion process.

17.2 Once More with the Wiener Process and
Its Properties

To review, the standard Wiener process W (t) is defined by (i) W (0) = 0, (ii) cen-
tered Gaussian increments with linearly-growing variance, L (W (t2)−W (t1)) =
N (0, t2 − t1), (iii) independent increments and (iv) continuity of sample paths.
We have seen that it is a homogeneous Markov process (Section 11.1), and in
fact (Section 16.1) a Feller process (and therefore a strong Markov process),
whose generator is 1

2∇
2. By Definition 177, W is a diffusion.

This section proves a few more useful properties.

Proposition 178 The Wiener process is a martingale with respect to its natural
filtration.

Proof: This follows directly from the Gaussian increment property:

E
[
W (t + h)|FX

t

]
= E [W (t + h)|W (t)] (17.6)
= E [W (t + h)−W (t) + W (t)|W (t)] (17.7)
= E [W (t + h)−W (t)|W (t)] + W (t) (17.8)
= 0 + W (t) = W (t) (17.9)

where the first line uses the Markov property of W , and the last line the Gaussian
increments property. !

Definition 179 If W (t,ω) is adapted to a filtration F and is an F-filtration,
it is an F Wiener process or F Brownian motion.

It seems natural to speak of the Wiener process as a Gaussian process. This
motivates the following definition.

Definition 180 (Gaussian Process) A real-valued stochastic process is Gaus-
sian when all its finite-dimensional distributions are multivariate Gaussian dis-
tributions.

Proposition 181 The Wiener process is a Gaussian process.
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Proof: Pick any k times t1 < t2 < . . . < tk. Then the increments W (t1) −
W (0), W (t2) −W (t1), W (t3) −W (t2), . . . W (tk) −W (tk−1) are independent
Gaussian random variables. If X and Y are independent Gaussians, then
X, X + Y is a multivariate Gausssian, so (recursively) W (t1)−W (0),W (t2)−
W (0), . . . W (tk)−W (0) has a multivariate Gaussian distribution. Since W (0) =
0, the Gaussian distribution property follows. Since t1, . . . tk were arbitrary, as
was k, all the finite-dimensional distributions are Gaussian. !

Just as the distribution of a Gaussian random variable is determined by
its mean and covariance, the distribution of a Gaussian process is determined
by its mean over time, E [X(t)], and its covariance function, cov (X(s), X(t)).
(You might find it instructive to prove this without looking at Lemma 13.1 in
Kallenberg.) Clearly, E [W (t)] = 0, and, taking s ≤ t without loss of generality,

cov (W (s),W (t)) = E [W (s)W (t)]−E [W (s)]E [W (t)] (17.10)
= E [(W (t)−W (s) + W (s))W (s)] (17.11)
= E [(W (t)−W (s))W (s)] + E [W (s)W (s)] (17.12)
= E [W (t)−W (s)]E [W (s)] + s (17.13)
= s (17.14)

17.3 Wiener Measure; Most Continuous Curves
Are Not Differentiable

We can regard the Wiener process as establishing a measure on the space C(R+)
of continuous real-valued functions; this is one of the considerations which led
Wiener to it (Wiener, 1958)4. This will be important when we want to do
statistical inference for stochastic processes. All Bayesian methods, and most
frequentist ones, will require us to have a likelihood for the model θ given data
x, fθ(x), but likelihoods are really Radon-Nikodym derivatives, fθ(x) = dνθ

dµ (x)
with respect to some reference measure µ. When our sample space is Rd, we
generally use Lebesgue measure as our reference measure, since its support is
the whole space, it treats all points uniformly, and it’s reasonably normalizable.
Wiener measure will turn out to play a similar role when our sample space is
C.

A mathematically important question, which will also turn out to matter
to us very greatly when we try to set up stochastic differential equations, is
whether, under this Wiener measure, most curves are differentiable. If, say,
almost all curves were differentiable, then it would be easy to define dW/dt.
Unfortunately, this is not the case; almost all curves are nowhere differentiable.

There is an easy heuristic argument to this conclusion. W (t) is a Gaussian,
4The early chapters of this book form a wonderfully clear introduction to Wiener measure,

starting from prescriptions on the measures of finite-dimensional cylinders and building from
there, deriving the incremental properties we’ve started with as consequences.



CHAPTER 17. DIFFUSIONS AND THE WIENER PROCESS 96

whose variance is t. If we look at the ratio in a derivative

W (t + h)−W (t)
(t + h)− t

the numerator has variance h and the denominator is the constant h, so the
ratio has variance 1/h, which goes to infinity as h → 0. In other words, as we
look at the curve of W (t) on smaller and smaller scales, it becomes more and
more erratic, and the slope finally blows up into a completely unpredictable
quantity. This is basically the shape of the more rigorous argument as well.

Theorem 182 With probability 1, W (t) is nowhere-differentiable.

Proof: Assume, by way of contradiction, that W (t) is differentiable at t0.
Then

lim
t→t0

W (t,ω)−W (t0,ω)
t− t0

(17.15)

must exist, for some set of ω of positive measure. Call its supposed value
W ′(t0,ω). That is, for every ε > 0, we must have some δ such that t0− δ ≤ t ≤
t0 + δ implies ∣∣∣∣

W (t, ω)−W (t0,ω)
t− t0

−W ′(t0,ω)
∣∣∣∣ ≤ ε (17.16)

Without loss of generality, take t > t0. Then W (t, ω)−W (t0,ω) is independent
of W (t0,ω) and has a Gaussian distribution with mean zero and variance t− t0.
Therefore the differential ratio is N (0, 1

t−t0
). The quantity inside the absolute

value sign in Eq. 17.16 is thus Gaussian with distribution N (−W ′(t0), 1
t−t0

).
The probability that it exceeds any ε is therefore always positive, and in fact
can be made arbitrarily large by taking t sufficiently close to t0. Hence, with
probability 1, there is no point of differentiability. !

Continuous curves which are nowhere differentiable are odd-looking beasts,
but we’ve just established that such “pathological” cases are in fact typical, and
non-pathological ones vanishingly rare in C. What’s worse, in the functional
central limit theorem (174), we obtained W as the limit of piecewise constant,
and so piecewise differentiable, random functions. We could even have lin-
early interpolated between the points of the random walk, and those random
functions would also have converged in distribution on W . The continuous,
almost-everywhere-differentiable curves form a subset of C, and now we have
a sequence of measures which give them probability 1, converging on Wiener
measure, which gives them probability 0. This sounds like trouble, especially if
we want to use Wiener measure as a reference measure in likelihoods, because it
sounds like lots of interesting measures, which do produce differentiable curves,
will not be absolutely continuous...

The trick here is to consider carefully our σ-algebra. Wiener measure is a
probability measure on RR+

,BR+ ∩C(R+). The differentiability of a function
in the vicinity of a point depends on its value at uncountably many coordinates.
Hence (Exercise 1.1) it is not a member of the σ-field.


