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Note to the Reader, on the
Origin and Current State of
the Text

This book is, currently, a very light revision of the notes I wrote for 36-401, “Modern
Regression”, at Carnegie Mellon University in the fall of 2015 (http://www.stat.
cmu.edu/~cshalizi/mreg/15). I have tried to remove obvious errors, gross redun-
dancies, and stuff that only mattered for that class, but no doubt such defects re-
main. More importantly, perhaps, to ensure continuity with previous iterations of
the class, the text gives more emphasis to old-fashioned Gaussian-noise theory than I
think it really warrants. (The don’t-make-these-mistakes discussion of common mis-
interpretations of linear regression, especially in regard to causal inference, was ripped
off from chapter 2 of Shalizi (forthcoming), which readers can find online.) The text
also still has some references to other courses which either proceed or follow 36-401
in the CMU statistics curriculum: “225” is probability, “226” is mathematical statis-
tics, and “402” is “advanced data analysis”, comprising non-parametrics, multivariate
analysis, and causal inference (Shalizi, forthcoming).

I hope to re-work these notes in the future, to present ideas like the bootstrap first,
followed by the Gaussian-noise theory as a short-cut for a very special case, but that
will have to wait for another day. In the meanwhile, I offer these notes to readers in
the hope that they may be of some use. Feedback, and more especially corrections,
will be gratefully received.

Finally, if you find these notes on a website other than my own, I would appreciate
hearing about it; I have not given permission for such re-distribution, and the URL
which should be printed on the first page of each chapter will always have the most
up-to-date and corrected version of the full text, for free.
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Introduction

“Regression” means predicting one continuous random variable from others, which
might be continuous or might not. Most forms of regression work by “smooth-
ing” observed values of the variable being predicted, meaning their predictions are
weighted averages. Linear regression is the special case where we smooth the ob-
served data on to a perfectly straight line (or plane, etc.), and then extrapolate the
line to make predictions at new points. These predictions will be “unbiased”, i.e.,
free from systematic errors, if and only if the relationship between the predictors and
what we’re predicting really is exactly linear.

Linear regression is widely used throughout the sciences and technology. The
biggest reason for this is historical. Linear regression was invented about two hun-
dred years ago, and up through, say, the 1970s any other kind of regression was gener-
ally too computationally expensive to be practical. Partly as a result, a huge body of
theory has grown up around this rather weak prediction method. Most of this math-
ematical theory makes assumptions which are rarely even close to true in practice,
starting with exact linearity and growing more implausible from there. Alongside
the theory has grown a body of lore, or even mythology, which has more to do with
what scientists hope they could get from data analysis than what it can actually accom-
plish.

Since about 1980, linear regression has become largely technologically obsolete,
with three important exceptions. First, there are a handful of situations where there
are genuine scientific reasons to use linear models. Second, there are applications
which put a huge premium on computational simplicity. Third, sometimes we want
biased, systematically-wrong predictions, because less-biased predictors will be more
sensitive to noise when there isn’t a lot of data. (That is, with small samples we may
trade variance for bias.)

Beyond these rather special cases, there are two good reasons to study linear re-
gression. One is that many more flexible and useful methods of regression can be
seen, mathematically, as extensions or generalizations of linear regression. Even when
that’s not the case, many of the ideas behind better methods — such as smoothing, the
bias-variance trade-off, cross-validation, regularization, etc. — can be illustrated for
linear models using very basic math, giving intuition that still holds in more complex
cases. (We can talk about linear functions rather than reproducing kernel Hilbert
spaces.) The second and lesser reason is that, for the historical reasons I mentioned
above, linear regression is a key part of the shared culture of data analysis, and un-
derstanding it — even the myths about it — is important if you want to participate in

8
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that culture.
These notes try to introduce the key parts of the theory and practice of linear

regression from the perspective sketched above, i.e., as though the last forty years of
statistics had actually happened. My starting point is the idea that linear regression
is a method of prediction based on smoothing observed data on to a line. I thus em-
phasize methods and results about prediction which are agnostic about whether or
not reality is truly linear. I give less emphasis to ideas which presume that some linear
model is exactly true, and that what we care about is describing that true linear model
very carefully. I also emphasize robust, computation-intensive techniques like cross-
validation and the bootstrap, over exact formulas which make very fragile assump-
tions, though I do cover the latter for the sake of completeness. I also try to provide
debunkings of common misunderstandings, exaggerations and outright myths.

Assumed Background
This book grew out of the notes for a class on linear regression taught to third and
fourth year undergraduates at Carnegie Mellon University, majoring in statistics and
related areas. The pre-requisites for the class were a first course in mathematical statis-
tics , which in turn required a class in probability theory (which in turn required
calculus), and a class in linear algebra. Most students had also taken a class in basic
data analysis. Most had some exposure to the R programming language / statistical
computing environment, and R was used extensively in the class. This book accord-
ingly makes no attempt to explain the background ideas of mathematical statistics,
probability theory, linear algebra, multi-variable calculus, or the basic use of R.

21:34 Monday 6th May, 2024
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Chapter 1

Optimal Prediction (with
Refreshers)

Regression analysis is about investigating quantitative, predictive relationships between
variables. It’s about situations where there is some sort of link, tie or relation between
two (or more) variables, so if we know the value of one of them, it tells us something
about the other. The concrete sign of this is that knowledge of one variable lets us
predict the other — predict the target variable better than if we didn’t know the other.
Pretty much everything we are going to do in this class is about crafting predictive
mathematical models, seeing whether such models really have any predictive power,
and comparing their predictions. Before we get into the issues of statistics and data
analysis, it will help us to think what optimal prediction would look like, if we some-
how knew all the probability distributions of all our variables.

§1.1 refers to many concepts from probability (reviewed in §1.2) and statistical
inference (reviewed in §1.3).

1.1 Statistical Prediction and the Optimal Linear Pre-
dictor

1.1.1 Predicting a Random Variable from Its Distribution

Suppose we want to guess the value of a random variable Y . Since we don’t feel com-
fortable with the word “guess”, we call it a “prediction” instead. What’s the best guess
we can make?

We need some way to measure how good a guess is. Say our guess is m. The
difference Y − m should somehow be small. If we don’t care about positive more
than negative errors, it’s traditional to care about the squared error, (Y −m)2. Since
Y is random, this will fluctuate; let’s look at its expected value,

E
�

(Y −m)2
�

(1.1)
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We will call this the mean squared error of m, M SE(m).
From the definition of variance,

M SE(m) =E
�

(Y −m)2
�

= (E [Y −m])2+Var [Y −m] (1.2)

The first term is the squared bias of estimating Y with m; the second term is the
variance of Y − m. Mean squared error is bias (squared) plus variance. This is the
simplest form of the bias-variance decomposition, which is one of the central parts
of statistics.

Now remember that Var [Y −m] =Var [Y ], so

M SE(m) = (E [Y −m])2+Var [Y ] (1.3)
= (E [Y ]−m)2+Var [Y ] (1.4)

where the second line uses the linearity of expectations.
We would like to pick m to make this small, to minimize it (Figure 1.1). The

variance term is irrelevant to making this small, since it’s the same no matter what m
is. (Remember, Var [Y ] is about the true distribution of Y , but m is just our guess.)
It should therefore play no role in the minimization.

Remember from basic calculus that one way to find the minimum1 of a function
is to take the derivative, set it to zero, and solve for the minimizing argument to the
function. Here what we want to minimize is M SE(m) and the argument is m, so

d M SE(m)
d m

=
d

d m

�

Var [Y ]+ (E [Y ]−m)2
�

(1.5)

is the derivative we need to work out and set to zero. So, using the chain rule,

d M SE(m)
d m

=
dVar [Y ]

d m
+ 2(E [Y ]−m)

�

dE [Y ]
d m

− d m
d m

�

(1.6)

Changing the prediction we make, m, doesn’t do anything to the true distribution
of Y , so dVar [Y ]/d m = dE [Y ]/d m = 0, and we’ve got

d M SE(m)
d m

=−2(E [Y ]−m) (1.7)

Say this is zero at m =µ, and solve for µ:

−2(E [Y ]−µ) = 0 (1.8)
E [Y ]−µ = 0 (1.9)
E [Y ] = µ (1.10)

In other words, the best one-number guess we could make for Y is just its expected
value.

1Or maximum; but here it’s a minimum. (How could you check this, if you were worried that I was
wrong?)
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PREDICTOR

−2 −1 0 1 2

7
8

9
10

11
12

13

m

M
S

E
(m

)

curve(7 + (0.57 - x)^2, from = -2, to = 2, xlab = "m", ylab = "MSE(m)")

FIGURE 1.1: Mean squared error E
�

(Y −m)2
�

as a function of the value m which we predict,
when E [Y ] = 0.57, Var [Y ] = 7. (The text below the plot shows the R command used to make it.
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1.1.2 Predicting One Random Variable from Another
Now imagine we have two random variables, say X and Y . We know X and would
like to use that knowledge to improve our guess about Y . Our guess is therefore a
function of x, say m(x). We would like E

�

(Y −m(X ))2
�

to be small.
We can use conditional expectations to reduce this problem to the one already

solved.

E
�

(Y −m(X ))2
�

= E
�

E
�

(Y −m(X ))2 |X
��

(1.11)

For each possible value x, the optimal valueµ(x) is just the conditional mean,E [Y |X = x].
The optimal function just gives the optimal value at each point:

µ(x) =E [Y |X = x] (1.12)

This µ(x) is called the (true, optimal, or population) regression function (of Y
on X ). If we are interested in the relationship between Y and X , this is what we would
really like to know, or one of the things we’d really like to know.

Unfortunately, in general µ(x) is a really complicated function, for which there
exists no nice mathematical expression. The Ancestors, then, in their wisdom decided
to ask “what is the best prediction we can make which is also a simple function of x?”
In other words, they substituted a deliberately simplified model of the relationship for
the actual relationship.

1.1.3 The Optimal Linear Predictor
Many people regard linear functions as especially simple2, so let us now ask “What is
the optimal prediction we can make which is linear in X ?” That is, we restrict our
prediction function m(x) to have the form b0+ b1x. (To be really pedantic, that’s an
“affine” rather than a “linear” function.)

The mean squared error of the linear model b0 + b1x is now a function of two
arguments, b0 and b1. Let’s re-write it to better separate the contributions from those
arguments (which we control) and the contributions from the distribution of X and
Y (which are outside our control).

M SE(b0, b1)
= E

�

(Y − (b0+ b1X ))2
�

(1.13)

= E
�

Y 2�− 2b0E [Y ]− 2b1E [X Y ]+E
�

(b0+ b1X )2
�

(1.14)

= E
�

Y 2�− 2b0E [Y ]− 2b1(Cov [X ,Y ]+E [X ]E [Y ]) (1.15)

+b 2
0 + 2b0b1E [X ]+ b 2

1E
�

X 2�

= E
�

Y 2�− 2b0E [Y ]− 2b1Cov [X ,Y ]− 2b1E [X ]E [Y ] (1.16)

+b 2
0 + 2b0b1E [X ]+ b 2

1 Var [X ]+ b 2
1 (E [X ])

2

2Actually being precise about “how complicated is this function?” is a surprisingly hard matter. (To
appreciate this, think about how a straight line may seem like a simple function, but so does a step function,
and yet you need a lot of little steps to approximate a straight line...) Resolving this leads to some very deep
mathematics (Badii and Politi, 1997; Li and Vitányi, 1997).
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(See §1.2 for the identities I’m using above.)
We minimize again by setting derivatives to zero; we now need to take two partial

derivatives, which will give us two equations in two unknowns.

∂ E
�

(Y − (b0+ b1X ))2
�

∂ b0
= −2E [Y ]+ 2b0+ 2b1E [X ] (1.17)

∂ E
�

(Y − (b0+ b1X ))2
�

∂ b1
= −2Cov [X ,Y ]− 2E [X ]E [Y ]+ 2b0E [X ](1.18)

+2b1Var [X ]+ 2b1(E [X ])
2

We’ll call the optimal value of b0 and b1, the ones where these derivatives are exactly
0, β0 and β1.

The first equation is simpler, so we use it to find β0 in terms of β1:

β0 =E [Y ]−β1E [X ] (1.19)

Some points about this equation:

• In words, it says that the optimal intercept (β0) makes sure that the line goes
through the mean Y value at the mean X value. (To see this, add β1E [X ] to
both sides.)

• It’s often helpful to sanity-check our math by making sure that the units balance
on both sides of any equation we derive. Here, β0 should have the same units
as Y , and the right-hand side of this formula does, because β1 has the units of
Y /X .

• If the variables were “centered”, with E [X ] =E [Y ] = 0, we’d get β0 = 0.

Now we plug this in to the other equation:

0 = −Cov [X ,Y ]−E [X ]E [Y ]+β0E [X ]+β1Var [X ] (1.20)
+β1(E [X ])

2

= −Cov [X ,Y ]−E [X ]E [Y ] (1.21)
+(E [Y ]−β1E [X ])E [X ]+β1Var [X ]+β1(E [X ])

2

= −Cov [X ,Y ]+β1Var [X ] (1.22)
β1 = Cov [X ,Y ]/Var [X ] (1.23)

Some notes:

• In words, the optimal slope is the ratio between the covariance of X and Y ,
and the variance of X . The slope increases the more X and Y tend to fluctuate
together, and gets pulled towards zero the more X fluctuates period.

• You can apply the sanity check of seeing whether this gives the right units for
β1. (Spoiler: it does.)
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−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

Slope

M
S

E
(b

0, 
b 1

)

Intercept=−1
Intercept=0
Intercept=1

mse <- function(b0, b1, E.Y.sq = 10, E.Y = 2, Cov.XY = -1, E.X = -0.5, Var.X = 3) {
E.Y.sq - 2 * b0 * E.Y - 2 * b1 * Cov.XY - 2 * b1 * E.X * E.Y + b0^2 + 2 *

b0 * b1 * E.X + Var.X * b1^2 + (E.X * b1)^2
}
curve(mse(b0 = -1, b1 = x), from = -1, to = 1, lty = "solid", ylim = c(0, 25),

xlab = "Slope", ylab = expression(MSE(b[0], b[1])))
curve(mse(b0 = 0, b1 = x), add = TRUE, lty = "dashed")
curve(mse(b0 = 1, b1 = x), add = TRUE, lty = "dotted")
legend("topleft", legend = c("Intercept=-1", "Intercept=0", "Intercept=1"),

lty = c("solid", "dashed", "dotted"))

FIGURE 1.2: Mean squared error of linear models with different slopes and intercepts, when
E [X ] = −0.5, Var [X ] = 3, E [Y ] = 2, E

�

Y 2
�

= 10, Cov [X ,Y ] = −1. Each curve represents a
different intercept b0 in the linear model b0+ b1 x for Y .
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• The expected values E [X ] and E [Y ] play no role in the formula for β1 —
only the variance and covariance matter, and they don’t change when we add
or subtract constants. In particular, the optimal slope doesn’t change if we use
instead Y −E [Y ] and X −E [X ].

The line β0 +β1x is the optimal regression line (of Y on X ), or the optimal
linear predictor (of Y from X ).

Important Morals

1. At no time did we have to assume that the relationship between X and Y re-
ally is linear. We have derived the optimal linear approximation to the true
relationship, whatever that might be.

2. The best linear approximation to the truth can be awful. (ImagineE [Y |X = x] =
e x , or even = sin x.) There is no general reason to think linear approximations
ought to be good.

3. At not time did we have to assume anything about the marginal distributions
of the variables3, or about the joint distribution of the two variables together4

4. At no time did we have to assume anything about the fluctuations Y might
show around the optimal regression line — that the fluctuations are Gaussian,
or symmetric, or that they just add on to the regression line, etc.

5. In general, changing the distribution of X will change the optimal regression
line, even if P (Y |X = x) doesn’t change. This is because changing the distribu-
tion of X will (generally) change both Cov [X ,Y ] and Var [X ], and the changes
won’t (generally) cancel out.

6. At no time did we have to assume that X came before Y in time, or that X
causes Y , or that X is known precisely but Y only noisily, etc. It may be more
interesting to model Y as a linear function of X under those circumstances, but
the math doesn’t care about it at all.

I will expand on that first two points a little. There is a sort of reason to think that
linear models should work generally, which contains a kernel of truth, but needs to
be used carefully.

The true regression function, as I said, is µ(x). Suppose that this is a smooth
function, so smooth that we can expand it in a Taylor series. Pick then any particular
value x0. Then

µ(x) =µ(x0)+ (x − x0)
dµ
d x

�

�

�

�

x=x0

+
1
2
(x − x0)

2 d 2µ

d x2

�

�

�

�

�

x=x0

+ . . . (1.24)

3OK, to be pedantic, we had to assume thatE [X ], E [Y ], Var [X ] and Var [Y ]were all well-defined and
Var [X ]> 0.

4Except, to keep being pedantic, that Cov [X ,Y ] was well-defined.
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Because it’s tiresome to keep writing out the derivatives in this form, I’ll abbreviate
them as µ′, µ′′, etc.

For x close enough to x0, we can get away with truncating the series at first order,

µ(x)≈µ(x0)+ (x − x0)µ
′ (1.25)

and so we could identify that first derivative with the optimal slopeβ1. (The optimal
intercept β0 would depend on µ(x0) and the distribution of x − x0.) How close is
enough? Close enough that all the other terms don’t matter, so, e.g., the quadratic
term has to be negligible, meaning

|x − x0|µ
′ � |x − x0|

2µ′′/2 (1.26)
2µ′/µ′′ � |x − x0| (1.27)

Unless the function is really straight, therefore, any linear approximation is only go-
ing to be good over very short ranges.

It is possible to do a lot of “local” linear approximations, and estimate µ(x) suc-
cessfully that way — in fact, we’ll see how to do that in 402 (or read Simonoff 1996).
But a justification for a global linear model, this is weak.

A better justification for using linear models is simply that they are computation-
ally convenient, and there are many situations where computation is at a premium. If
you have huge amounts of data, or you need predictions very quickly, or your com-
puting hardware is very weak, getting a simple answer can be better than getting the
right answer. In particular, this is a rationale for using linear models to make predic-
tions, rather than than for caring about their parameters.

All of that said, we are going to spend most of this course talking about doing
inference on the parameters of linear models. There are a few reasons this is not
totally perverse.

• The theory of linear models is a special case of the more general theory which
covers more flexible and realistic models. But precisely because it is such a spe-
cial case, it allows for many simplifying short-cuts, which can make it easier to
learn, especially without advanced math. (We can talk about points and lines,
and not about reproducing-kernel Hilbert spaces.) Learning linear models first
is like learning to swim in a shallow pool, rather than in the ocean with a gor-
geous reef, deceptive currents, and the occasional shark. (By the end of the year,
you will know how to dive with small sharks.)

• Because linear models are so simple, for most of the last two hundred odd years
they were the only sort of statistical model people could actually use. This
means that lots of applications of statistics, in science, in policy and in indus-
try, has been done on linear models. It also means that lots of consumers of
statisticians, in science, in policy and in industry, expect linear models. It is
therefore important that you understand thoroughly both how they work and
what their limitations are.

Throughout the rest of the course, we are going to tack back and forth between
treating the linear model as exactly correct, and treating it as just a more-or-less conve-
nient, more-or-less accurate approximation. When we make the stronger assumption
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FIGURE 1.3: Statistician (right) receiving population moments from the Oracle (left).

that the linear model is right, we will be able to draw stronger conclusions; but these
will not be much more secure than that assumption was to start with.

1.1.4 Probability versus Statistics

Everything I’ve gone over so far is purely mathematical. We have been pretending
(Figure 21.5) that we have gone to the Oracle, and in a mystic trance they have revealed
to us the full joint probability distribution of X and Y , or at least the exact values of
all of their moments. As in many mathematical problems, therefore, we have ide-
alized away everything inconvenient. In reality, we never know the full probability
distribution of the variables we are dealing with5. Rather than exact knowledge from
the Oracle, we have only a limited number of noisy samples from the distribution.
The statistical problem is that of drawing inferences about the ideal predictor from
this unpromising material.

1.2 Reminders from Basic Probability

The expectation (or expected value) of a continuous random variable X with proba-
bility density function p(x) is

E [X ] =
∫

x p(x)d x (1.28)

while the expectation of a discrete random variable with probability mass function
p(x) is

E [X ] =
∑

x
x p(x) (1.29)

5Even the idea that the variables we see are randomly generated from a probability distribution is a
usually-untestable assumption.
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(Because everything is parallel for the discrete and continuous cases, I will not keep
writing out both forms; having tossed a coin to decide which, I will just write out the
integrals.)

The expectation of any function of a random variable f (X ) is

E [ f (X )] =
∫

f (x)p(x)d x (1.30)

(Of course, f (X ) has its own distribution, with a density we might call p f ; can you
prove that that

∫

f (x)p(x)d x =
∫

h p f (h)d z?)
X −E [X ] is the deviation or fluctuation of X from its expected value.
The variance of X is

Var [X ] =E
�

(X −E [X ])2
�

(1.31)

The covariance of X and Y is

Cov [X ,Y ] =E [(X −E [X ])(Y −E [Y ])] (1.32)

The covariance is positive when X and Y tend to be above or below their expected
values together, and negative if one of them having a positive fluctuation tends to go
with the other having a negative fluctuation.

1.2.1 Algebra with Expectations, Variances and Covariances
We’re going to deal a lot with expectation values, variances and covariances. There
are some useful bits of algebra about these, which I will now remind you of. You will
commit them to memory (either deliberately or because you’ll use them so often).

1. Linearity of expectations

E [aX + bY ] = aE [X ]+ bE [Y ] (1.33)

2. Variance identity

Var [X ] =E
�

X 2�− (E [X ])2 =E
�

(X −E [X ])2
�

(1.34)

3. Covariance identity

Cov [X ,Y ] =E [X Y ]−E [X ]E [Y ] =E [(X −E [X ])(Y −E [Y ])] (1.35)

4. Covariance is symmetric

Cov [X ,Y ] =Cov [Y,X ] (1.36)

5. Variance is covariance with itself

Cov [X ,X ] =Var [X ] (1.37)
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6. Variance is not linear
Var [aX + b ] = a2Var [X ] (1.38)

7. Covariance is not linear

Cov [aX + b ,Y ] = aCov [X ,Y ] (1.39)

8. Variance of a sum

Var [X +Y ] =Var [X ]+Var [Y ]+ 2Cov [X ,Y ] (1.40)

9. Variance of a big sum

Var

�

n
∑

i=1

Xi

�

=
n
∑

i=1

n
∑

j=1

Cov
�

Xi ,X j

�

=
n
∑

i=1

Var [Xi ]+ 2
n−1
∑

i=1

∑

j>i

Cov
�

Xi ,X j

�

(1.41)

10. Law of total expectation
E [X ] =E [E [X |Y ]] (1.42)

Remember: E [X |Y ] is a function of Y ; it’s random.

11. Law of total variance

Var [X ] =Var [E [X |Y ]]+E [Var [X |Y ]] (1.43)

12. Independence implies zero covariance If X and Y are independent, Cov [X ,Y ] =
0. The reverse is not true; Cov [X ,Y ] = 0 is even compatible with Y being a
function of X .

1.2.2 Convergence

The Law of Large Numbers Suppose that X1,X2, . . .Xn all have the same expected
value E [X ], the same variance Var [X ], zero covariance with each other. Then

1
n

n
∑

i=1

Xi →E [X ] (1.44)

In particular, if the Xi all have the same distribution and are independent (“inde-
pendent and identically distributed”, IID) then this holds.

Note: There are forms of the law of large numbers which don’t even require a
finite variance, but they are harder to state. There are also ones which do not require
constant means, ore even a lack of covariance among the Xi , but they are also harder
to state.
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Central limit theorem If the Xi are IID, then as n → ∞, the distribution of
1
n
∑n

i=1 Xi approachesN (E [X ] ,Var [X ]/n), regardless of the distribution of the Xi .
Mathematically, it is nicer to have the limit that we’re converging to not change

with n, so this is often stated as

p
n

X n −E [X ]
Var [X ]

 N (0,1) (1.45)

Note: There are versions of the central limit theorem which do not assume inde-
pendent or identically distributed variables being averaged, but they are considerably
more complicated to state.

1.3 Reminders from Basic Statistics: Estimation
We observe values X1,X2, . . .Xn from some distribution. We don’t know the distribu-
tion, so we imagine writing it down with one or more unknown parameters, f (x;θ).
A statistic is a function of the data, and the data alone. An estimator is a statistic
which takes a guess at the parameter θ, or some function of it, h(θ). (For instance we
might want to estimate E

�

X 2
�

=µ2+σ2.) We will generically write such an estima-

tor as θ̂n , with the hat to distinguish it from the true value of the parameter, and the
subscript n to emphasize that it will change as we get more data.

An estimator is a random variable; it inherits its distribution from that of the data
Xi . This is often called the sampling distribution of the estimator.

An estimator is consistent if θ̂n→ θ, whatever the true θmight be. An estimator
which is not consistent is inconsistent, and usually not very good.

The bias of an estimator is E
h

θ̂n −θ
i

=E
h

θ̂n

i

−θ. An estimator is unbiased if

its bias is zero for all θ.
An estimator also has a variance, Var

h

θ̂
i

. The standard error of an estimator is

its standard deviation, the square root of the variance. We give it the name “standard
error” to remind ourselves that this is telling us about how precise our estimate is.
N.B., there are more standard errors than just the standard error in the mean (see
below).

An estimator cannot be consistent unless its standard error goes to zero as n grows.
If both the standard error and the bias go to zero, that guarantees consistency, but
there are exceptional circumstances where asymptotically biased estimators are still
consistent.

Example: Sample Mean The expectation value E [X ] is either a parameter of a
distribution, or a function of the parameters. The sample mean X n = n−1∑n

i=1 Xi is
a statistic, since it is a function of the data alone. The sample mean can be used as an
estimator of E [X ], and is a natural choice for this role. If the Xi are IID, then the law
of large numbers tells us that X n is a consistent estimator of E [X ]. The central limit
theorem tells us that the sampling distribution is asymptotically Gaussian.
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It is easy to prove (so do so!) that E
�

X n

�

= E [X ], hence the mean is an unbi-

ased estimator of the expected value. Notice that Var
�

X n

�

= Var [X1]/n, which, as
promised above, goes to zero as n →∞. The corresponding standard deviation is
σ/
p

n, which is the “standard error in the mean”. (Again, every estimator of every
quantity has its own standard error, which is not just this.)

Example: Shrunken Sample Mean As an alternative estimator, consider n
n+λX n ,

where you get to set the number λ > 0 (but then you have to use the same λ for all n).
You should be able to convince yourself that (i) at every n and every λ, it has a strictly
smaller variance than X n , and hence a strictly smaller standard error; (ii) it is a biased
estimator ofE [X ], with a bias which depends onE [X ], λ and n; (iii) for everyE [X ]
and λ, the bias goes to zero as n→∞; (iv) it is a consistent estimator of E [X ]. This
is an example of what is called a “shrinkage” estimator, where the obvious estimate is
“shrunk” towards zero, so as to reduce variance.
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Chapter 2

Introducing Statistical
Modeling

2.1 Motivating

Let’s start this off with a motivating example1. We’ll begin by loading some data
which comes from the Bureau of Economic Analysis, on the economic output of
cities in the U.S. (http://www.bea.gov/regional/gdpmetro/).

bea <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/03/bea-2006.csv")

For each city — more precisely, each “Metropolitan Statistical Area”, which ig-
nores legal divisions of cities and counties and instead is based on patterns of commut-
ing — this records the name of the city, its population, its per-capita “gross metropoli-
tan product” in 2006 (the total value of goods and services produced), and the share
of the economy coming from four selected industries.

dim(bea) # Should have 7 columns and 366 rows, and we do
## [1] 366 7
head(bea) # Look at the beginning of the data
## MSA pcgmp pop finance prof.tech ict
## 1 Abilene, TX 24490 158700 0.09750 NA 0.01621
## 2 Akron, OH 32890 699300 0.12940 0.05440 NA
## 3 Albany, GA 24270 163000 0.08217 NA 0.00708
## 4 Albany-Schenectady-Troy, NY 36840 850300 0.15780 0.09399 0.04511
## 5 Albuquerque, NM 37660 816000 0.15990 0.09978 0.20500
## 6 Alexandria, LA 25490 152200 0.09152 0.03790 0.01134
## management
## 1 NA
## 2 0.054310

1I learned about this data from a paper by Bettencourt et al. (2007), but I think their data analysis is
deeply flawed.
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## 3 NA
## 4 NA
## 5 0.006509
## 6 0.015210

Let’s add a new column, which records the total GMP, by multiplying the output
per person by the number of people:

bea$gmp <- bea$pcgmp * bea$pop

And now let’s look at this visually:

plot(gmp ~ pop, data = bea, xlab = "Population", ylab = "Total GMP")
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The plot command, naturally enough, makes plots. The first argument to it tells
it what to plot: here, we’re telling it to plot gmp as a function of pop. (The tilde sign,
is used in such “formulas” to indicate that what goes on the left is being treated as
a function of what’s on the right.) The next argument tells R where to look up the
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variables in the formula: in the data frame bea that we just loaded. The other two
arguments give the axis some sensible labels.

This plot shows, unsurprisingly, that larger cities have larger total economic out-
puts. What is more remarkable is how closely the points fall around a straight line.
To see this, we’ll re-plot the points, and use the function abline to add a straight line.
To do this we need an intercept (the a) and a slope (the b). A reasonable guess for the
intercept is 0 (since presumably a city with no inhabitants has no economy). One
could reasonably guess the slope at 4× 104 dollars/person, say by noticing the city
with a population of about ten million (as it happens, Chicago) and seeing where it
falls on the vertical axis.

plot(gmp ~ pop, data = bea, xlab = "Population", ylab = "Total GMP")
abline(a = 0, b = 40000)
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This isn’t bad at all, but it looks like it’s systematically too low for the larger
cities. This is suggestive that there may be differences between the economies of large
and small cities. Let’s explore this by looking at the per-capita figures.
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plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP")
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At this point, it becomes annoying that the larger cities in the US are so much
larger than the small ones. By using a linear scale for the horizontal axis, we devote
most of the plot to empty space around New York, Los Angeles and Chicago, which
makes it harder to see if there is any trend. A useful trick is to switch to a logarithmic
scale for that axis, where equal distances correspond to equal multiples of population.

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP",
log = "x")
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Two things are noticeable from this plot. First, there is a wide range of per-capita
GMP for smaller cities, which narrows as population grows. Second, there seems to
be an increasing trend, or at least an increasing lower limit.

Let’s restore the previous plot, but make it a bit less visually cluttered.

# alter the plotting symbol from a hollow circle to a filled dot (pch)
# shrink the plotting symbols by a factor of 0.5 (cex)
plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP",

pch = 19, cex = 0.5)
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Let’s now calculate our first regression line. R has a function for estimating linear
models, with which we’ll become very familiar:

lm(pcgmp ~ pop, data = bea)
##
## Call:
## lm(formula = pcgmp ~ pop, data = bea)
##
## Coefficients:
## (Intercept) pop
## 3.128e+04 2.416e-03

The first argument to lm is a formula, telling R which variable we’re trying to
predict (the one on the left, here pcgmp), and which variable we’re trying to predict it
from (the one on the right, here pop), and what data set to take those variables from
(bea again)2 R then estimates the coefficients of the best linear predictor — we will see

2Much more complicated formulas are possible, but this will do for now.
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later how it does this — and returns those coefficients, along with a lot of other stuff
which is invisible in this view.

The abline command is smart enough to get an intercept and a slope from the
output of lm, so we can use it to decorate the plot:

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP",
pch = 19, cex = 0.5)

abline(lm(pcgmp ~ pop, data = bea), col = "blue")
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But why should we believe that line? R does it, but I hope by this point in your
life you don’t think “the computer says it, so it must be right” is ever a good idea.
Why prefer that blue line over this grey line, or the green one, or for that matter over
the orange curve?

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP",
pch = 19, cex = 0.5)

abline(lm(pcgmp ~ pop, data = bea), col = "blue")
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abline(a = 40000, b = 0, col = "grey")
abline(a = 20000, b = 40000/2e+07, col = "green")
lines(smooth.spline(x = bea$pop, y = bea$pcgmp, cv = TRUE), col = "orange")
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Why do we want to fit any lines here at all?

2.2 What Are Statistical Models For?

One basic use for these lines is as summaries. There is a lot of detail in those figures
— each one requires 366×2= 732 numbers. This is a lot of information to keep track
of; it makes our heads hurt. In many situations, we’d rather ignore all of that precise
detail and get away with a summary; we might want to compress the 732 numbers
into just an intercept and a slope that describe the general trend or over-all shape
of the data. There would be lots of ways to do that, and which ones would make
sense would depend on how we want to use the compressed summary. We might, for
instance, aim at being able to recover the original data with minimal error from the
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2.2. WHAT ARE STATISTICAL MODELS FOR? 32

summary, so we’d want a line which came close to the original points. But we might
also decide that it was more important for the line to come closer to large cities than
small ones (since they contain so many more people), etc., etc.

There is nothing wrong with data compression — it is, in fact, one of the funda-
mental technologies of modern life — but I have little more to say about it (here). The
one thing I will say is that anything you can calculate from the data could, in principle,
be used as a summary. Even if the calculation was originally inspired by doing some
sort of statistical inference, every statistic can be a descriptive statistic.

If we want to go beyond describing, summarizing or compressing the data, we
enter the realm of inference — we try to reach out and extend our knowledge from
the data we have, to other variables we have not measured, or not measured so directly.
This is inherently somewhat risky, imprecise, and uncertain. In statistics, we aim not
only to draw such inferences, but to say something about the level of risk, imprecision,
and uncertainty which accompanies them.

You have, by this point in your educations, been thoroughly schooled in one way
in which inferences can be subject to uncertainty: when the data is just a sample of
a larger population, and we want to extrapolate from the sample to the population.
In fact, many people get taught that this is the only sort of uncertainty statistics can
handle.

If that were true, there would be no role for statistics in dealing with this data set.
It isn’t any sort of sample at all — every city in the US in 2006 really is in there. So
why, then, does it seem wrong to say that the slope of the optimal linear predictor is
exactly 0.0024162 dollars per year per person? There are at least two reasons.

One reason is that while we have measurements on the complete population, those
measurements are themselves subject to error. In this case, while the people at the
BEA try very hard to provide reliable numbers, their figures are the result of a com-
plicated process, at which error can creep in at many points, from mistakes, accidents,
deliberate lies, possibly-incorrect assumptions made at various stages, the use of ran-
dom sampling in some steps, etc., etc.3 Generally, just about every process of mea-
surement is subject to some error: there are flaws in the measurement instrument or
process, or we measure some imperfect proxy for what we’re really interested in, or
the measurement is perturbed by unrepeatable, irrelevant disturbances. In fact, much
of the theory of mathematical statistics generally, and linear models specifically, was
developed in the 19th century by astronomers and other physical scientists to quan-
tify, and where possible reduce, the impacts of measurement error.

Some sources of measurement error are systematic: they tend to distort the mea-
surement in predictable, repeatable ways. They may make the measured value larger
than it should be, or smaller, or might shrink extreme values towards more mediocre
ones, etc. Ideally, these systematic errors should be identified and modeled, so we can
adjust for them. Other sources of error are (purely or merely) statistical: they are
directionless and do not repeat, but the distribution of errors is predictable and stable;
we can handle them with probability theory.

A second reason why it’s reasonable to do statistical inference on a complete data

3This is, among other things, a reason to want to compress the data, rather than just memorizing it:
some part of the data is just wrong.
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set is that even the real values re somewhat accidental, and we’d like to know the
general, underlying trends or relationships. Take the BEA data again: the exact values
of the GMPs of all American cities in 2006 were to some extent the results of accidents,
of chance, unrepeatable causes, and this would still be true even if we could measure
those exact GMPs without error. To be really concrete for a moment, the city with
the highest per-capita income in the data set is Bridgeport-Stamford-Norwalk, CT.
This is a center for insurance companies, banks and hedge funds. Exactly how much
money they made in 2006 depended on things like just how many hurricanes there
were in Florida, wild fires in California, mortgages from Cleveland and Phoenix sold
to small towns in Germany, etc., etc. Even if one thinks that there is, ultimately, some
sort of deterministic explanation for all of these quantities, they’re plainly very far
removed from any general relationship between a city’s population and its economic
productivity. They really happen — they are not just measurement errors4 — but
they could easily have happened a bit differently. Long experience has shown that the
distribution of these accidents is often stable, and can be modeled with probability
theory5. When that happens, they are often called by the more respectable name of
fluctuations.

To sum up: whether it’s due to sampling, or measurement error, or fluctuations,
we often have good reason to think that our data could have been more or less differ-
ent. If we re-ran the experiment, or “re-wound the tape of history” (S. J. Gould), the
results would not have been quite the same. This means that any statistic we calculate
from the data would have been more or less different as well. When we try to quantify
uncertainty, we want to know how different our calculations could have been.

To say anything useful here, we will need to make assumptions. Without some
assumptions, we can’t really say anything at all about how different the data could,
plausibly, have been. In statistics, a lot of accumulated experience says that useful
assumptions generally take the form of statistical models or probability models.

In a statistical model, we act as though the variables we measure, and possibly oth-
ers we don’t measure, are random variables. (We “model them as random variables.”)
The specification of a statistical model says what the random variables are, and lays
down more or less narrow restrictions on their distributions and how they relate to
each other. Here, for instance, are some conceivable statistical models for the BEA
data. In all of them, X stands for a city’s population and Y for its per-capita GMP.

1. X ∼N (6.81×105, 2.42×1012); Y |X ∼N (4.00×104, 8.50×107); X independent
across cities; Y independent across cities given their X ’s.

2. X ∼N (µX ,σ2
X ) for some meanµX and varianceσ2

X ; Y |X ∼N (4.00×104, 8.50×
107); Y independent across cities given their X ’s.

3. X ∼N (µX ,σ2
X ) for some mean µX and variance σ2

X ; Y |X ∼N (4.00× 104,σ2
Y )

for some variance σ2
Y ; Y independent across cities given their X ’s.

4“As I regularly find myself having to remind cadet risk managers with newly-minted PhDs in financial
econometrics, the Great Depression did actually happen; it wasn’t just a particularly innaccurate observa-
tion of the underlying 4% rate of return on equities.” (http://d-squareddigest.blogspot.com/2006/
09/tail-events-phrase-considered-harmful.html)

5In fact, there are precise mathematical senses in which sufficiently complicated deterministic processes
end up looking just like random ones. If this intrigues you, see Ruelle (1991) and Smith (2007).
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4. distribution of X unspecified; Y |X ∼ N (4.00× 104,σ2
Y ) for some σ2

Y ; Y inde-
pendent across cities given their X ’s.

5. distribution of X unspecified; Y |X ∼N (β0+β1x,σ2
Y ) for someβ0,β1,σ2

Y ; Y
independent across cities given their X ’s.

6. distribution of X unspecified; E [Y |X = x] = β0 +β1x for some β0 and β1;
Var [Y |X = x] = σ2

Y for some σ2
Y ; Y independent across cities given their X ’s.

7. distribution of X unspecified; E [Y |X = x] = β0 +β1x for some β0 and β1;
Y uncorrelated across cities given their X ’s.

As we go down this list of models, we make weaker and weaker assumptions about
the process which generated the data. This means that, with the same data, we can
infer less and less about that data-generating process. The very first model specifies
a single, complete, unambiguous distribution for the data. If we assumed that model
was true, we could then make all sorts of assertions about the distribution of city
population and economic output, without even having to look at the data at all. Later
models in the list leave more about the data-generating process undetermined, so we
can use the data to estimate those parts of the model (e.g., the mean and variance of city
populations in model 2, or the slopeβ1 in models from 4 on), or test hypotheses about
them, etc. Because a model specifies how the data variable X and Y are distributed,
and any statistics we calculate are functions of X and Y , a model also, implicitly, tells
us how those statistics are distributed6. These distributions of the statistics are what
we’ll use to quantify the uncertainty in our inferences.

The stronger the assumptions we make, the stronger the inferences we can draw, if
the assumptions are true. There is no virtue to strong conclusions which rest on faulty
premises. Therefore: we are going to go over how to draw these inferences, but we
are also going to go over checking model assumptions.

When confronting a data analysis problem, you first need to formulate a statisti-
cal model. This is partly about absorbing what’s already known about the subject7,
partly about looking for similar problems others have dealt with and seeing what you
can learn from them (i.e., analogy and tradition), and partly about being inspired by
initial explorations of the data. Once you have a model, the two key tasks are infer-
ence within the model, and checking the model.

Inference within the model is about doing calculations which presume the model’s
assumptions are true: estimation, or prediction, or hypothesis testing, or confidence
intervals, or what-have-you. This is usually what people actually want out of the data
analysis. Unfortunately, these inferences are only as good as the modeling assump-
tions that they’re based on.

Model checking, on the other hand, is about seeing whether the assumptions are
really true. This includes formal goodness-of-fit testing, but also various “specification

6Whether we can work out that distribution in a nice closed form is another question, but mathemat-
ically exists, and there are ways to cope when there’s no closed form, as we’ll see later in this class, and in
greater detail in 402.

7For instance, economists and geographers have long known about an “urban wage premium”, where
otherwise-similar workers in bigger cities get paid more (Thompson, 1968).
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35 2.3. THE SIMPLE LINEAR REGRESSION MODEL

tests” (some of which we will cover), the less formal checks called “diagnostics”, and
sheer judgment, often aided by visualizations. If the assumptions of the model we
started with turn out to be wrong, we need to go back and revise the model, either
replacing the faulty assumptions with others, or weakening them.

People usually list put within-model inference before model checking — that’s the
order most textbooks use — but that’s more because students, and teachers, are gen-
erally more comfortable with the more cut-and-dried topic of inference. That topic
is extremely formalized and mathematical, with lots of theory to guide us. In fact,
for lots of inference problems there is an unambiguous optimal procedure, which we
should follow. Model checking, on the other hand, is much less formalized, mathe-
matical and algorithmic than inference, and very little about it can be said to be defi-
nitely optimal or The Right Way To Do It. Nonetheless, assumption checking is much
more important. Impressive-seeming inferences from strong-but-wrong assumptions
don’t actually tell us anything about the world, and are useless, no matter how much
technical skill they might demonstrate. When reading other people’s data analyses,
you should get into the habit of paying very close attention to how they check their
models, and you should apply that same habit to yourself.

2.3 The Simple Linear Regression Model
To make this philosophizing a bit more concrete, let’s introduce the most basic of
all statistical models that is actually useful for anything, the simple linear regression
model. This is a model with two random variables, X and Y , where we are trying to
predict Y from X . Here are the model’s assumptions:

1. The distribution of X is unspecified, possibly even deterministic;

2. Y |X =β0+β1x + ε, where ε is a noise variable;

3. ε has mean 0, a constant variance σ2, and is uncorrelated with X and uncorre-
lated across observations.

The noise variable may represent measurement error, or fluctuations in Y , or
some combination of both. The assumption of additive noise is non-trivial — it’s
not absurd to imagine that either measurement error or fluctuations might change Y
multiplicatively (for instance). The assumption of a linear functional form for the
relationship between Y and X is non-trivial; lots of non-linear relationships actually
exist. The assumption of constant variance, or homoskedasticity, is non-trivial; the
non-correlation assumptions are non-trivial. But the assumption that the noise has
mean 0 is trivial. (Why?) Ideally, all of the non-trivial assumptions will be checked,
and we will talk later in the course about ways to check them.

The assumptions I have just laid out, while they are non-trivial because they could
be violated (and are, in many situations), are still strong enough to let us get a start on
inference. While we will go into this in some detail next time, let’s give this at least a
start here.

Remember we saw last time that the optimal linear predictor of Y from X has
slope β1 = Cov [X ,Y ]/Var [X ]. But both Cov [X ,Y ] and Var [X ] are functions of
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2.3. THE SIMPLE LINEAR REGRESSION MODEL 36

the true distribution. Rather than having that full distribution, we merely have data
points, say (x1, y1), (x2, y2), . . . (xn , yn). How might we estimate β1 from this data?

An obvious approach would be to use the data to find the sample covariance and
sample variance, and take their ratio. As a reminder, the sample variance of X is

s2
X =

1
n

n
∑

i=1

(xi − x)2 (2.1)

while the sample covariance is

cX Y =
1
n

n
∑

i=1

(xi − x)(yi − y) (2.2)

(Here I am writing x for the sample average of the xi , and similarly for other vari-
ables.)8 So we’d have a sample (or empirical) slope

cβ1 =
cX Y

s2
X

(2.3)

We can’t hope that cβ1 =β1, but we can hope that as n→∞, cβ1→β1. When an
estimator converges on the truth like that, the estimator is called consistent, and this
is the most basic property a good estimator should have. What do we need to assume
in order for cβ1→β1?

Let’s look at the sample covariance. A little algebra shows

cX Y =
1
n

n
∑

i=1

xi yi − x̄ ȳ (2.4)

According to the model, yi = (β0+β1xi + εi ). So (after a little more algebra)

cX Y =
1
n

n
∑

i=1

xi (β0+β1xi + εi )− xβ0+β1x + ε (2.5)

= β0x +β1x2+ xε− xβ0−β1x2− x̄ ε̄ (2.6)
= β1 s2

X + xε− x̄ ε̄ (2.7)

Because ε has mean 0, as n →∞, the law of large numbers says ε→ 0. Because ε is
uncorrelated with x, using the law of large numbers again says that xε→ 0 as well.
So

cX Y →β1 s2
X (2.8)

and therefore
cβ1 =

cX Y

s2
X

→
β1 s2

X

s2
X

=β1 (2.9)

8Some people prefer to define these with denominators n− 1 rather than n, to get unbiased estimates
of the population quantities. The way I am doing it will simplify some book-keeping presently.
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37 2.3. THE SIMPLE LINEAR REGRESSION MODEL

as desired.
As I said, this argument rests on all the model assumptions. Strictly speaking, the

estimator bβ is consistent under even weaker assumptions — it’s enough that cX Y →
Cov [X ,Y ], and s2

X →Var [X ]. On the other hand, it would be nice to say more: we
want to know how far from the truth our estimate is likely to be, whether it tends to
over- or under- estimate the slope, etc. we will see in later chapters how the assump-
tions of the simple linear regression model will let us say something about all of these
matters, and how the even stronger assumption that the noise is Gaussian will let us
be even more precise.

(We will, I promise, come back to this data set, and the question of which regres-
sion line, if any, best describes the relationship between a city’s size and its economic
output, but that, too, will have to wait for later.)

Exercises
1. What, if anything, makes plot(pcgmp ~ log(pop), data=bea) a worse plot

than plot(pcgmp ~ pop, data=bea, log="x")?

2. Fill in the algebra for (2.4).

3. Fill in the algebra for (2.5).
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Chapter 3

Simple Linear Regression
Models, with Hints at Their
Estimation

3.1 The Simple Linear Regression Model
Let’s recall the simple linear regression model from last time. This is a statistical model
with two variables X and Y , where we try to predict Y from X . The assumptions of
the model are as follows:

1. The distribution of X is arbitrary (and perhaps X is even non-random).

2. If X = x, then Y =β0+β1x + ε, for some constants (“coefficients”, “parame-
ters”) β0 and β1, and some random noise variable ε.

3. E [ε|X = x] = 0 (no matter what x is), Var [ε|X = x] = σ2 (no matter what x
is).

4. ε is uncorrelated across observations.

To elaborate, with multiple data points, (X1,Y1), (X2,Y2), . . . (Xn ,Yn), then the
model says that, for each i ∈ 1 : n,

Yi =β0+β1Xi + εi (3.1)

where the noise variables εi all have the same expectation (0) and the same variance
(σ2), and Cov

�

εi ,ε j

�

= 0 (unless i = j , of course).

3.1.1 “Plug-In” Estimates
In Chapter 1, we saw that the optimal linear predictor of Y from X has slope β1 =
Cov [X ,Y ]/Var [X ], and interceptβ0 =E [Y ]−β1E [X ]. A common tactic in devis-
ing estimators is to use what’s sometimes called the “plug-in principle”, where we find
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39 3.1. THE SIMPLE LINEAR REGRESSION MODEL

equations for the parameters which would hold if we knew the full distribution, and
“plug in” the sample versions of the population quantities. We saw this in Chapter 2,
where we estimated β1 by the ratio of the sample covariance to the sample variance:

cβ1 =
cX Y

s2
X

(3.2)

We also saw, in Chapter 2, that so long as the law of large numbers holds,

cβ1→β1 (3.3)

as n→∞. It follows easily that

cβ0 = Y −cβ1X (3.4)

will also converge on β0.

3.1.2 Least Squares Estimates

An alternative way of estimating the simple linear regression model starts from the
objective we are trying to reach, rather than from the formula for the slope. Recall,
from Chapter 1, that the true optimal slope and intercept are the ones which minimize
the mean squared error:

(β0,β1) = argmin
(b0,b1)
E
�

(Y − (b0+ b1X ))2
�

(3.5)

This is a function of the complete distribution, so we can’t get it from data, but we
can approximate it with data. The in-sample, empirical or training MSE is

ÖM SE(b0, b1)≡
1
n

n
∑

i=1

(yi − (b0+ b1xi ))
2 (3.6)

Notice that this is a function of b0 and b1; it is also, of course, a function of the data,
(x1, y1), (x2, y2), . . . (xn , yn), but we will generally suppress that in our notation.

If our samples are all independent, for any fixed (b0, b1), the law of large numbers

tells us that ÖM SE(b0, b1) → M SE(b0, b1) as n → ∞. So it doesn’t seem unreason-
able to try minimizing the in-sample error, which we can compute, as a proxy for
minimizing the true MSE, which we can’t. Where does it lead us?

Start by taking the derivatives with respect to the slope and the intercept:

∂ÖM SE
∂ b0

=
1
n

n
∑

i=1

(yi − (b0+ b1xi ))(−2) (3.7)

∂ÖM SE
∂ b1

=
1
n

n
∑

i=1

(yi − (b0+ b1xi ))(−2xi ) (3.8)
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3.1. THE SIMPLE LINEAR REGRESSION MODEL 40

Set these to zero at the optimum (β̂0, β̂1):

1
n

n
∑

i=1

(yi − (β̂0+ β̂1xi )) = 0 (3.9)

1
n

n
∑

i=1

(yi − (β̂0+ β̂1xi ))(xi ) = 0

These are often called the normal equations for least-squares estimation, or the es-
timating equations: a system of two equations in two unknowns, whose solution
gives the estimate. Many people would, at this point, remove the factor of 1/n, but I
think it makes it easier to understand the next steps:

y − β̂0− β̂1x = 0 (3.10)

xy − β̂0x − β̂1x2 = 0 (3.11)

The first equation, re-written, gives

β̂0 = y − β̂1x (3.12)

Substituting this into the remaining equation,

0 = xy − ȳ x̄ + β̂1 x̄ x̄ − β̂1x2 (3.13)

0 = cX Y − β̂1 s2
X (3.14)

β̂1 =
cX Y

s2
X

(3.15)

That is, the least-squares estimate of the slope is our old friend the plug-in estimate of
the slope, and thus the least-squares intercept is also the plug-in intercept.

Going forward The equivalence between the plug-in estimator and the least-squares
estimator is a bit of a special case for linear models. In some non-linear models, least
squares is quite feasible (though the optimum can only be found numerically, not in
closed form); in others, plug-in estimates are more useful than optimization.

3.1.3 Bias, Variance and Standard Error of Parameter Estimates

Whether we think of it as deriving from pluging-in or from least squares, we work
out some of the properties of this estimator of the coefficients, using the model as-
sumptions. We’ll start with the slope, β̂1.
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41 3.1. THE SIMPLE LINEAR REGRESSION MODEL

β̂1 =
cX Y

s2
X

(3.16)

=
1
n
∑n

i=1 xi yi − x̄ ȳ

s2
X

(3.17)

=
1
n
∑n

i=1 xi (β0+β1xi + ε1)− x̄(β0+β1 x̄ + ε̄)
s2
X

(3.18)

=
β0 x̄ +β1x2+ 1

n
∑n

i=1 xiεi − x̄β0−β1 x̄2− x̄ ε̄

s2
x

(3.19)

=
β1 s2

X +
1
n
∑n

i=1 xiεi − x̄ ε̄

s2
X

(3.20)

= β1+
1
n
∑n

i=1 xiεi − x̄ ε̄

s2
X

(3.21)

Since x̄ ε̄= n−1∑
i x̄εi ,

β̂1 =β1+
1
n
∑n

i=1 (xi − x̄)εi

s2
X

(3.22)

This representation of the slope estimate shows that it is equal to the true slope
(β1) plus something which depends on the noise terms (the εi , and their sample av-
erage ε̄). We’ll use this to find the expected value and the variance of the estimator
β̂1.

In the next couple of paragraphs, I am going to treat the xi as non-random vari-
ables. This is appropriate in “designed” or “controlled” experiments, where we get to
chose their value. In randomized experiments or in observational studies, obviously
the xi aren’t necessarily fixed; however, these expressions will be correct for the con-

ditional expectationE
h

β̂1|x1, . . . xn

i

and conditional variance Var
h

β̂1|x1, . . . xn

i

, and

I will come back to how we get the unconditional expectation and variance.

Expected value and bias Recall that E [εi |Xi ] = 0, so

1
n

n
∑

i=1

(xi − x̄)E [εi ] = 0 (3.23)

Thus,

E
h

β̂1

i

=β1 (3.24)

Since the bias of an estimator is the difference between its expected value and the
truth, β̂1 is an unbiased estimator of the optimal slope.
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3.1. THE SIMPLE LINEAR REGRESSION MODEL 42

(To repeat what I’m sure you remember from mathematical statistics: “bias” here

is a technical term, meaning no more and no less than E
h

β̂1

i

−β1. An unbiased

estimator could still make systematic mistakes — for instance, it could underestimate
99% of the time, provided that the 1% of the time it over-estimates, it does so by
much more than it under-estimates. Moreover, unbiased estimators are not necessarily
superior to biased ones: the total error depends on both the bias of the estimator and
its variance, and there are many situations where you can remove lots of bias at the
cost of adding a little variance. Least squares for simple linear regression happens not
to be one of them, but you shouldn’t expect that as a general rule.)

Turning to the intercept,

E
h

β̂0

i

= E
h

Y − β̂1X
i

(3.25)

= β0+β1X −E
h

β̂1

i

X (3.26)

= β0+β1X −β1X (3.27)
= β0 (3.28)

so it, too, is unbiased.

Variance and Standard Error Using the formula for the variance of a sum from
Chapter 1, and the model assumption that all the εi are uncorrelated with each other,

Var
h

β̂1

i

= Var

�

β1+
1
n
∑n

i=1 (xi − x̄)εi

s2
X

�

(3.29)

= Var

� 1
n
∑n

i=1 (xi − x̄)εi

s2
X

�

(3.30)

=
1

n2

∑n
i=1 (xi − x̄)2Var [εi ]

(s2
X )2

(3.31)

=
σ2

n s2
X

(s2
X )2

(3.32)

=
σ2

ns2
X

(3.33)

In words, this says that the variance of the slope estimate goes up as the noise
around the regression line (σ2) gets bigger, and goes down as we have more observa-
tions (n), which are further spread out along the horizontal axis (s2

X ); it should not
be surprising that it’s easier to work out the slope of a line from many, well-separated
points on the line than from a few points smushed together.

The standard error of an estimator is just its standard deviation, or the square
root of its variance:

se(β̂1) =
σ

Æ

ns2
X

(3.34)
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I will leave working out the variance of β̂0 as an exercise.

Unconditional-on-X Properties The last few paragraphs, as I said, have looked at
the expectation and variance of β̂1 conditional on x1, . . . xn , either because the x’s
really are non-random (e.g., controlled by us), or because we’re just interested in con-
ditional inference. If we do care about unconditional properties, then we still need

to find E
h

β̂1

i

and Var
h

β̂1

i

, not just E
h

β̂1|x1, . . . xn

i

and Var
h

β̂1|x1, . . . xn

i

. Fortu-

nately, this is easy, so long as the simple linear regression model holds.
To get the unconditional expectation, we use the “law of total expectation”:

E
h

β̂1

i

= E
h

E
h

β̂1|X1, . . .Xn

ii

(3.35)

= E [β1] =β1 (3.36)

That is, the estimator is unconditionally unbiased.
To get the unconditional variance, we use the “law of total variance”:

Var
h

β̂1

i

= E
h

Var
h

β̂1|X1, . . .Xn

ii

+Var
h

E
h

β̂1|X1, . . .Xn

ii

(3.37)

= E
�

σ2

ns2
X

�

+Var [β1] (3.38)

=
σ2

n
E
�

1
s2
X

�

(3.39)

3.1.4 Parameter Interpretation; Causality

Two of the parameters are easy to interpret.

σ2 is the variance of the noise around the regression line; σ is a typical distance of a
point from the line. (“Typical” here in a special sense, it’s the root-mean-squared
distance, rather than, say, the average absolute distance.)

β0 is the simply the expected value of Y when X is 0, E [Y |X = 0]. The point X = 0
usually has no special significance, but this setting does ensure that the line goes
through the point (E [X ] ,E [Y ]).

The interpretation of the slope is both very straightforward and very tricky. Math-
ematically, it’s easy to convince yourself that, for any x

β1 =E [Y |X = x]−E [Y |X = x − 1] (3.40)

or, for any x1, x2,

β1 =
E [Y |X = x2]−E [Y |X = x1]

x2− x1
(3.41)

This is just saying that the slope of a line is “rise/run”.
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The tricky part is that we have a very strong, natural tendency to interpret this
as telling us something about causation — “If we change X by 1, then on average Y
will change by β1”. This interpretation is usually completely unsupported by the
analysis. If I use an old-fashioned mercury thermometer, the height of mercury in
the tube usually has a nice linear relationship with the temperature of the room the
thermometer is in. This linear relationship goes both ways, so we could regress tem-
perature (Y ) on mercury height (X ). But if I manipulate the height of the mercury
(say, by changing the ambient pressure, or shining a laser into the tube, etc.), changing
the height X will not, in fact, change the temperature outside.

The right way to interpret β1 is not as the result of a change, but as an expected
difference. The correct catch-phrase would be something like “If we select two sets
of cases from the un-manipulated distribution where X differs by 1, we expect Y to
differ by β1.” This covers the thermometer example, and every other I can think
of. It is, I admit, much more inelegant than “If X changes by 1, Y changes by β1 on
average”, but it has the advantage of being true, which the other does not.

There are circumstances where regression can be a useful part of causal inference,
but we will need a lot more tools to grasp them; that will come towards the end of
402.

3.2 The Gaussian-Noise Simple Linear Regression Model

We have, so far, assumed comparatively little about the noise term ε. The advantage
of this is that our conclusions apply to lots of different situations; the drawback is that
there’s really not all that much more to say about our estimator bβ or our predictions
than we’ve already gone over. If we made more detailed assumptions about ε, we
could make more precise inferences.

There are lots of forms of distributions for ε which we might contemplate, and
which are compatible with the assumptions of the simple linear regression model (Fig-
ure 3.1). The one which has become the most common over the last two centuries is
to assume ε follows a Gaussian distribution.

The result is the Gaussian-noise simple linear regression model1:

1. The distribution of X is arbitrary (and perhaps X is even non-random).

2. If X = x, then Y =β0+β1x + ε, for some constants (“coefficients”, “parame-
ters”) β0 and β1, and some random noise variable ε.

3. ε∼N (0,σ2), independent of X .

4. ε is independent across observations.

1Our textbook, rather old-fashionedly, calls this the “normal error” model rather than “Gaussian noise”.
I dislike this: “normal” is an over-loaded word in math, while “Gaussian” is (comparatively) specific; “error”
made sense in Gauss’s original context of modeling, specifically, errors of observation, but is misleading
generally; and calling Gaussian distributions “normal” suggests they are much more common than they
really are.
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FIGURE 3.1: Some possible noise distributions for the simple linear regression model, since all have
E [ε] = 0, and could get any variance by scaling. (The model is even compatible with each obser-
vation taking ε from a different distribution.) From top left to bottom right: Gaussian; double-
exponential (“Laplacian”); “circular” distribution; t with 3 degrees of freedom; a gamma distribu-
tion (shape 1.5, scale 1) shifted to have mean 0; mixture of two gammas with shape 1.5 and shape
0.5, each off-set to have expectation 0. The first three were all used as error models in the 18th and
19th centuries. (See Figure 3.2 for the code.)
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par(mfrow = c(2, 3))
curve(dnorm(x), from = -3, to = 3, xlab = expression(epsilon), ylab = "", ylim = c(0,

1))
curve(exp(-abs(x))/2, from = -3, to = 3, xlab = expression(epsilon), ylab = "",

ylim = c(0, 1))
curve(sqrt(pmax(0, 1 - x^2))/(pi/2), from = -3, to = 3, xlab = expression(epsilon),

ylab = "", ylim = c(0, 1))
curve(dt(x, 3), from = -3, to = 3, xlab = expression(epsilon), ylab = "", ylim = c(0,

1))
curve(dgamma(x + 1.5, shape = 1.5, scale = 1), from = -3, to = 3, xlab = expression(epsilon),

ylab = "", ylim = c(0, 1))
curve(0.5 * dgamma(x + 1.5, shape = 1.5, scale = 1) + 0.5 * dgamma(0.5 - x,

shape = 0.5, scale = 1), from = -3, to = 3, xlab = expression(epsilon),
ylab = "", ylim = c(0, 1))

par(mfrow = c(1, 1))

FIGURE 3.2: Code for producing Figure 3.1.

You will notice that these assumptions are strictly stronger than those of the sim-
ple linear regression model. More exactly, the first two assumptions are the same,
while the third and fourth assumptions of the Gaussian-noise model imply the corre-
sponding assumptions of the other model. This means that everything we have done
so far directly applies to the Gaussian-noise model. On the other hand, the stronger
assumptions let us say more. They tell us, exactly, the probability distribution for
Y given X , and so will let us get exact distributions for predictions and for other
inferential statistics.

Why the Gaussian noise model? Why should we think that the noise around the
regression line would follow a Gaussian distribution, independent of X ? There are
two big reasons.

1. Central limit theorem The noise might be due to adding up the effects of lots
of little random causes, all nearly independent of each other and of X , where
each of the effects are of roughly similar magnitude. Then the central limit
theorem will take over, and the distribution of the sum of effects will indeed be
pretty Gaussian. For Gauss’s original context, X was (simplifying) “Where is
such-and-such-a-planet in space?”, Y was “Where does an astronomer record the
planet as appearing in the sky?”, and noise came from defects in the telescope,
eye-twitches, atmospheric distortions, etc., etc., so this was pretty reasonable.
It is clearly not a universal truth of nature, however, or even something we
should expect to hold true as a general rule, as the name “normal” suggests.

2. Mathematical convenience Assuming Gaussian noise lets us work out a very
complete theory of inference and prediction for the model, with lots of closed-
form answers to questions like “What is the optimal estimate of the variance?”
or “What is the probability that we’d see a fit this good from a line with a non-
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47 3.2. THE GAUSSIAN-NOISE SIMPLE LINEAR REGRESSION MODEL

zero intercept if the true line goes through the origin?”, etc., etc. Answering
such questions without the Gaussian-noise assumption needs somewhat more
advanced techniques, and much more advanced computing; we’ll get to it to-
wards the end of the class.

3.2.1 Visualizing the Gaussian Noise Model
The Gaussian noise model gives us not just an expected value for Y at each x, but a
whole conditional distribution for Y at each x. To visualize it, then, it’s not enough
to just sketch a curve; we need a three-dimensional surface, showing, for each combi-
nation of x and y, the probability density of Y around that y given that x. Figure 3.3
illustrates.

3.2.2 Maximum Likelihood vs. Least Squares
As you remember from your mathematical statistics class, the likelihood of a param-
eter value on a data set is the probability density at the data under those parameters.
We could not work with the likelihood with the simple linear regression model, be-
cause it didn’t specify enough about the distribution to let us calculate a density. With
the Gaussian-noise model, however, we can write down a likelihood2 By the model’s
assumptions, if think the parameters are the parameters are b0, b1, s2 (reserving the
Greek letters for their true values), then Y |X = x ∼ N (b0 + b1x, s2), and Yi and Y j
are independent given Xi and X j , so the over-all likelihood is

n
∏

i=1

1
p

2πs2
e−

(yi−(b0+b1 xi ))
2

2s2 (3.42)

As usual, we work with the log-likelihood, which gives us the same information3 but
replaces products with sums:

L(b0, b1, s2) =−n
2

log2π− n
log

s − 1
2s2

n
∑

i=1

(yi − (b0+ b1xi ))
2 (3.43)

We recall from mathematical statistics that when we’ve got a likelihood function,
we generally want to maximize it. That is, we want to find the parameter values
which make the data we observed as likely, as probable, as the model will allow. (This
may not be very likely; that’s another issue.) We recall from calculus that one way to
maximize is to take derivatives and set them to zero.

∂ L
∂ b0

= − 1
2s2

n
∑

i=1

2(yi − (b0+ b1xi ))(−1) (3.44)

∂ L
∂ b1

= − 1
2s2

n
∑

i=1

2(yi − (b0+ b1xi ))(−xi ) (3.45)

2Strictly speaking, this is a “conditional” (on X ) likelihood; but only pedants use the adjective in this
context.

3Why is this?
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x
−1 0 1 2 3

y

−4

−2

0

2

4

p(y | x)
0.00.20.40.6

x.seq <- seq(from = -1, to = 3, length.out = 150)
y.seq <- seq(from = -5, to = 5, length.out = 150)
cond.pdf <- function(x, y) {

dnorm(y, mean = 10 - 5 * x, sd = 0.5)
}
z <- outer(x.seq, y.seq, cond.pdf)
persp(x.seq, y.seq, z, ticktype = "detailed", phi = 75, xlab = "x", ylab = "y",

zlab = expression(p(y | x)), cex.axis = 0.8)

FIGURE 3.3: Illustrating how the conditional pdf of Y varies as a function of X , for a hypothetical
Gaussian noise simple linear regression where β0 = 10, β1 = −5, and σ2 = (0.5)2. The perspec-
tive is adjusted so that we are looking nearly straight down from above on the surface. (Can you
find a better viewing angle?) See help(persp) for the 3D plotting (especially the examples), and
help(outer) for the outer function, which takes all combinations of elements from two vectors
and pushes them through a function. How would you modify this so that the regression line went
through the origin with a slope of 4/3 and a standard deviation of 5?
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49 3.2. THE GAUSSIAN-NOISE SIMPLE LINEAR REGRESSION MODEL

Notice that when we set these derivatives to zero, all the multiplicative constants
— in particular, the prefactor of 1

2s2 — go away. We are left with

n
∑

i=1

yi − (cβ0+cβ1xi ) = 0 (3.46)

n
∑

i=1

(yi − (cβ0+cβ1xi ))xi = 0 (3.47)

These are, up to a factor of 1/n, exactly the equations we got from the method of
least squares (Eq. 3.9). That means that the least squares solution is the maximum
likelihood estimate under the Gaussian noise model; this is no coincidence4.

Now let’s take the derivative with respect to s :

∂ L
∂ s

= −n
s
+ 2

1
2s3

n
∑

i=1

(yi − (b0+ b1xi ))
2 (3.48)

Setting this to 0 at the optimum, including multiplying through by bσ3, we get

cσ2 =
1
n

n
∑

i=1

(yi − (cβ0+cβ1xi ))
2 (3.49)

Notice that the right-hand side is just the in-sample mean squared error.

Other models Maximum likelihood estimates of the regression curve coincide with
least-squares estimates when the noise around the curve is additive, Gaussian, of con-
stant variance, and both independent of X and of other noise terms. These were
all assumptions we used in setting up a log-likelihood which was, up to constants,
proportional to the (negative) mean-squared error. If any of those assumptions fail,
maximum likelihood and least squares estimates can diverge, though sometimes the
MLE solves a “generalized” least squares problem (as we’ll see later in this course).

Exercises
1. Show that if E [ε|X = x] = 0 for all x, then Cov [X ,ε] = 0. Would this still be

true if E [ε|X = x] = a for some other constant a?

2. Find the variance of β̂0. Hint: Do you need to worry about covariance between
Y and β̂1?

4It’s no coincidence because, to put it somewhat anachronistically, what Gauss did was ask himself “for
what distribution of the noise would least squares maximize the likelihood?”.
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Chapter 4

The Method of Least Squares
for Simple Linear Regression
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4.1 Recapitulation
Let’s recap from last time. The simple linear regression model is a statistical model
for two variables, X and Y . We use X — the predictor variable — to try to predict
Y , the target or response1. The assumptions of the model are:

1. The distribution of X is arbitrary (and perhaps X is even non-random).

2. If X = x, then Y =β0+β1x + ε, for some constants (“coefficients”, “parame-
ters”) β0 and β1, and some random noise variable ε.

3. E [ε|X = x] = 0 (no matter what x is), Var [ε|X = x] = σ2 (no matter what x
is).

4. ε is uncorrelated across observations.

In a typical situation, we also possess observations (x1, y1), (x2, y2), . . . (xn , yn), which
we presume are a realization of the model. Our goals are to estimate the parameters
of the model, and to use those parameters to make predictions.

In Chapter 3, we saw that we could estimate the parameters by the method of
least squares: that is, of minimizing the in-sample mean squared error:

ÖM SE(b0, b1)≡
1
n

n
∑

i=1

(yi − (b0+ b1xi ))
2 (4.1)

In particular, we obtained the following results:

Normal or estimating equations The least-squares estimates solve the normal or
estimating equations:

y − β̂0− β̂1x = 0 (4.2)

xy − β̂0x − β̂1x2 = 0 (4.3)
1Older terms would be “independent” and “dependent” variables, respectively. These import an un-

warranted suggestion of causality or even deliberate manipulation on the part of X , so I will try to avoid
them.
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Closed-form solutions The solution to the estimating equations can be given in
closed form:

β̂1 =
cX Y

s2
X

(4.4)

β̂0 = y − β̂1x (4.5)

Unbiasedness The least-squares estimator is unbiased:

E
h

β̂0

i

= β0 (4.6)

E
h

β̂1

i

= β1 (4.7)

Variance shrinks like 1/n The variance of the estimator goes to 0 as n→∞, like
1/n:

Var
h

β̂1

i

=
σ2

ns2
X

(4.8)

Var
h

β̂0

i

=
σ2

n

�

1+
x2

s2
X

�

(4.9)

In these notes, I will try to explain a bit more of the general picture underlying
these results, and to explain what it has to do with prediction.

4.2 In-Sample MSE vs. True MSE
The true regression coefficients minimize the true MSE, which is (under the simple
linear regression model):

(β0,β1) = argmin
(b0,b1)
E
�

(Y − (b0+ b1X ))2
�

(4.10)

What we minimize instead is the mean squared error on the data:

(β̂0, β̂1) = argmin
(b0,b1)

1
n

n
∑

i=1

(yi − (b0+ b1xi ))
2 (4.11)

This is the in-sample or empirical version of the MSE. It’s clear that it’s a sample
average, so for any fixed parameters b0, b1, when the law of large numbers applies, we
should have

1
n

n
∑

i=1

(yi − (b0+ b1xi ))
2→E

�

(Y − (b0+ b1X ))2
�

(4.12)

as n→∞. This should make it plausible that the minimum of the function of the left
is going to converge on the minimum of the function on the right, but there can be
tricky situations, with more complex models, where this convergence doesn’t happen.
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To illustrate what I mean by this convergence, Figure 4.2 shows a sequence of
surfaces of the MSE as a function of (b0, b1). (The simulation code is in Figure 4.1.)
The first row shows different in-sample MSE surfaces at a small value of n; the next
row at a larger value of n; the next row at a still larger value of n. What you can
see is that as n grows, these surfaces all become more similar to each other, and the
locations of the minima are also becoming more similar. This isn’t a proof, but shows
why it’s worth looking for a proof.

4.2.1 Existence and Uniqueness

On any given finite data set, it is evident from Eqs. 4.4–4.5 that there is always a least-
squares estimate, unless s2

X = 0, i.e., unless the sample variance of X is zero, i.e., unless
all the xi have the same value. (Obviously, with only one value of the x coordinate,
we can’t work out the slope of a line!) Moreover, if s2

X > 0, then there is exactly one
combination of slope and intercept which minimizes the MSE in-sample.

One way to understand this algebraically is that the estimating equations give us
a system of two linear equations in two unknowns. As we remember from linear
algebra (or earlier), such systems have a unique solution, unless one of the equations
of the system is redundant. (See Exercise 2.)

Notice that this existence and uniqueness of a least-squares estimate assumes abso-
lutely nothing about the data-generating process. In particular, it does not assume that
the simple linear regression model is correct. There is always some straight line that
comes closest to our data points, no matter how wrong, inappropriate or even just
plain silly the simple linear model might be.

4.3 Constant-Plus-Noise Representations

In deriving the properties of the least-squares estimators, it is extremely helpful to
re-write them so that they have the form “constant + noise”, and especially to try to
write the noise as a sum of uncorrelated random variables. This sort of “represen-
tation” of the estimator makes it much simpler to determine its properties, because
adding up constants and uncorrelated random variables is what the rules of algebra
from Chapter 1 make easy for us.

To this end, let’s be explicit about writing out β̂1 in the form of a constant plus a
sum of uncorrelated noise random variables.

Begin with the fact that β̂1 is the ratio of the sample covariance to the sample
variance of X :

β̂1 =
cX Y

s2
X

(4.13)

=
1
n
∑n

i=1 (xi − x)(yi − y)
s2
X

(4.14)

=
1
n
∑n

i=1 (xi − x)yi −
1
n
∑n

i=1 (xi − x)y
s2
X

(4.15)
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# Simulate from a linear model with uniform X and t-distributed noise
# Inputs: number of points; intercept; slope; width of uniform X
# distribution (symmetric around 0); degrees of freedom for t Output: data
# frame with columns for X and Y
sim.linmod <- function(n, beta.0, beta.1, width, df) {

# draw n points from a uniform distribution centered on 0
x <- runif(n, min = -width/2, max = width/2)
# draw n points from a t distribution with the given number of degrees of
# freedom
epsilon <- rt(n, df = df)
# make y from a linear model
y <- beta.0 + beta.1 * x + epsilon
# return the data frame
return(data.frame(x = x, y = y))

}

# Calculate in-sample MSE of a linear model First define a function that
# works for just one slope/intercept pair at time Then 'Vectorize' it to
# handle vectors of intercepts and slopes Inputs: slope; intercept; data
# frame with 'x' and 'y' columns Output: the in-sample MSE Presumes: 'y' is
# the target variable and 'x' is the predictor
mse.insample <- function(b.0, b.1, data) {

mean((data$y - (b.0 + b.1 * data$x))^2)
}
mse.insample <- Vectorize(mse.insample, vectorize.args = c("b.0", "b.1"))

# Grids of possible intercepts and slopes
b.0.seq <- seq(from = -10, to = 10, length.out = 20)
b.1.seq <- seq(from = -10, to = 10, length.out = 20)

# 3d wire-mesh ('perspective') plot of a linear model's error surface Input:
# data set; maximum value for Z axis (for comparability across plots)
# Output: Transformation matrix for adding new points/lines to the plot,
# invisibly --- see help(persp) under 'Value'. (Ignored here) ATTN:
# hard-coded slope/intercept sequences less than ideal
in.sample.persp <- function(data, zmax = 600) {

# Calculate the in-sample MSE for every combination of
z <- outer(b.0.seq, b.1.seq, mse.insample, data = data)
persp(b.0.seq, b.1.seq, z, zlim = c(0, zmax), xlab = "Intercept", ylab = "Slope",

zlab = "MSE", ticktype = "detailed")
}

FIGURE 4.1: Code to simulate from a linear model with t -distributed noise and uniformly dis-
tributed X (to emphasize here needs anything to be Gaussian); to calculate the MSE of a linear
model on a given data sample; and to plot the error surface on a given data set.
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## Warning in persp.default(b.0.seq, b.1.seq, z, zlim = c(0, zmax), xlab =
"Intercept", : surface extends beyond the box
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par(mfrow = c(3, 2))
in.sample.persp(sim.linmod(n = 10, beta.0 = 5, beta.1 = -2, width = 4, df = 3))
in.sample.persp(sim.linmod(n = 10, beta.0 = 5, beta.1 = -2, width = 4, df = 3))
in.sample.persp(sim.linmod(n = 100, beta.0 = 5, beta.1 = -2, width = 4, df = 3))
in.sample.persp(sim.linmod(n = 100, beta.0 = 5, beta.1 = -2, width = 4, df = 3))
in.sample.persp(sim.linmod(n = 1e+05, beta.0 = 5, beta.1 = -2, width = 4, df = 3))
in.sample.persp(sim.linmod(n = 1e+05, beta.0 = 5, beta.1 = -2, width = 4, df = 3))
par(mfrow = c(1, 1))

FIGURE 4.2: Error surfaces for the linear model Y = 5−2X +ε, ε∼ t3, X ∼U (−2,2), at n = 10
(top row), n = 100 (middle) and n = 100000 (bottom). Each column is an independent run of the
model. Notice how these become increasingly similar as n grows.
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At this point, we need to pause for a fundamental fact which we will use often: for any
variable z, the average difference from the sample mean is zero: n−1∑

i zi − z = 0.
To see this, break up the sum of the difference into a difference in sums:

1
n

n
∑

i=1

zi − z =
1
n

n
∑

i=1

zi −
1
n

n
∑

i=1

z (4.16)

= z − nz
n
= 0 (4.17)

It follows that for any w which is constant in i ,

1
n

n
∑

i=1

(zi − z)w = 0 (4.18)

Thus
1
n

n
∑

i=1

(xi − x)y = 0 (4.19)

So

β̂1 =
1
n
∑n

i=1 (xi − x)yi

s2
X

(4.20)

So far, we have not used any of our modeling assumptions. We now do so. Specif-
ically, we use the assumption that

yi =β0+β1xi + εi (4.21)

For reasons which should become clear momentarily, it will be more convenient to
write this in terms of how far xi is from the sample mean x:

yi =β0+β1x +β1(xi − x)+ εi (4.22)

to substitute the above expression for yi into Eq. 4.20:

β̂1 =
1
n
∑n

i=1 (xi − x)(β0+β1x +β1(xi − x)+ εi )
s2
X

(4.23)

=
β0+β1 x

n
∑n

i=1 (xi − x)+ β1
n
∑n

i=1 (xi − x)2+ 1
n
∑n

i=1 (xi − x)εi

s2
X

(4.24)

The first sum in the numerator is a constant times the average difference of xi from
x, so it’s zero (by Eq. 4.18). The second sum in the numerator is just s2

X again. In the
third sum, because the εi are not constant, is not (necessarily) zero. Simplifying:

β̂1 =β1+
n
∑

i=1

xi − x
ns2

X

εi (4.25)
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Notice the form of Eq. 4.25: it writes our random estimator as a constant plus a
weighted sum of the noise terms εi . In fact, by the fourth item in our listing of as-
sumptions for the simple linear regression model, it writes β̂1 as a constant plus a
weighted sum of uncorrelated noise terms.

It is now very easy to work out the expected value:

E
h

β̂1

i

= E
�

β1+
n
∑

i=1

xi − x
ns2

X

εi

�

(4.26)

= β1+
n
∑

i=1

xi − x
s2
X

E [εi ] =β1 (4.27)

or the variance:

Var
h

β̂1

i

= Var

�

β1+
n
∑

i=1

xi − x
ns2

X

εi

�

(4.28)

= Var

�

n
∑

i=1

xi − x
ns2

X

εi

�

(4.29)

=
n
∑

i=1

(xi − x)2

n2 s4
X

Var [εi ] (4.30)

= σ2 ns2
X

n2 s4
X

=
σ2

ns2
X

(4.31)

where the last line uses the modeling assumption that all of the εi have the same vari-
ance. (The next-to-last line uses the assumption that they are uncorrelated.)

So far, this is just re-capitulating stuff we’ve done already, but the exact same strat-
egy works for any estimator (or test statistic, etc.) which we can manipulate into
constant-plus-noise form. It’s not always possible to do this (though see the optional
section 4.9, and, for the ambitious, van der Vaart 1998), but it’s a very powerful strat-
egy when it works. To illustrate its power, we’ll now use it on predictions of the
simple linear model, when estimated by least squares.

4.4 Predictions

Remember that we got into all this mess not because we want to know the numbers
β0 and β1 for their own sake, but because we wanted to predict Y from X . How do
we make those predictions, and how good are they?

If we knewβ0 andβ1, and that X = x, then our prediction2 for Y would beβ0+
β1x. This is, assuming the simple linear regression model is true, exactlyE [Y |X = x],
which we saw back in Chapter 1 is the best prediction we can make. As x changes,

2This is called a point prediction; think of it as “if you have to give one number, this is the best single
number to give.” We might also make interval predictions (e.g., “with probability p, Y will be in the
interval [l , u]”) or distributional predictions (e.g., “Y will follow an N (m, , v) distribution”.
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this prediction changes, but that’s precisely what we want — the predictions will just
follow points on the line.

Since we do not know β0 and β1, we fake it — that is, we use our estimates of
the coefficients. At an arbitrary value of X , say x (sometimes called the operating
point), we predict that on average Y will be

m̂(x) = β̂0+ β̂1x (4.32)

This point prediction is called the fitted value3 at x.
Notice the fitted value m̂(x) is an estimate ofE [Y |X = x]. The latter is a perfectly

deterministic quantity; it has the valueβ0+β1x, which is some number or other, and
we just happen not to know it. But m̂(x) is a function of our data, which are random,
hence m̂(x) is also random. It inherits its randomness from β̂0 and β̂1, which in turn
inherit theirs from y and cX Y .

To analyze the randomness in m̂(x), we will represent it as constants plus a weighted
sum of uncorrelated noise terms. Using Eqs. 4.5,

m̂(x) = β̂0+ β̂1x (4.33)

= y − β̂1x + β̂1x (4.34)

= y +(x − x)β̂1 (4.35)

Using Eq. 4.25 and the definition of a sample mean,

m̂(x) =
1
n

n
∑

i=1

yi +(x − x)
�

β1+
n
∑

i=1

xi − x
ns2

X

εi

�

(4.36)

=
1
n

n
∑

i=1

(β0+β1xi + εi )+ (x − x)
�

β1+
n
∑

i=1

xi − x
ns2

X

εi

�

(4.37)

= β0+β1x +
1
n

n
∑

i=1

εi +(x − x)β1+(x − x)
n
∑

i=1

xi − x
ns2

X

εi (4.38)

= β0+β1x +
1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�

εi (4.39)

where in the last line I’ve canceled β1x terms of opposite sign, and combined terms
in the εi . Also, the second line used the second assumption in the simple linear re-
gression model, that Y is a linear function of X plus noise.

Now we can check whether or not our predictions are biased:

E [m̂(x)] = E
�

β0+β1x +
1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�

εi

�

(4.40)

= β0+β1x +
1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
x

�

E [εi ] (4.41)

= β0+β1x (4.42)
3The name originates from thinking of ε as purely measurement error, so that m̂(x) is our best-fitting

estimate of the true value at x.
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This is to say, no, under the simple linear model, the predictions of least squares are
unbiased.

Of course, our predictions are somewhat random, because (as I said) they’re func-
tions of the somewhat-random data we estimated the model on. What is the variance
of these predictions?

Var [m̂(x)] = Var

�

β0+β1x +
1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�

εi

�

(4.43)

= Var

�

1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�

εi

�

(4.44)

=
1

n2

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�2

Var [εi ] (4.45)

=
σ2

n2

n
∑

i=1

1+ 2(x − x)
xi − x

s2
X

+(x − x)2
(xi − x)2

s4
X

(4.46)

=
σ2

n2

�

n+ 0+(x − x)2
ns2

X

ns4
X

�

(4.47)

=
σ2

n

�

1+
(x − x)2

s2
X

�

(4.48)

Notice what’s going on here:

• The variance grows as σ2 grows: the more noise there is around the regression
line, the harder we find it to estimate the regression line, and the more of that
noise will propagate into our predictions.

• The larger n is, the smaller the variance: the more points we see, the more
exactly we can pin down the line, and so our predictions.

• The variance of our predictions is the sum of two terms. The first, which
doesn’t depend on x, is σ2/n, which is the variance of y (Exercise 3). Since our
line has to go through the center of the data, this just how much noise there is
in the height of that center.

• The other term does change with x, specifically with (x − x)2: the further our
operating point x is from the center of the data x, the bigger our uncertainty.
This is the uncertainty that comes with being unable to pin down the slope
precisely; it therefore shrinks with s2

X , since it’s easier to find the slope when
the points have a wide spread on the horizontal axis.

Again, Eq. 4.48 is conditional on the xi . If those are random, we need to use the
law of total variance (as in Chapter 3) to get the unconditional variance of m̂(x).

Figure 4.3 illustrates how the spread in point predictions changes as we move away
from the mean of the x values.
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# Create an empty plot (type='n' for 'do Nothing')
plot(0, type = "n", xlim = c(-10, 10), ylim = c(-10, 10), xlab = "x", ylab = "y")
# Add the true regression line; exaggerate width so it stands out
abline(a = 5, b = -2, lwd = 5)
# Repeat 10 times: do a simulation, fit a line to the sim., add the fitted
# line to the plot
invisible(replicate(20, abline(lm(y ~ x, data = sim.linmod(n = 10, beta.0 = 5,

beta.1 = -2, width = 4, df = 3)), col = "grey")))

FIGURE 4.3: Scatter of estimated least-squares regression lines (thin, grey) around the true regression
line (thick, black). Notice how the estimated lines become more spread out as we move away from
the center of the distribution (here conveniently set at X = 0).
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4.5 Estimating σ2; Sum of Squared Errors
Under the simple linear regression model, it is easy to show (Exercise 5) that

E
�

(Y − (β0+β1X ))2
�

= σ2 (4.49)

This suggests that the minimal value of the in-sample MSE,

σ̂2 =
1
n

n
∑

i=1

(yi − m̂(xi ))
2 (4.50)

is a natural estimator for σ2. This is, in fact, a consistent estimator. (You can prove
this using the consistency of β̂0 and β̂1, and continuity.) It is, however, a slightly
biased estimator. Specifically (Exercise 6)

s2 =
n

n− 2
σ̂2 (4.51)

is an un-biased estimator of σ2, though one with a larger variance. Some people,
accordingly, use Eq. 4.51, rather than Eq. 4.50, as their definition of “MSE”.

This is mostly something to be aware of when different pieces of R code, text-
books, papers, etc., differ in what they are calling “MSE”; to get sensible results, you
may need to apply conversion factors in one direction or the other. As usual, if the
difference between 1/n and 1/(n − 2) is large enough to make a difference to your
conclusions, you should really be asking yourself whether you have enough data to
be doing any statistics at all.

Sum of squared errors The sum of squared errors for a fitted regression is just what
it sounds like:

SSE =
n
∑

i=1

(yi − m̂(xi ))
2 =

n
∑

i=1

(yi − (β̂0+ β̂1xi ))
2 (4.52)

It’s mostly important as a historical relic, from the days when people fit regression
models by hand, or with slide rules and adding machines, and so every bit of arith-
metic you could avoid was a win.

4.6 Residuals
The residual value at a data point is the difference between the actual value of the
response yi and the fitted value m̂(xi ):

ei = yi − m̂(xi ) = yi − (β̂0+ β̂1xi ) (4.53)

This may look like re-arranging the basic equation for the linear regression model,

εi = Yi − (β0+β1xi ) (4.54)
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and it is similar, but it’s not the same. The right-hand side of Eq. 4.54 involves the
true parameters. The right-hand side of Eq. 4.53 involves the estimated parameters,
which are different. In particular, the estimated parameters are functions of all the
noise variables. Therefore

The residuals are not the noise terms; ei 6= εi

There are some ways in which the residuals are like the noise terms. For example,
the residuals are always uncorrelated with the xi :

1
n

n
∑

i=1

ei (xi − x) = 0 (4.55)

However, this fact (and others like it, which you will get to prove in the homework)
are consequences of the estimating equations, and are true whether or not the sim-
ple linear regression model is actually true. Another consequence of the estimating
equations is that

1
n

n
∑

i=1

ei = 0 (4.56)

This is reminiscent of E [ε] = 0, but generally n−1∑n
i=1 εi 6= 0. In fact, Eq. 4.56

implies that the residuals are actually linearly dependent on each other, while the εi
are not.

Despite these differences, there is enough of a relationship between the εi and the
ei that a lot of our model-checking and diagnostics will be done in terms of the resid-
uals. You should get used to looking at them for basically any model you estimate, or
even think seriously about estimating.

4.7 Limitations of Least Squares

The results in this handout, and the last, almost exhaust the theory of statistical infer-
ence for least squares estimates in the simple linear regression model4. Going beyond
the mean and variance of parameter estimates or predicted values is pretty much im-
possible, using just least squares and the simple linear regression model.

In particular, we can’t get sampling distributions for anything — we can’t say
what probability law β̂1 follows, even as a function of the true parametersβ0,β1,σ2.
There are just too many possibilities which are compatible with the model assump-
tions. Since, as you remember from your mathematical statistics course, we need
sampling distributions to form confidence intervals, evaluate the properties of hy-
pothesis tests, etc., etc., there is really not much more to say about this combination
of model and method.

4The main exception is a result called the Gauss-Markov theorem: the least squares estimator has
smaller variance than any other unbiased estimator which is a linear function of the yi . This was more
impressive when nobody had the computing power to use nonlinear estimators. . .
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Chebyshev If we absolutely must do some probability calculations under the least-
squares assumptions, the best we can usually do is to invoke Chebyshev’s inequality
(the extra credit problem in homework 1): for any random variable Z with expected
value µ and variance σ , and any r > 0,

P (|Z −µ| ≥ r )≤
Var [Z]

r 2
(4.57)

In particular, we can say that

P
�

|Z −µ| ≥ k
p

Var [Z]
�

≤ 1
k2

(4.58)

These probability bounds are very loose, so if we do try to use them to do hypothesis
tests, they have very little power (equivalently: the confidence intervals we get are
huge).

Asymptotic Gaussianity The right-hand side of Eq. 4.25 shows that β̂1 is β1 plus
a weighted average of the εi . If we add to the simple linear regression model the as-
sumption that the εi are IID draws from a fixed, not-necessarily-Gaussian distribution,
we might then try to use the central limit theorem to show that the weighted average
tends towards a Gaussian as n→∞. This can be done in some generality, but it needs
more delicate probability theory than the rest of what we are doing, and if the initial
distribution of the εi is, say, appreciably skewed, n might have to be truly huge before
the Gaussian approximation is any good5.

4.8 Least-Squares in R

The basic command for fitting a linear model by least squares in R is lm. It has a huge
number of options, and can do a lot more than we will ask it to here, but for our
purposes we use it as follows:

lm(y ~ x, data = df)

Here df is a data frame containing the data we want to fit a regression to, and the
first part, the formula, tells lm that we want to regress the column of df called y on
the column called x. By default6, lm always fits its regression models by least squares.

What lm returns is a rather complicated object. If you just print it out, it seems to
be only the intercept and the slope:

# Make a very small simulated data set from our running examing
toy.data <- sim.linmod(n = 10, beta.0 = 5, beta.1 = -2, width = 4, df = 3)
# Fit the simple linear regression model to it by least squares
lm(y ~ x, data = toy.data)

5To those who think everything is Gaussian once n ≥ 30, all I can say is “Bless your heart.”
6There are ways to tweak this, some of which we’ll see later in the course.

21:34 Monday 6th May, 2024



4.8. LEAST-SQUARES IN R 64

##
## Call:
## lm(formula = y ~ x, data = toy.data)
##
## Coefficients:
## (Intercept) x
## 4.582 -1.834

In fact, lm has done lots of calculations as part of fitting the model, and stored
many of the results into the object it returns; R just doesn’t print all of that, unless
you make it. We can see some of what’s in there, though:

names(lm(y ~ x, data = toy.data))
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"

(See help(lm), under “Value”, for the gory details.) It’s annoying (and slow and
error-prone) to keep having R re-estimate the model every time we want to refer back
to it, so we usually store the estimated model under a new variable name:

# Fit a linear model to the toy data, and store as toy.lm The name of the
# estimated model needn't match that of the data, but it's often a good idea
toy.lm <- lm(y ~ x, data = toy.data)

We can access some of what’s in the lm object by using special functions. A couple
in particular will become close and familiar friends. coefficients gives us the vector
of coefficients:

coefficients(toy.lm)
## (Intercept) x
## 4.581803 -1.834000

fitted gives us the vector of fitted values, in the order which the data points
appeared:

fitted(toy.lm)
## 1 2 3 4 5 6 7 8
## 6.825715 3.204983 2.733102 6.569347 8.066388 1.832514 3.466832 5.085674
## 9 10
## 3.647524 3.901256

residuals gives us the vector of residuals (ditto order):

residuals(toy.lm)
## 1 2 3 4 5 6
## -0.04705055 1.63707370 1.29248794 -2.23857540 1.87083552 -1.07608760
## 7 8 9 10
## 1.56471553 -1.25909275 -3.59676400 1.85245760
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(How would you use residuals to calculate s2? To calculate n
n−2 s2?)

You might think that plot(toy.lm) would draw a picture of the fitted model;
instead, it goes through a bunch of diagnostic plots, which we will get to later. If we
want to add a line based on the model to an existing plot, we use abline, as in Figure
4.4.

fitted gives us the model’s predictions at the particular xi where we happened
to have data. In principle, though, the model has an opinion about whatE [Y |X = x]
should be at every possible value of x. To extract that, we use a function called
predict. Naturally enough, we need to tell it both which model we want to use
(since we could have more than one floating around), and where to make the predic-
tions:

predict(object, newdata)

Here the first argument, what predict somewhat obscurely calls object, is the
estimated regression model, like our toy.lm. (It is not the name of the estimating
function, like lm.) The second argument, newdata, is a data frame with a column
whose name matches the column name of the predictor variable in our original data
frame. Thus

predict(toy.lm, newdata = data.frame(x = 1:5))
## 1 2 3 4 5
## 2.7478031 0.9138027 -0.9201976 -2.7541980 -4.5881983

gives us the fitted model’s predictions at the integers from 1 to 5.
You might well think that if newdata were missing, then predict would throw

an error. You might very well think that.

predict(toy.lm)
## 1 2 3 4 5 6 7 8
## 6.825715 3.204983 2.733102 6.569347 8.066388 1.832514 3.466832 5.085674
## 9 10
## 3.647524 3.901256
predict(toy.lm, data = data.frame(x = 1:5)) # What's wrong here?
## 1 2 3 4 5 6 7 8
## 6.825715 3.204983 2.733102 6.569347 8.066388 1.832514 3.466832 5.085674
## 9 10
## 3.647524 3.901256

For reasons best known to the designers of R7, when newdata is missing or mal-
formed, predict returns the fitted values on the original data. On the other hand,
you will get an error if newdata exists but doesn’t contain the right column name:

predict(toy.lm, newdata = data.frame(zebra = 1:5))

## Error in eval(predvars, data, env): object ’x’ not found

Extraneous columns, however, are just ignored:
7Really, the designers of the predecessor language, S.
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plot(y ~ x, data = toy.data, xlab = "x", ylab = "y", main = "Simulated ('toy') data")
abline(toy.lm)

FIGURE 4.4: Using abline to add the line of an estimated linear regression model to a plot.
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predict(toy.lm, newdata = data.frame(x = 1:5, zebra = 6:10))
## 1 2 3 4 5
## 2.7478031 0.9138027 -0.9201976 -2.7541980 -4.5881983

There is one further option to predict which is worth mentioning at this time.
If we set se.fit=TRUE, we get the standard errors of the fitted values, i.e., the square
roots of the variances8:

predict(toy.lm, newdata = data.frame(x = 1:5), se.fit = TRUE)
## $fit
## 1 2 3 4 5
## 2.7478031 0.9138027 -0.9201976 -2.7541980 -4.5881983
##
## $se.fit
## 1 2 3 4 5
## 0.8960963 1.4006427 1.9766153 2.5765505 3.1869442
##
## $df
## [1] 8
##
## $residual.scale
## [1] 2.074365

Notice that what this gives us back is not a vector but a list, whose first two entries
are vectors. (We will come back to what the df means, but you should already be able
to guess what residual.scale might be.)

4.9 Propagation of Error, alias “The Delta Method”

An optional section, but a very useful one.

The constant-plus-sum-of-noise-terms trick is the core of an extremely handy tech-
nique for getting approximate variances and standard errors for functions of quantities
which are themselves estimated with error. It is known variously as “propagation of
error” or (more obscurely) as “the delta method”.

Suppose we are trying to estimate some quantity θ. We compute an estimate bθ,
based on our data. Since our data is more or less random, so is bθ. One convenient way
of measuring the purely statistical noise or uncertainty in bθ is its standard deviation.
This is the standard error of our estimate of θ.9 Standard errors are not the only way
of summarizing this noise, nor a completely sufficient way, but they are often useful.

8If a homework problem asks you to calculate the variance of a predicted value, it’s (generally) asking
you to do the character-building work of actually putting numbers into an algebraic formula by yourself,
though you can use this to check your work.

9It is not, of course, to be confused with the standard deviation of the data. It is not even to be confused
with the standard error of the mean, unless θ is the expected value of the data and bθ is the sample mean.
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Suppose that our estimate bθ is a function of some intermediate quantitiescψ1,cψ2, . . . ,cψp ,
which are also estimated:

bθ= f (cψ1,cψ2, . . .cψp ) (4.59)

For instance, θ might be the difference in expected values between two groups, with
ψ1 andψ2 the expected values in the two groups, and f (ψ1,ψ2) =ψ1−ψ2. If we have
a standard error for each of the original quantitiescψi , it would seem like we should be
able to get a standard error for the derived quantity bθ. Propagation of error achieves
this, by writing bθ in the constant-plus-noise form.

We start with a Taylor expansion. We’ll write ψ∗i for the true (population, distri-

bution, ensemble) value which is estimated by cψi .

f (ψ∗1,ψ∗2, . . .ψ∗p ) ≈ f (cψ1,cψ2, . . .cψp )+
p
∑

i=1

(ψ∗i −cψi )
∂ f
∂ ψi

�

�

�

�

�

ψ= bψ

(4.60)

f (cψ1,cψ2, . . .cψp ) ≈ f (ψ∗1,ψ∗2, . . .ψ∗p )+
p
∑

i=1

(cψi −ψ
∗
i )
∂ f
∂ ψi

�

�

�

�

�

ψ= bψ

(4.61)

θ̂ ≈ θ∗+
p
∑

i=1

(cψi −ψ
∗
i ) f
′

i (
bψ) (4.62)

introducing f ′i as an abbreviation for ∂ f
∂ ψi

. The left-hand side is now the quantity

whose standard error we want. I have done this manipulation because now θ̂ is a linear
function (approximately!) of some random quantities whose variances we know, and
some derivatives which we can calculate.

Remember (from Chapter 1) the rules for arithmetic with variances: if X and Y
are random variables, and a, b and c are constants,

Var [a] = 0 (4.63)
Var [a+ bX ] = b 2Var [X ] (4.64)

Var [a+ bX + cY ] = b 2Var [X ]+ c2Var [Y ]+ 2b cCov [X ,Y ] (4.65)

While we don’t know f (ψ∗1,ψ∗2, . . .ψ∗p ), it’s constant, so it has variance 0. Similarly,

Var
�

cψi −ψ∗i
�

=Var
�

cψi

�

. Repeatedly applying these rules to Eq. 4.62,

Var
�

bθ
�

≈
p
∑

i=1

( f ′i (
bψ))2Var

�

cψi

�

+ 2
p−1
∑

i=1

p
∑

j=i+1

f ′i (
bψ) f ′j (

bψ)Cov
�

cψi ,
cψ j

�

(4.66)

The standard error for bθ would then be the square root of this.
If we follow this rule for the simple case of group differences, f (ψ1,ψ2) =ψ1−ψ2,

we find that
Var

�

bθ
�

=Var
�

cψ1

�

+Var
�

cψ2

�

− 2Cov
�

cψ1,cψ2

�

(4.67)
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just as we would find from the basic rules for arithmetic with variances. The approx-
imation in Eq. 4.66 comes from the nonlinearities in f .

If the estimates of the initial quantities are uncorrelated, Eq. 4.66 simplifies to

Var
�

bθ
�

≈
p
∑

i=1

( f ′i (
bψ))2Var

�

cψi

�

(4.68)

and, again, the standard error of bθ would be the square root of this. The special case
of Eq. 4.68 is sometimes called the propagation of error formula, but I think it’s better
to use that name for the more general Eq. 4.66.

Exercises
1. True MSE of a linear model Prove that the full-distribution MSE of a linear model

with intercept b0 and slope b1 is

Var [Y ]+(E [Y ])2−2b0E [Y ]−2b1Cov [X ,Y ]−2b1E [X ]E [Y ]+2b1E [X ]+b 2
1 Var [X ]+b 2

1 (E [X ])
2

(4.69)

2. Show that if all xi = x, then the system of linear equations, Eqs. 4.2–4.3, actu-
ally contains only one linearly-independent equation. Hint: Write the system
of equations as a matrix multiplying the vector whose entries are (β̂0, β̂1), and
consider the determinant of the matrix. (How does the determinant of such a
matrix relate to whether the equations are all linearly independent?)

3. Show that, under the simple linear regression model, Var [y] = σ2/n. You may
treat the xi as fixed in this calculation.

4. Derive Eqs. 4.6 and 4.9 from the results in §4.4. (Hint: β̂0 = m̂(x) for what
value of x?) Is this a circular argument?

5. Prove Eq. 4.49.

6. Express the right-hand side of Eq. 4.50 in terms of β0, β1, the xi and the εi .
Use this expression to find E

�

σ̂2
�

, and show that it equals n−2
n σ2.
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Chapter 5

The Method of Maximum
Likelihood for Simple Linear
Regression

5.1 Recapitulation

We introduced the method of maximum likelihood for simple linear regression in
Chapter 3. Let’s review.

We start with the statistical model, which is the Gaussian-noise simple linear re-
gression model, defined as follows:

1. The distribution of X is arbitrary (and perhaps X is even non-random).

2. If X = x, then Y =β0+β1x + ε, for some constants (“coefficients”, “parame-
ters”) β0 and β1, and some random noise variable ε.

3. ε∼N (0,σ2), and is independent of X .

4. ε is independent across observations.

A consequence of these assumptions is that the response variable Y is independent
across observations, conditional on the predictor X , i.e., Y1 and Y2 are independent
given X1 and X2 (Exercise 1).

As you’ll recall, this is a special case of the simple linear regression model: the
first two assumptions are the same, but we are now assuming much more about the
noise variable ε: it’s not just mean zero with constant variance, but it has a particu-
lar distribution (Gaussian), and everything we said was uncorrelated before we now
strengthen to independence1.

1See Chapter 1 for a reminder, with an explicit example, of how uncorrelated random variables can
nonetheless be strongly statistically dependent.
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Because of these stronger assumptions, the model tells us the conditional pdf of
Y for each x, p(y|X = x;β0,β1,σ2). (This notation separates the random variables
from the parameters.) Given any data set (x1, y1), (x2, y2), . . . (xn , yn), we can now write
down the probability density, under the model, of seeing that data:

n
∏

i=1

p(yi |xi ;β0,β1,σ2) =
n
∏

i=1

1
p

2πσ2
e−

(yi−(β0+β1 xi ))
2

2σ2

In multiplying together the probabilities like this, we are using the conditional inde-
pendence of the Yi (given the Xi ), which follows from the independence of the εi .

When we see the data, we do not known the true parameters, but any guess at
them, say (b0, b1, s2), gives us a probability density:

n
∏

i=1

p(yi |xi ; b0, b1, s2) =
n
∏

i=1

1
p

2πs2
e−

(yi−(b0+b1 xi ))
2

2s2

This is the likelihood, a function of the parameter values. It’s just as informative, and
much more convenient, to work with the log-likelihood,

L(b0, b1, s2) = log
n
∏

i=1

p(yi |xi ; b0, b1, s2) (5.1)

=
n
∑

i=1

log p(yi |xi ; b0, b1, s2) (5.2)

= −n
2

log2π− n log s − 1
2s2

n
∑

i=1

(yi − (b0+ b1xi ))
2 (5.3)

In the method of maximum likelihood, we pick the parameter values which
maximize the likelihood, or, equivalently, maximize the log-likelihood. After some
calculus (see Chapter 3, this gives us the following estimators:

β̂1 =
∑n

i=1 (xi − x)(yi − y)
∑n

i=1 (xi − x)2
=

cX Y

s2
X

(5.4)

β̂0 = y − ˆb e t a1x (5.5)

σ̂2 =
1
n

n
∑

i=1

(yi − (β̂0+ β̂1xi ))
2 (5.6)

As you will recall, the estimators for the slope and the intercept exactly match the
least squares estimators. This is a special property of assuming independent Gaussian
noise. Similarly, σ̂2 is exactly the in-sample mean squared error.

5.2 Sampling Distributions
We may seem not to have gained much from the Gaussian-noise assumption, because
our point estimates are just the same as they were from least squares. What makes the

21:34 Monday 6th May, 2024



5.2. SAMPLING DISTRIBUTIONS 72

Gaussian noise assumption important is that it gives us an exact conditional distribu-
tion for each Yi , and this in turn gives us a distribution — the sampling distribution
— for the estimators. Remember, from the notes from last time, that we can write β̂1

and β̂0 in the form “constant plus sum of noise variables”. For instance,

β̂1 =β1+
n
∑

i=1

xi − x
ns2

X

εi

Now, in the Gaussian-noise model, the εi are all independent Gaussians. Therefore,
β̂1 is also Gaussian. Since we worked out its mean and variance last time, we can just
say

β̂1 ∼N (β1,σ2/ns2
X )

Again, we saw that the fitted value at an arbitrary point x, m̂(x), is a constant plus
a weighted sum of the ε:

m̂(x) =β0+β1x +
1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�

εi

Once again, because the εi are independent Gaussians, a weighted sum of them is also
Gaussian, and we can just say

m̂(x)∼N
�

β0+β1x,
σ2

n

�

1+
(x − x)2

s2
X

��

Slightly more complicated manipulation of the εi makes it possible to show that

nσ̂2

σ2
∼ χ 2

n−2

These are all important, because when we come to doing statistical inference on
the parameters — forming confidence intervals, or testing hypotheses — we need to
know these sampling distributions. When we come to making predictions of new
Y ’s, these sampling distributions will let us give confidence intervals for the expected
values, m̂(x), as well as give prediction intervals (of the form “when X = 5, Y will
be between l and u with 95% probability”) or full distributional forecasts. We will
derive these inferential formulas in later chapters.

5.2.1 Illustration
To make the idea of these sampling distributions more concrete, I present a small sim-
ulation. Figure 5.1 provides code which simulates a particular Gaussian-noise linear
model: β0 = 5, β1 =−2, σ2 = 3, with twenty X ’s initially randomly drawn from an
exponential distribution, but thereafter held fixed through all the simulations. The
theory above lets us calculate just what the distribution of β̂1 should be, in repeated
simulations, and the distribution of m̂(−1). (By construction, we have no observa-
tions where x =−1; this is an example of using the model to extrapolate beyond the
data.) Figure 5.2 compares the theoretical sampling distributions to what we actually
get by repeated simulation, i.e., by repeating the experiment.
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# Fix x values for all runs of the simulation; draw from an exponential
n <- 20 # So we don't have magic #s floating around
beta.0 <- 5
beta.1 <- -2
sigma.sq <- 3
fixed.x <- rexp(n = n)

# Simulate from the model Y=\beta_0+\beta_1*x+N(0,\sigma^2) Inputs: intercept;
# slope; variance; vector of x; return sample or estimated linear model?
# Outputs: data frame with columns x and y OR linear model fit to simulated y
# regressed on x
sim.lin.gauss <- function(intercept = beta.0, slope = beta.1, noise.variance = sigma.sq,

x = fixed.x, model = FALSE) {
# Make up y by adding Gaussian noise to the linear function
y <- rnorm(length(x), intercept + slope * x, sd = sqrt(noise.variance))
# Do we want to fit a model to this simulation and return that model? Or
# do we want to just return the simulated values?
if (model) {

return(lm(y ~ x))
} else {

return(data.frame(x = x, y = y))
}

}

FIGURE 5.1: Function to simulate a Gaussian-noise simple linear regression model, together with
some default parameter values. Since, in this chapter, we’ll always be estimating a linear model
on the simulated values, it makes sense to build that into the simulator, but I included a switch to
control that.
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par(mfrow = c(2, 1))
slope.sample <- replicate(10000, coefficients(sim.lin.gauss(model = TRUE))["x"])
hist(slope.sample, freq = FALSE, breaks = 50, xlab = expression(hat(beta)[1]), main = "")
curve(dnorm(x, -2, sd = sqrt(3/(n * var(fixed.x)))), add = TRUE, col = "blue")
pred.sample <- replicate(10000, predict(sim.lin.gauss(model = TRUE), newdata = data.frame(x = -1)))
hist(pred.sample, freq = FALSE, breaks = 50, xlab = expression(hat(m)(-1)), main = "")
curve(dnorm(x, mean = beta.0 + beta.1 * (-1), sd = sqrt((sigma.sq/n) * (1 + (-1 -

mean(fixed.x))^2/var(fixed.x)))), add = TRUE, col = "blue")

FIGURE 5.2: Theoretical sampling distributions for β̂1 and m̂(−1) (blue curves) versus the distri-
bution in 104 simulations (black histograms).
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5.3 Virtues and Limitations of Maximum Likelihood
The method of maximum likelihood does not always work; there are models where it
gives poor or even pathological estimates. For Gaussian-noise linear models, however,
it actually works very well. Indeed, in more advanced statistics classes, one proves
that for such models, as for many other “regular” statistical models, maximum like-
lihood is asymptotically efficient, meaning that its parameter estimates converge on
the truth as quickly as possible2. This is on top of having exact sampling distributions
for the estimators.

Of course, all these wonderful abilities come at a cost, which is the Gaussian noise
assumption. If that is wrong, then so are the sampling distributions I gave above, and
so are the inferential calculations which rely on those sampling distributions. Before
we begin to do those inferences on any particular data set, and especially before we
begin to make grand claims about the world on the basis of those inferences, we should
really check all those modeling assumptions. That, however, brings us into the topics
for next week.

Exercises
1. Let Y1,Y2, . . .Yn be generated from the Gaussian-noise simple linear regression

model, with the corresponding values of the predictor variable being X1, . . .Xn .
Show that if i 6= j , then Yi and Y j are conditionally independent given (Xi ,X j ).
Hint: If U and V are independent, then f (U ) and g (V ) are also independent,
for any functions f and g .

2. In many practical fields (e.g., finance and geology) it is common to encounter
noise whose distribution has much heavier tails than any Gaussian could give
us. One way to model this is with t distributions. Consider, therefore, the
statistical model where Y =β0+β1X+ε, and ε/σ ∼ tν , with ε independent of
X and independent across observations. That is, rather than having a Gaussian
distribution, the noise follows a t distribution with ν degrees of freedom (after
scaling).

Note: Most students find most parts after (a) quite challenging.

(a) Write down the log-likelihood function. Use an explicit formula for the
density of the t distribution.

(b) Find the derivatives of this log-likelihood with respect to the four param-
eters β0, β1, σ (or σ2, if more convenient) and ν . Simplify as much as
possible. (It is legitimate to use derivatives of the gamma function here,
since that’s another special function.)

2Very roughly: writing θ for the true parameter, θ̂ for the MLE, and θ̃ for any other consistent esti-

mator, asymptotic efficiency means limn→∞E
h

n‖θ̂−θ‖2
i

≤ limn→∞E
�

n‖θ̃−θ‖
�

. (This way of for-

mulating it takes it for granted that the MSE of estimation goes to zero like 1/n, but it typically does in
parametric problems.) For more precise statements, see, for instance, Cramér (1945), Pitman (1979) or
van der Vaart (1998).
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(c) Can you solve for the maximum likelihood estimators ofβ0 andβ1 with-
out knowing σ and ν? If not, why not? If you can, do they match the
least-squares estimators again? If they don’t match, how do they differ?

(d) Can you solve for the MLE of all four parameters at once? (Again, you
may have to express your answer in terms of the gamma function and its
derivatives.)

3. Refer to the previous problem, and do part (a).

(a) In R, write a function to calculate the log-likelihood, taking as arguments
a data frame with columns names y and x, and the vector of the four model
parameters. Hint: use the dt function.

(b) In R, using optim, write a function to find the MLE of this model on a
given data set, from an arbitrary starting vector of guesses at the parame-
ters. This should call your function from part (a).

(c) In R, write a function which gives an unprincipled but straight-forward
initial estimate of the parameters by (i) calculating the slope and intercept
using least squares, and (ii) fitting a t distribution to the residuals. Hint:
call lm, and fitdistr from the package MASS.

(d) Combine your functions to write a function which takes as its only ar-
gument a data frame containing columns called x and y, and returns the
MLE for the model parameters.

(e) Write another function which will simulte data from the model, taking as
arguments the four parameters and a vector of x’s. It should return a data
frame with appropriate column names.

(f) Run the output of your simulation function through your MLE function.
How well does the MLE recover the parameters? Does it get better as n
grows? As the variance of your x’s increases? How does it compare to
your unprincipled estimator?
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Chapter 6

Diagnostics and Modifications
for Simple Regression

In the previous chapters, we have laid out what regression analysis is for, why we
use statistical models to do it, the assumptions of the simple linear regression model,
and estimation and prediction for the simple regression model using both the method
of maximum likelihood and the method of least squares. We could, at this point,
follow the traditional route in a class like this of plunging into detailed inferential
calculations for the model (this is how you find a confidence interval for such-and-
such, etc.). However, those calculations have little point if the assumptions for the
model do not hold. Thus, we will look at model checking first, and in later chapters
go on to the inferential theory.

It is somewhat more traditional to talk about “diagnostics” for the regression
model, rather than “model checking”; which name is best depends on how formal
you want to sound. Just as in medicine, a good diagnostic procedure is one which
will differentiate between health (for us: the model assumptions hold) and illness (the
assumptions are violated). Indeed, a really good diagnostic procedure will distinguish
between different sorts of illness (tell us which assumptions are violated). More mathe-
matically, we want to find consequences of the assumptions which will hold no matter
what the parameter values might be, but would be hard to achieve if the assumptions
fail. (Checking whether

∑

i β̂0+ β̂1xi =
∑

i yi is not a useful diagnostic, because
while that will be true if the assumptions are all right, it would still be true if they
were all wrong1.) The simplest and most useful check all involve the residuals.

6.1 The Residuals
In previous chapters, we defined the residual at the i th data point as the difference
between the realized value of the response yi and what the estimated model would

1I could give you a demonstration of that equation, but that would spoil one of the problems in the
current homework.
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predict:
ei = yi − m̂(xi ) (6.1)

which, for the simple linear regression model, is just

ei = yi − (β̂0+ β̂1xi ) (6.2)

Residuals vs. the noise The residuals are very closely related to the noise variables
εi , but with some important differences. If we take the basic equation for the simple
linear model, Yi =β0+β1xi + εi , we can re-arrange it to read

εi = Yi − (β0+β1xi ) (6.3)

This has the same form as the equation for the residuals, but it involves the true param-
eters, not their estimates. If we take that equation for the i th residual and substitute
in the equation for Yi ,

ei = β0+β1xi − (β̂0+ β̂1xi )+ εi (6.4)

= (β0− β̂0)+ (β1− β̂1)xi + εi (6.5)

The terms in parentheses on the right-hand side are hopefully small, but they’re not
(in general) zero.

Residuals as weighted sums of noise To understand what’s going on with the resid-
uals, it’s helpful to write them as a weighted sum of the ε’s. Going back to previous
chapters,

β̂0 = β0+
1
n

n
∑

i=1

�

1− x
xi − x

s2
X

�

εi (6.6)

β̂1 = β1+
n
∑

i=1

xi − x
ns2

X

εi (6.7)

Substitute these in to the equation for ei :

ei = εi +
1
n

n
∑

j=1

�

1− x
x j − x

s2
X

�

ε j + xi

n
∑

j=1

x j − x

ns2
X

ε j (6.8)

=
n
∑

j=1

�

δi j +
1
n
+(xi − x)

x j − x

ns2
X

�

ε j (6.9)

using the “Kronecker delta” (δi j = 0 if i 6= j , = 1 if i = j ) and some algebra. The
factor in parenthesis is a weight which gets applied to each ε j when summing them
up — a weight which depends on the x’s alone. Let’s abbreviate this weight by ci j .

One of the assumptions of the simple linear model is that E [εi |X ] = 0. Since
we’ve shown that ei is a weighted sum of ε j , it follows that

E [ei |X ] =
∑

j

ci jE
�

ε j |X
�

= 0 (6.10)
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Since the simple linear model assumes that the ε’s are uncorrelated and all have
variance σ2, even conditional on X ,

Var [ei |X ] =
∑

j

Var
�

ci jε j |X
�

(6.11)

=
∑

j

c2
i j Var

�

ε j |X
�

(6.12)

= σ2
n
∑

j=1

c2
i j (6.13)

(I will not bother writing out the sum explicitly.) From here, one can go on to show

Var [ei ] =
n− 2

n
σ2 (6.14)

though again I omit the details, so as not to spoil a future assignment.
If we make the Gaussian noise assumption, the ε j are independent Gaussians. It

thus follows that ei also has a Gaussian distribution.

Contrast between residuals and noise terms The sum of the noise terms which
produced the data is rarely zero. The expectation value of the sum of the noise is zero,

E
�

n
∑

i=1

εi

�

=
n
∑

i=1

E [εi ] = 0 (6.15)

but the variance is not:

Var

�

n
∑

i=1

εi

�

=
n
∑

i=1

Var [εi ] = nσ2 (6.16)

so the sum of the noise terms can’t be exactly zero all the time:
n
∑

i=1

εi 6= 0 (6.17)

(Indeed, if the εi follow a Gaussian distribution, then
∑n

i=1 εi ∼ N (0, nσ2), and the
probability that

∑n
i=1 εi = 0 is zero, not one.) Similarly, while the ε are uncorrelated

with X ,
Cov [X ,ε] =E [X ε]−E [ε]E [X ] = 0 (6.18)

the εi don’t have a zero sample correlation with X :
n
∑

i=1

εi (xi − x) 6= 0 (6.19)

On the other hand, such equations do hold exactly and deterministically for the
residuals. In particular,

n
∑

i=1

ei = 0 (6.20)
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when the simple linear model is estimated by least squares, no matter what. This is
because this equation is a consequence of the estimating equations and the estimating
equations alone — it applies all the time, on any data set, not just with probability 1
but without exception. Similarly,

n
∑

i=1

(xi − x)ei = 0 (6.21)

also follows from the estimating equations. I will not go over the derivations, so as
not to spoil the homework you are currently doing.

(If we think of (e1, e2, . . . en) as an n-dimensional vector, these two equations tell us
that not every vector is possible. Only vectors which live in an (n − 2)-dimensional
subspace are allowed. This is, so to speak, the same n− 2 as in Var [ei ].)

These two equations imply that even when the ε’s are independent, the residuals
are not. (After all, if we know all but one residual, the last one is completely de-
termined.) However, the dependence is typically very slight and subtle, and it gets
weaker as n grows (because each ei is making a comparatively-small contribution to
the sum that must be zero). So the residuals should show only negligible correlation
(Exercise 1).

6.1.1 Summary on Properties of the Residuals
Let’s sum up the most relevant observations from the last couple of paragraphs.

1. The residuals should have expectation zero, conditional on x,E [ei |X = x] = 0.
(The residuals should also have an over-all sample mean of exactly zero.)

2. The residuals should show a nearly-constant variance2.

3. The residuals can’t be completely uncorrelated with each other, but the corre-
lation should be extremely weak, and grow negligible as n→∞.

4. If the noise is Gaussian, the residuals should also be Gaussian.

Each one of these points leads to a diagnostic, to a check on the model. These take
the form of our plots, which you should always, always make for any regression you
run.

2We’ve actyally seen a formula which lets us work out the variance of the residuals — which one?
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# Load the data set from the last homework
library(gamair)
data(chicago)

# Plot deaths each day vs. temperature
plot(death ~ tmpd, data = chicago, xlab = "Temperature (Farenheit)", ylab = "Mortality (deaths/day)")

# Estimate and store a linear model
death.temp.lm <- lm(death ~ tmpd, data = chicago)
abline(death.temp.lm, col = "blue")

FIGURE 6.1: Plot of the data from the last homework, used as a running example, along with the
estimated linear model (in blue).
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6.1.2 Plot the Residuals Against the Predictor
Make a scatter-plot with the residuals on the vertical axis and the predictor variable
on the horizontal axis. Because E [e |X = x] = 0, and Var [e |X = x] is constant, this
should, ideally, look like a constant-width blur of points around a straight, flat line at
height zero. Deviations from this — changing width, curvature, substantial regions
of the x axis where the average residuals are either positive or negative — are all signs
that the model is mis-specified. In particular, curved or stepped patterns indicate that
E [e |X = x] 6= 0, which in turn means that E [ε|X = x] 6= 0, which means that the
simple-linear part of the simple linear regression model is wrong3. One needs either
more predictor variables (getting us into multiple regression), or a different functional
form for the regression (getting us into nonlinear regression), or both.

3See §6.5.
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# Always plot residuals vs. predictor variable
plot(chicago$tmpd, residuals(death.temp.lm), xlab = "Temperature (F)", ylab = "Prediction error (deaths/day)")
abline(h = 0, col = "grey")

FIGURE 6.2: Residuals (vertical axis) vs. the predictor variable of temperature (horizontal axis).
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Plotting Against Another Variable If you have other potential predictor variables,
you should be able to plot the residual against them, and also see a flat line around
zero. If not, that’s an indication that the other variable does in fact help predict the
response, and so you should probably incorporate that in your model. (Part of the
residuals from your simple linear model are really the contributions of that other
predictor, which you were treating as noise out of ignorance4.) In particular, if you
make such a plot and you see the points in it fall around a straight line, that’s an
excellent sign that you need a multiple linear regression model.

(Exercise: make a plot of the residuals from this model against one of the pollution
variables from the data set. Does it look like noise?)

6.1.3 Plot the Magnitude of the Residuals Against the Predictor
Because E [e |X = x] = 0, Var [e |X = x] = E

�

e2|X = x
�

. (Why?) This means we
can check whether the variance of the residuals is constant by plotting the squared
residuals against the predictor variable. This should give a scatter of points around
a flat line, whose height should be around the in-sample MSE. Regions of the x axis
where the residuals are persistently above or below this level are evidence of a problem
with the simple linear regression model. This could be due to non-constant noise
variance (“heteroskedasticity”, in the jargon), or due to getting the functional form
of the regression wrong. One can often get a clue as to what is driving the problem
by looking to see whether the regions where the squared residuals are too big are also
regions where the residuals are persistently above or below zero.

Sometimes, particularly when the model is not doing so well, squaring the resid-
uals leads to a visually uninformative plot, because big residuals lead to really, really
big squared residuals, and it’s hard to make out any detail. A common fix is to then
plot the absolute value of the residuals, with the reference horizontal line being at the
square root of the mean squared error.

4Whether there really is such a thing as “noise”, or only predictor variables we have neglected, is a deep
and subtle question we don’t have to answer here.
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# Always plot residuals^2 vs. predictor variable
plot(chicago$tmpd, residuals(death.temp.lm)^2, xlab = "Temperature (F)", ylab = "Squared prediction error (deaths/day)^2")
abline(h = mean(residuals(death.temp.lm)^2), lwd = 2, col = "grey")

FIGURE 6.3: Squared residuals vs. temperature.
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FIGURE 6.4: Absolute residuals vs. temperature; plotting these rather than the squared residuals
reduces the visual impact of the few huge residuals.

21:34 Monday 6th May, 2024



87 6.1. THE RESIDUALS

6.1.4 Plot the Residuals Against Coordinates and Each Other
Lots of the time, our data were collected in a certain order — each data point has some
coordinates, in space or in time or both. Under the simple linear regression model,
these shouldn’t matter5, so you should always plot the residuals against the coordi-
nates. (Even if you have no coordinates, you should always plot residuals against the
row numbers of the data set.) Clusters of nearby observations with unusually high
or low residuals are a bad sign.

Of course, a certain amount of apparent clustering will happen naturally in any
random process, so if this looks worrisome, one should really do some sort of formal
test. Fortunately, there are lots of good test procedures for finding “runs” in what
should be random noise. A quick hack, though, is simply to put the residuals in a
totally random order and re-plot them:

sample(residuals(my.model))

will take the residuals vector of my.model and randomly permute it; plotting these
permuted residuals against the coordinate will then give an example of how things
should look. Do this a few times, and you’ll get a good sense of how much apparent
clumping of residuals should be produced by chance. This trick can also be used when
plotting the residuals, or squared residuals, against the predictor variable, and can be
formalized as what’s called a “permutation test”.

(Exercise: Make a few plots of the permuted, shuffled residuals against date.)

5Unless the predictor variable is one of the coordinates, of course.
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FIGURE 6.5: Residuals vs. date.
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89 6.1. THE RESIDUALS

Residuals vs. Residuals A related diagnostic plot is particularly useful when the
observations are taken at regular intervals along some axis (usually time but occasion-
ally distance): make a scatter-plot with one point for each observation except the very
last; the horizontal coordinate comes from that point’s residual, and the vertical coor-
dinate comes from the next point’s residual. Ideally, this should give a blob of points
with no particular structure. If the residuals are Gaussian, follow any other bell-ish
distribution, it should show a circular blob. (If they were uniform, the blob should
fill out a square — why?) Falling along a line or curve, or even a tilted ellipse, would
be an indication of correlation between successive residuals, which in turn may be a
sign that the noise is correlated6.

Again, if you’re not sure whether you’re looking at a worryingly big departure
from blob-hood, try permuting the residuals before re-plotting.

6Or, again, it could be a sign that we’ve got the functional form wrong, so it’s our systematic error
which is correlated — see §6.5.

21:34 Monday 6th May, 2024
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# Always plot successive residuals against each other head() and tail() here
# are used to get 'every day except the last' and 'every day except the
# first', respectively see help(head)
plot(head(residuals(death.temp.lm), -1), tail(residuals(death.temp.lm), -1),

xlab = "Residual today", ylab = "Residual tomorrow")
abline(lm(tail(residuals(death.temp.lm), -1) ~ head(residuals(death.temp.lm),

-1)))

FIGURE 6.6: Residuals for each day (except the first) plotted as a function of the residuals of the day
before. The straight line shows a regression of tomorrow’s residual on today’s residual, which ideally
should be a totally flat line.
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91 6.1. THE RESIDUALS

6.1.5 Plot the Distribution of the Residuals
Under the Gaussian noise assumption, the residuals should also follow a Gaussian
distribution. We should therefore make plots of the distribution of the residuals, and
compare that to a Gaussian.

The most basic plot of the distribution for the residuals is of course a histogram.
This should be over-laid with a Gaussian probability density — but which Gaussian?
The most reasonable one has mean 0 (because we know the residuals average to 0), and
the same standard deviation as the residuals (because that’s the MLE of the standard
deviation in a Gaussian model). At that point, one can see whether the distribution
of residuals looks like that of the best-fitting Gaussian.
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# Always plot distribution of residuals
hist(residuals(death.temp.lm), breaks = 40, freq = FALSE, xlab = "Residual (deaths/day)",

main = "")
curve(dnorm(x, mean = 0, sd = sd(residuals(death.temp.lm))), add = TRUE, col = "blue")

FIGURE 6.7: Histogram of the residuals, on a density scale, and the theoretical Gaussian distribu-
tion with the same mean (0) and standard deviation.
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Q-Q plots An alternative is what’s called a “quantile-quantile” or “Q-Q” plot. (The
textbook, old-fashionedly, calls this a “normal probability plot.) This takes a bit more
thought to get used to than visually comparing density estimates, but with practice
becomes most sensitive and less subjective. Here’s the idea.

As you remember from intro. prob., knowing the cumulative distribution func-
tion (CDF) tells us all there is to know, mathematically, about a probability distribu-
tion; call this F (x) = P (X ≤ x). If the distribution is continuous, the CDF has an
inverse function, F −1, where F −1(p) is the unique x such that P (X ≤ x) = p. This is
called the quantile function — it tells us what level of x will contain a fraction p of
the total probability. Since saying things like “the 0.95 quantile” is rather awkward,
we usually pronounce it as “the 95rm percentile”, meaning the value greater than or
equal to 95% of the population. If we know the quantile function, we can invert it
to get the CDF, so the quantile function also completely determines the probability
distribution7.

As p varies from 0 to 1, F −1(p) will vary from the smallest possible value for
the distribution up to the largest possible value. If our distribution is a Gaussian,
with mean µ and variance σ2, then F −1(p) = σΦ−1(p) +µ, where Φ is the standard
Gaussian CDF. (Why?) So if instead of plotting F −1 against p, we make a plot where
F −1(p) goes on one axis and Φ−1(p) goes on the other, as we sweep p from 0 to 1 we’ll
get a straight line. Conversely, if we weren’t sure whether the distribution F we were
interested in was Gaussian, but we did one of these quantile-quantile plots against the
standard Gaussian and a got a straight line, then we’d know F was, in fact, Gaussian.

With a finite sample from a distribution (like, say, the vector of residuals), we
don’t really have F or F −1. However, we can use the sample quantiles or empirical
quantiles. Start with our observations, say x1, x2, . . . xn . Now put them in increasing
order: to help distinguish the ordered from unordered observations, I’ll use a com-
mon convention where the subscripts in parentheses show order, so

x(1) ≤ x(2) ≤ . . .≤ x(n−1) ≤ x(n) (6.22)

(These ordered values of the data are sometimes called the order statistics.) Now x(i)
is ≥ a fraction i/n of the sample observations, so F̂ −1(i/n) = x(i). When we make
a Q −Q plot against a Gaussian distribution, we therefore put x(i) on one axis, and
Φ−1(i/n) on the other, and hope to see a straight line if the distribution of x is indeed
Gaussian8

To sum up: we put the data in order, and then plot x(i) againstΦ−1(i/n). If the data
are from a Gaussian distribution, these points should fall along a straight line. Small
wiggles around the line are to be anticipated from chance; systematic deviations from
a line indicate systematic departures from a Gaussian distribution.

7In R, the CDF and quantile functions have names beginning with p and q — pnorm and qnorm for the
Gaussian, pexp and qexp for the exponential, etc.

8You might worry about what happens when i = n, since Φ−1(1) =∞. The answer is that I have
slightly over-simplified what goes on that axis. When you call qqnorm in R, it actually goes through a
calculation to find E

�

X(i)
�

for i ∈ 1 : n under a Gaussian distribution, and plots that against the observed

value x(i). As n→∞, E
�

X(i )
�

→ Φ−1(i/n), but the difference can be important for small n, and/or i/n
close to 0 or 1.
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# An alternative: plot vs. theoretical Gaussian distribution
qqnorm(residuals(death.temp.lm))
qqline(residuals(death.temp.lm))

FIGURE 6.8: QQ plot of the residuals, using the standard Gaussian distribution as the reference
distribution.
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95 6.1. THE RESIDUALS

Q-Q plots for other distributions One can make a Q-Q plot for data against any
other distribution one likes, provided one knows the reference distribution’s quantile
function; R just provides code for the Gaussian case, however.

Q-Q plots for two data distributions With two data sets, say x1, . . . xn and y1, ym ,
one can compare their sample quantiles. The easiest way is when n = m, since then
one just plots x(i) against y(i). (If n 6= m, one might pick a grid of p values, work

out F̂ −1
x (p) and F̂ −1

y (p) by interpolation, and plot those against each other.) This
should show points around the x = y line when x and y are both drawn from the
same distribution.

P-P plots An alternative to Q−Q plots are P −P plots, where both axes run from
0 to 1. Call the horizontal coordinate p1 and the vertical coordinate p2; what we plot
is p2 = F̂ (F −1(p1)). F −1(p1) is the quantile which ought, under the distribution F ,
to be ≥ a fraction p1 of the population; F̂ (F −1(p1)) shows the actual fraction of the
sample which it exceeds. R doesn’t have a built-in function to make this — can you
write one?

Formal tests Comparing the histogram to a theoretical density can be formalized
with a χ 2 test9. Checking whether the Q −Q plot follows a straight line can be for-
malized in the Kolmogorov-Smirnov test. In both cases, since we’re really estimating
the a parameter of the reference distribution (the standard deviation), we need to take
some care to account that in a hypothesis test. (A tweak to the K-S test which does
this, when testing for Gaussianity, is the “Lilliefors test”, which you can find in the
package nortest.)

9This is why the visual comparison is informally called “χ by eye”.
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# Always look at whether the model can extrapolate to new data Basic check:
# randomly divide into two parts, here say 90% of the data vs. 10% Use the
# 'training set' to estimate the model
training.rows <- sample(1:nrow(chicago), size = round(nrow(chicago) * 0.9),

replace = FALSE)
training.set <- chicago[training.rows, ]
# We'll use the 'testing set' to see how well it does
testing.set <- chicago[-training.rows, ]
# Estimate the model on the training set only
training.lm <- lm(death ~ tmpd, data = training.set)
# Make predictions on the testing set The model didn't get to see these
# points while it was being estimated, so this really checks (or tests)
# whether it can predict
testing.preds <- predict(training.lm, newdata = testing.set)
# Unfortunately residuals() doesn't know about the new data set so calculate
# the residuals by hand
testing.residuals <- testing.set$death - testing.preds

FIGURE 6.9: Code setting up a random division of the data into training and testing sets, and
looking at how well the model does on points in the testing set (which it didn’t get to see during
estimation).

6.1.6 Generalization
If the model assumptions are correct, it should be able to work about equally well on
new data from the same source. Because the parameters were adjusted to fit the data
we used to estimate the model, we should expect the prediction errors on new data
to be slightly larger in magnitude, but they shouldn’t be biased or otherwise show
patterns. An important basic check on the model is therefore to divide the data into
two parts, estimate the model on one part, the training set, and then examine the
predictions and the residuals on the rest of the data, the testing set.

We can either make the division into training and testing sets by random sampling,
or systematically. A random division ensures that the testing set has (almost) the
same distribution as the training set. The averaged squared error on the testing set is
therefore an unbiased estimate of the true mean squared error on new data. We will
topic later in the course, under the heading of “cross-validation”, since it is one of the
most useful ways of selecting among competing models.
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# Plot our residuals against the predictor variable
plot(testing.set$tmpd, testing.residuals, xlab = "Daily mean temperature (F)",

ylab = "Prediction error (deaths/day)", main = "Out-of-sample residuals")
abline(h = 0, col = "grey")
abline(h = mean(testing.residuals), col = "red")

FIGURE 6.10: Plot of residuals vs. temperature for the testing set. Remember that the data points
here were not available to the model during estimation. The grey line marks the average we’d see
on the training set (zero), while the red line shows the average on the testing set.
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# Plot absolute residuals vs. predictor variable
plot(testing.set$tmpd, abs(testing.residuals), xlab = "Daily mean temperature (F)",

ylab = "Absolute prediction error (deaths/day)", main = "Out-of-sample absolute residuals")
abline(h = sqrt(mean(residuals(training.lm)^2)), col = "grey")
abline(h = sqrt(mean(testing.residuals^2)), col = "red")

FIGURE 6.11: As in Figure 6.10, but looking at the squared residuals.
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99 6.1. THE RESIDUALS

# Find the low-temperature days
lowtemp.rows <- which(chicago$tmpd < 75) # About 90% of the data
# Divide into low- and high- temperature data sets
lowtemp.set <- chicago[lowtemp.rows, ]
hightemp.set <- chicago[-lowtemp.rows, ]
# Estimate the model on the colder days only
lowtemp.lm <- lm(death ~ tmpd, data = lowtemp.set)
# For you: how much do the parameters change, as compared to using all the
# data? Now predict on the high-temperature days Again, these are new data
# points, but now systematically different (because of their temperature)
# from the data used to estimate
hightemp.preds <- predict(lowtemp.lm, newdata = hightemp.set)
# Calculate our own residuals
hightemp.residuals <- hightemp.set$death - hightemp.preds

FIGURE 6.12: Setting up a division of the data into a low-temperature training set and a high-
temperature testing set.

Extrapolative Generalization An alternative to random division, which can be
even more useful for model checking, is to systematically make the testing set into a
part of the data where the over-all fit of the model seems dubious based on other di-
agnostics. With our running examples, for instance, the model seems to do decently
at lower temperatures, but starts to look iffy at high temperatures. We might, then,
fit the model to low temperatures, and see whether it can extrapolate to high temper-
atures, or whether it seems to make systematic errors there. (We could also estimate
the model on the high-temperature portion of the data, and see how well it extrapo-
lates to the lower temperatures, or estimate on the middle range and see about both
extremes, etc., etc.)

Generalize All the Things! All of the diagnostic plots discussed earlier can be com-
bined with the trick of estimating the model on one part of the data, and then seeing
whether it generalizes to the testing set. This is slightly more complicated than doing
everything on the full data, but arguably has more power to detect problems with the
model.
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# Plot residuals vs. temperature
plot(hightemp.set$tmpd, hightemp.residuals, xlab = "Daily mean temperature (F)",

ylab = "Prediction error (deaths/day)", main = "Out-of-sample residuals")
# Flat line at 0 (ideal, if the model is right)
abline(h = 0, col = "grey")
# Flat line at the mean of the new residuals
abline(h = mean(hightemp.residuals), col = "red")
# Regressing the new residuals on temperature does not look good...
abline(lm(hightemp.residuals ~ hightemp.set$tmpd), col = "purple")

FIGURE 6.13: Residuals vs. temperature, where the testing set here consists of days with temperature
≥ 75 degrees Farenheit, and the training set only those < 75 degrees. The grey line indicates the
average residual we’d see on the training data (zero); the red line the average residual on the testing
data; the purple a regression of residual on temperature, which ideally should have had slope zero.
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# Similar plots for the absolute residuals
plot(hightemp.set$tmpd, abs(hightemp.residuals), xlab = "Daily mean temperature (F)",

ylab = "Absolute prediction error (deaths/day)", main = "Out-of-sample absolute residuals")
abline(h = sqrt(mean(residuals(lowtemp.lm)^2)), col = "grey")
abline(h = sqrt(mean(hightemp.residuals^2)), col = "red")
abline(lm(abs(hightemp.residuals) ~ hightemp.set$tmpd), col = "purple")

FIGURE 6.14: As in Figure 6.13, but for absolute residuals.
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6.2 Nonlinear Functions of X

When we plot the residuals against the predictor variable, we may see a curved or
stepped pattern. This strongly suggests that the relationship between Y and X is not
linear. At this point, it is often useful to fall back to, in fact, plotting the yi against
the xi , and try to guess at the functional form of the curve.

6.2.1 Transformations

The easy case is when Y =β0+β1 f (x)+ε for some fixed, easily-computed function
f like

p
x, x2, log x, sin x, etc. We then calculate f (xi ), and run a simple linear regres-

sion of yi on f (xi ). The interpretation of the coefficients hardly changes, except that
we need to replace X everywhere with f (X )—β0 =E [Y | f (X ) = 0],β1 is the differ-
ence E [Y | f (X ) = f0] and E [Y | f (X ) = f0− 1], etc. This is called “transforming the
predictor”, and it only works this simply when the transformation itself doesn’t have
to be estimated, but can just be guessed at. Ideally, in fact, we derive the transforma-
tion from some physical (chemical, biological, psychological, sociological, economic,
. . . ) theory. For instance, there are good reasons in physiology and psychology to say
that an organism’s behavioral response to a stimulus should vary with the logarithm
of the stimulus’s physical intensity10. A good check on such a transformation is to
plot the yi against the f (xi ), and see that the data now fall on a straight line.

6.2.2 Nonlinear Least Squares

If the transformation does have to be estimated, but the functional form is known11,
then the method of least squares (or maximum likelihood) still applies. Taking the
derivative of the mean squared error (or the log likelihood) with respect to the pa-
rameters and setting them equal to zero gives a set of normal or estimating equations.
Usually, however, these equations are nonlinear, and don’t have a closed-form solu-
tion. Finding the solution is thus called “solving a nonlinear least squares (NLS) prob-
lem”. When we have theoretical reasons to use some thoroughly nonlinear model, say
Y =β0xβ1 +ε, we can still estimate it using NLS in this way. Aside from needing to
solve the estimating equations numerically, there are some special considerations to
NLS, which we’ll either cover later in this class (time permitting) or in 40212.

6.2.3 Smoothing

An alternative to using a parametrized nonlinear model is to try to let the data tell
us what the appropriate curve is — to take a “non-parametric” approach. The most

10This is also (roughly) true, at least in people, of the perceived intensity of the stimulus. Full sunlight
carries≈ 1000W/m2 of power, while the light of a full moon is≈ 0.025W/m2, yet moonlight doesn’t seem
forty thousand times dimmer. The logarithmic relationship between perceived and physical intensity is
sometimes called “Fechner’s law” in psychophysics.

11For instance, if Y =β0+β1 log (x +β2)+ ε, for unknown k.
12The relevant R commands are optim, which is a general-purpose minimization function, and nls,

which is, unsurprisingly, specialized to nonlinear least squares.
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103 6.2. NONLINEAR FUNCTIONS OF X

basic sort of curve-fitting would just take a little interval around any point x, say from
x − h to x + h, and average all the yi where xi was in the interval:

m̂(x) =

∑n
i=1 yi I[x−h,x+h](xi )

∑n
j=1 I[x−h,x+h](x j )

(6.23)

(Here I[a,b ]](x) is the indicator function for the interval [a, b ], i.e., 1 if a ≤ x ≤ b ,
and 0 otherwise.)

This sort of local averaging gives an m̂(x)which can make jerk steps as x changes.
Another approach is spline smoothing: this looks for the function, called a spline
which comes closest to the data points, subject to a constraint on the average curva-
ture of the function. Allowing no curvature at all gives back the least squares line;
allowing unlimited curvature gives a function which interpolates exactly between the
data points13. Of course one has to decide how much curvature to allow; the best idea
is generally to do what’s called “cross-validation”: hold back a little bit of the data, fit
the spline with some level of curvature to the rest of the data, and see how well it
predicts the held-back part; pick the curvature which generalizes best to unseen data
points. While there is lot of R code for splines, because they’re very useful, the most
user-friendly is called smooth.spline.

smooth.spline(x, y, cv = TRUE)

returns an object which contains the estimated spline. (The default, CV=FALSE, is
to use a fast approximation to cross-validation called “generalized cross-validation”;
CV=TRUE is often a bit more accurate, if you can afford the time.) The commands
fitted and residuals work on this object just like they do on lm objects; predict
works very similarly, but the argument giving the new values must be a vector called
x, not a data frame. If passed into the lines or points command, we get a plot of
the fitted values.

smooth.spline can also be used on the squared residuals (not the absolute resid-
uals – why?) to try to get an estimate of the conditional variance, if you’re pretty sure
that the functional form of the regression is right.

13This turns out to be equivalent to a kind of weighted local averaging.
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FIGURE 6.15: Scatter-plot of mortality as a function of temperature, along with the estimated linear
model (blue) and the estimated smoothing spline (red). Notice how the smoothing spline tracks the
linear model over a wide range of temperatures, but then turns up for high temperatures.
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105 6.2. NONLINEAR FUNCTIONS OF X
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6.2. NONLINEAR FUNCTIONS OF X 106
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plot(chicago$tmpd, residuals(death.temp.lm)^2, log = "y", xlab = "Temperature (F)",
ylab = "Squared prediction error (deaths/day)^2")

abline(h = mean(residuals(death.temp.lm)^2), lwd = 2, col = "grey")
lines(smooth.spline(x = chicago$tmpd, y = residuals(death.temp.lm)^2, cv = TRUE),

col = "red")

FIGURE 6.17: Smoothing spline of squared residuals versus temperature. (Notice the logarithmic
scale for the vertical axis, to compensate for the fact that some of the residuals are really big.) If we
thought that the functional form of the regression was right, this would be a reasonable estimate of
the conditional variance. Should we think that?
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6.3 Transforming the Response
Another way to try to accommodate nonlinearity is to transform the response vari-
able, rather than the predictor. That is, one imagines the model is

g (Y ) =β0+β1x + εi (6.24)

for some invertible function g . In more old-fashioned sources, like our textbook, this
is advocated as a way of handling non-constant variance, or non-Gaussian noise14. A
better rationale is that it might in fact be true. Since the transformation g has an
inverse, we can write

Y = g−1 (β0+β1x + εi ) (6.25)

Even if εi ∼N (0,σ2), this implies hat Y will have a non-Gaussian distribution, with
a non-linear relationship betweenE [Y |X = x] and x, and a non-constant variance. If
that’s actually the case, we’d like to incorporate that into the model. For instance, Y
might be an integer-valued count variable, or even a binary-valued categorical variable,
and then we pretty much have to have some sort of non-Gaussian noise in Y . (Indeed,
the noise around E [Y |X = x] isn’t even strictly additive.)

Let me illustrate these points by working through a log transformation of Y . Sup-
pose

logY =β0+β1x + ε (6.26)

where ε ∼ N (0,σ2), independent of x. The inverse function to log is exp, so this is
logically equivalent to

Y = eβ0+β1 x eε = eβ0+β1 xξ (6.27)

where ξ = eε follows a log-normal distribution, withE [logξ ] = 0, Var [logξ ] = σ2.
One can show15 thatE [ξ ] = eσ

2/2, that Var [ξ ] = (eσ2−1)eσ2
, that the median of ξ is

1, and that ξ is, consequently, skewed to the right, with an asymmetric distribution.
Conversely, if Y = eβ0+β1 x + ε, with ε∼N (0,σ2), then it is not the case that logY =
β0+β1x +η, for some Gaussian η.

The point of this is that transforming the response thoroughly changes the in-
terpretation of the parameters: β0 is not E [Y |X = x], but E [g (Y )|X = x],β1 is the
slope ofE [g (Y )|X = x], etc. It also implies very particular, even peculiar, models for
noise around the regression line. This makes it impossible to compare mean squared
errors or log-likelihoods before and after transformations16. One can, however, look
at the residuals for the transformed response, and see whether they are flat in the pre-
dictor variable, etc.

6.3.1 Box-Cox Transformations
The great statisticians G. E. P. Box and D. R. Cox introduced a family of transforma-
tions which includes powers of Y and taking the logarithm of Y , parameterized by a

14To be quite honest, this seems like as clear a case of being enslaved by one’s own tools as one could
hope to find in the sciences. More charitably: it made a certain amount of sense before people figures out
how to deal with non-constant variance (around 1935) and non-Gaussian noise (around 1980).

15Check Wikipedia if you don’t believe me.
16More exactly, log-likelihoods can be compared, but we need to compensate for the transformation.
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number λ:

bλ(y) =
yλ− 1
λ

(6.28)

In the limit λ→ 0, this becomes log y (Exercise 2). If one assumes that

bλ(Y ) = β0+β1x + ε (6.29)
ε ∼ N (0,σ2) (6.30)
ε independent of x (6.31)

(6.32)

then one can estimate λ by maximizing the likelihood. This is implemented in R
through the function boxcox in the package MASS.
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# Works with a previously-fit lm model
boxcox(death.temp.lm)

FIGURE 6.18: Plot of the log-likelihood of different values of λ in the Box-Cox transformation,
applied to the regression of deaths on temperature. The dashed lines indicate an approximate 95%
confidence interval for λ.
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# You can also give a model formula, and suppress plotting
bc.death.temp <- boxcox(death ~ tmpd, data = chicago, plotit = FALSE)
# Result is a list showing lambda values ($x component) vs. log-likelihood
# (the $y component) We can use this to get a (rough) maximum value for
# lambda
(lambda.hat <- bc.death.temp$x[which.max(bc.death.temp$y)])
## [1] -0.5

FIGURE 6.19: Another way of using the boxcox function.

21:34 Monday 6th May, 2024



111 6.3. TRANSFORMING THE RESPONSE

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●●

●

●
●
●

●
● ●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

● ●

●●

●
●

●

●
● ●

●
●

●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●
●

● ●

● ●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●●●

●
●

●

● ●
●
●

●

●

●
●

●

●● ●
●

●

●

●

●
●

●

●
●

●
●●

●

●

● ●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●●

● ●

●●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●●
●

●

●
●

●●●●●●

●

●

●●
●

●

●

●
●

●●

●

●
●

●

●● ●

●

●●

●
●

●

●

●

● ●
●

●●

●
●

●

●

●
●

●

● ●

● ●

●

●

●●

● ●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●●

●
●●● ●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●

●

●●
●

● ●

●
●

●

●●

●
●●

●

●
●

●

●

●●

●

● ●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●●

● ●●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●●

● ● ●

●
●●

● ●

●
●

●

●
●

●

●
● ●

●

●●●
●

● ●

●●

●

●

●
●

●

● ●
●

●●●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●● ●
● ●

● ●

●

●

●

●
●

●

● ● ●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

● ● ●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●
●

● ●

●

●
●
● ●

●

●●●●
●

●
●

●●

●
● ●●

●
●

●

●

●
● ●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●●
●●

● ●

●

●
●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●●

●

●
●

●●
●

●

●

●

●

●●
●

●
●

● ●
●

●
●

●

●

●●
●

●

●

●

●

●
●●●

●

●

●

● ●●

● ●

●
●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

● ●

●

●

●

●●

● ●
● ●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

● ●
●

●

●
●

●

●
● ●

● ●

●
●

●

●

●

●●
●

●
●

●

●
●
●

●

●●

●●

●

● ●
●

●

●

●
●

● ●

●

●

●
●

●

●●●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●
●
●

●

●

●

●●
●

● ●●●

●

●●

● ●

●
●

●
●

●
●●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

● ●
●

●
●●

●

●

●
●● ● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●●
● ●

●

●
●

●●

●
●

●

●

●

● ●

● ●●

●
●

●

●

●
●
●

● ●
● ●●

●●

●

●

●●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●
● ●

● ●

● ●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●
● ●

●
●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●
● ●

●●

●
●

●

●

●●●●

●

●●●
●●

● ●

●

●
●●

● ●
●

●

●

●

●

●●
● ● ●

●

● ●
●

●●

●

●

●

●
●●

●
●

●
●●

●

●
●

●●
● ●

●

● ● ●
●

●

●
●

●●

●
●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●
●

●

●●
●

●

●

●
●
●

●
●

● ●

●
●

●
●

● ●●

●

●

● ●●

●●
●●

●

●
●

●

●

●●

●
●

● ●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
● ●

●

●● ●

●

●

●●
●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●●

● ●
●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●

●
● ●

●●

●

●

●

●

●

●

●●

●

●
●

●

● ●●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

● ● ●

●

●

●
●

●

●
●

●●
●

●●●

●

●

● ●●
●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●●

● ●

● ●

●

● ●

●

●● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

● ●●

●

●

●

● ●
●

●

●

●
●

●

●
●
●

●
●

● ●

●

●
●●

● ●●

●

●●

●

●
●

●
●
●

●
●

● ●
● ●●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●
● ●

●
●

●

●

●

●
●●

●●

● ●

●
●●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
●

●

●
●●

●

●

●

●

●

●

●
●

● ●
●

●
●●

●

●

●

● ●

●●
● ●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●●

●●

● ●●
●

●

●

●

●
●

●
●

●

●●

●

●
● ●

●●
●●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●
●

● ●

●

● ●

●

●

●

● ●

●

●

●

●
●
●

●
●

●●
●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

● ●

●

●
●●

●
●●

●

●

●
●●

●

●●●●

●

●●

●

●

● ●

●
●●

●
●●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●●

●
●

●

●
●●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●●
●●
●

●
●●

●

●

●

●

●
●

●●●●●
●●

●

●●
●

●

●

● ●
●

●

●

●

●

●●

●
●

●

● ● ●●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●●
●

●

●
●

●

●
● ●

●

●

●

●
●

●●

●
●

●
●

●

● ●
●

●

●●

●

●●●
●●

●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●● ●●

●

●

●

●●

● ●
●●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●● ●

●●
●

●

●●

●

●
●● ●

●

●
●

●
● ●

●●
●

●

●
●
●

●

● ●

●
●

●

●
● ●

●●● ●

●

●

●

●

●

● ●

●

●

●●●
● ●

●

●●

●
●
●
● ●

●

●

●

● ●

●

●●
●● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

● ●
●

●●

●

●
●

●
●

●
●●●●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

● ● ●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
● ●

●● ●

●

●

●
● ●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●●

●

●
●

●

●

●●

●●
●

● ● ●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●●

●
●

●
●

●

●
●

● ● ●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●

●
● ●●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●
●

●

● ●
●

●

●

●

●

● ●● ●

●

●

●

●
●

●
● ● ●●

●
●

●

●

●

●

●

●
●

● ●
● ●

●●●
● ● ●

●

●

● ●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●
●●

●

● ●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●●●
●

●●

●

●

●

●
●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●

●●
●●

●

●
●

●

●

● ● ●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●
●

● ● ●
●

●

●

●

●

●

● ●●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

● ●

●

●

●

● ●
●

●

●●

●

● ●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●
●

● ●
●●●

●
●

●
●●●

●

●

●

●

●
●
●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
● ● ●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●●
●

●●●
●

●

●●

●

●●

●

●
●

●●
●

●

● ●

●

●
●

●

●
●●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

● ●
●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
● ●

●●

●

●●●

●●

●
●

●

●
● ●●

●

●
●

●

●●

●

●

●
●

●
●
●

●
●

●
●

●●

●

●

●

●

●
●

● ●
●

● ●
●

●
●

●

●

●

●
●●

●
● ●●

●

●●

●

●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●

●
●

●
●

●

●

● ● ●

●●●

●

● ● ●

●
●

●
●

●

●

●

●

● ●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

● ●
● ●

●

●

●
●●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●
●
● ●

●
●
●

●
●●

●

● ● ● ●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●
●

●

●
● ●

●

●

●●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●

●
●

●

●● ●

●
●

●

●
● ●

●

●●

●

●
●
●

●

●

●

●

●
●

●●

●
●

●
●●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●
●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

● ● ●
●

●

●

●●
●

●

●
● ●

●

●●

●
●

●●
●
●●

●

●

●
●

●●
●

●●

●
●

●

●

●
● ●

● ● ●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●●

●

● ●

●
●

●

●
●

●

●

●

●
●

● ●●

●
●●
●

●
●

●

●

●

● ●
●

● ●● ●
●

●

● ●●

●

● ●

●

●
●

● ●
●

●●

●

●

●

●
●

●●
●

●

●●●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

● ●
●

●

●

●

●●

●
●

●

●●

● ●●

●

●

●
● ●

●●

●
●

●●
● ●

●●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●
●●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●●●●

●

● ●

●

●
●

●
●

●●

●
●●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

● ●

●

●●

● ●

●

● ●

●
●

●

●
●

●
●●●●

●

●
●

●
●● ● ●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●
●

●
●
●●

●

●

●

● ●

●

●
●

●

●

●

●●
●●

●

● ●

●

●●

●

●
●

●
●
●●●

●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●
●

●

●

●
●

●●
● ●

●

●
●●●

●

● ●

●●●
●

●
●

●

●

●●

●
● ●

●
●

●
●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●●

●

●

●

● ●
●

●
●●

●
●

● ●
● ●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●
● ●

●

●

●

●

●
●

●●

●
●●

●
●

●

●

●●
●

●

●
●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●
●

●

●●
● ●

●
●

●

●

●

●

●

●●●

●●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●●

●
●●

●

●

●
●
●

●

●

●

●
●

●
●●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●● ●

●
●

●
●

●

●

●

●
●●

●
●

●
●

●
●

●

●
●

●
●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
● ● ●

● ●

●

●

●
●

●●

●

●

●

●

●

●

● ●●●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●
●
●

●●● ●

●

●

●
●

●
●

●

● ●●

●
●

●

●

●●

●

●

●

●●

●

●

●●
●

●
●

●

● ●

●

●
●

●
●

●●

●
●

●

● ● ●
●

● ●●

●

● ●

●
●

●

●
●●

●

●

●●●

●●

●
●

●

●●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●●

● ●

● ●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●
●

●●

●●

●
●

●
●●●

● ●●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●●● ●

●
●

●

●
●
●●
●

●
●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●
●
●

●
●

●

●

●
●

●

●
●●●●

●

●

●
●

●

●

● ●
●

●

●

●●●●●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●
●

● ●
●●

●

●
●

●

●
●●

●

●
●

●
● ●● ●

●

●●

● ●

●

● ●
● ●

●

●●

●

●
●
●

●

●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●

●●
●●

●
●●

●

● ●
●

●

●

●

●●
●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●●●

●

●

●
● ●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●●

●

●●

●

● ●●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●
●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

● ●

●

●

●● ● ●

●

●

●

●

●

●●

●

● ●
●

●●●
●

●
●

●●

●

●

● ●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●●●

●
● ●

●●

●

●

●

●
●

●
●●

●
●
●

●

●
●
● ●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●
●

● ●
●●

●
●

●●

●●

●
●

●

●

●

●

●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
●●

●

●● ●

●

●

●

● ●●

●

●

●

●

●
●

●
●●

●
●
●

●●
●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●
●

●●●

●●

●
●

●

● ●

●●

●

●
●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●●

●●
●

● ●

●

−20 0 20 40 60 80

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Temperature (Farenheit)

M
or

ta
lit

y 
(d

ea
th

s/
da

y)

●●●● ● ●●●● ●● ●● ●●● ●● ●●●●
●● ● ●●

●● ●●
●●●●● ● ●●● ● ●●●●●● ●● ●● ●●●● ●● ●●● ●●● ● ● ●●

●● ● ●● ●● ●●● ●●● ● ● ●●●● ●●●● ●
●● ● ● ●●● ● ●●●● ●● ● ● ● ● ●

●● ●● ● ●●● ●
● ●●● ● ● ●●● ● ●●

● ● ●● ● ●●●● ●●●● ●
● ●●●●●●●●● ●● ●●

● ● ● ●● ●●● ● ●●●●● ● ●●●● ●●●● ● ●●● ●●●●●●●
● ●● ● ●● ●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●● ●●●●●● ●●●●● ●●● ● ●● ●●● ● ● ●●●●●●●● ● ●●●●●●● ● ●●● ● ●●●●●●● ● ●

●● ● ●●● ● ● ● ●●
● ●●●● ●●● ● ●●● ● ●● ● ● ●●

●● ● ●
●●● ● ●● ● ●●●●●●

●●●●●● ●●●●●●●● ● ● ● ●● ●●●●●●● ● ●●● ●● ●●●● ●●●●
●

● ●
●

●● ● ●●●
● ●

●●
● ●●● ●●●●● ●●●●

●
●

●●
●●●●

●●
●● ●●●●●

●●● ●●●●●
●

●●●
●● ● ●●●●● ● ● ● ●

● ● ●●
●●● ●●●●●●

● ●●●
●● ●●●●● ●● ● ●

●●●●● ●● ●●● ● ●
●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●●● ● ●● ● ●

●● ● ● ●●●●●● ● ● ●●●●●
●● ● ● ●●
●●● ● ● ● ●●●● ● ● ●●●● ● ●
●● ●●● ●● ● ● ● ● ●●●●●● ● ●●●●● ●●●●● ●●● ● ●●●● ●●●●●●● ●●● ●●●●● ● ●●●●●● ●●●●●●● ● ●●●●●●● ● ●●● ● ●● ●●● ●●●●● ●●● ● ● ●● ●●●●●●●● ● ● ● ●

●●●
● ●●●●●● ●●●●●● ●●●● ●● ● ● ●●● ● ●●●● ● ● ● ●●● ●●●●● ● ● ● ●

●● ●●● ● ●● ● ●●●●●● ●
● ●

●● ● ●
● ●● ● ●●● ●●

●● ●●●●●● ● ● ●
●●

● ●●●● ● ● ●●●●●
●●● ●● ● ●●● ●●

●●● ●● ●●● ● ● ● ●●●●● ● ●●●●●●
●●● ●● ● ● ●

● ●● ● ● ● ●● ● ●
● ●●●● ●● ● ● ●● ● ●●

●●●● ●● ●●●●●●● ● ●● ●● ●●● ● ●●●● ● ●●●● ●●●● ● ●●
● ● ●●●● ●● ●● ● ● ●●●●● ● ●●●●● ● ●●●●● ● ● ●●●●●● ●●●● ● ● ●●●● ●●●● ●●●● ● ●●●●● ●●● ● ●●●●● ●●●●●●● ●● ●●● ●

●● ●●●● ●●●
●● ● ● ●●●●●●●●●● ●● ●●●●● ● ●●● ●●●● ● ●● ● ●●● ●●●●● ● ●●●●●●

● ● ●●● ●●● ●●● ● ●●●●● ● ● ●● ●●●
●●●● ● ● ● ●●●●●●●

●●●●
● ●●●●●● ●●

●●
●

●●●
● ●

●●● ●
●●

●
●●

● ●●●
● ●●

● ● ● ●
●● ●●●● ●●●●● ● ● ●

●
● ● ● ●●●● ● ●●●● ● ●●● ●

●●
● ● ●●

●● ●● ● ●●●●
●● ●●● ●● ●● ●●●

●●●● ● ●
● ●●● ●●●

● ●●
●●

● ●● ● ●●● ●●● ● ● ● ● ●●●●●●●● ●
●●

●● ●● ● ●●●● ●● ●●●● ●
● ●●●● ● ●●●● ● ● ●●● ● ●●●●●●●● ●●● ●● ● ●●

● ●● ● ●● ●● ● ●●●● ● ●● ● ●●●● ●
●●

●●●
●● ● ●●● ● ●●● ● ●●● ● ●●●● ● ●●●● ●● ● ● ●●● ●

●●●●●●● ● ● ●●●●●●●● ● ●● ●●●●● ● ●●●● ● ●● ●●●● ● ●●● ●●●●●● ●● ● ●●●●● ●●● ●● ●●●● ●●●●●●●●● ● ● ●●● ●
●●●●●● ●● ●● ● ●

●●●● ● ● ●●● ● ●
●●

●●● ●●●● ●● ●
●● ● ●●

●●●●● ● ●●●●
● ●

●● ●●●
●

●●● ● ● ●
●● ●●●●● ●●● ● ●● ●●

●● ●● ●●● ●●
●●● ●

●
●

● ●
●●

●●● ●
●●● ●●● ●●● ●●●●●

●●
●● ●

●● ● ● ●●● ●
● ● ●●●●●● ●●● ● ●●

● ●
● ●●● ●
●● ●●● ●

● ●●
● ● ●●● ●●● ●●● ●● ●● ●● ● ●●●● ●

●●
●● ● ●●● ●● ● ●●●

●●● ●●
●●●●●●● ● ● ●● ● ● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●●

●● ● ● ● ●● ●● ●● ●●●●●●●●●● ● ● ● ●●● ● ●●●● ●● ●●
● ●● ● ● ●● ●● ●●●● ● ●●●●● ● ●●●● ● ● ● ●●● ●●●●●● ●●● ● ● ●●●● ●●● ●●●● ●● ●●●●● ●● ●● ● ●●●●●●●● ● ●●● ● ●● ●●● ● ● ● ●●●●●● ● ●●● ●●● ● ●

●● ●●●●●●
●●● ●●● ●● ●

●
●● ● ●

● ●●●●● ● ●
●●●

●●● ●●● ● ● ●●● ● ● ●●●
●●

●● ●●●● ●
●●

●●
● ●●

●
● ●

● ●
● ●● ●●●● ● ●

● ●
●●●●●● ●●●●●●● ●●●●●● ●●● ●●●

●
●●

●
● ● ● ● ●●● ●● ●●● ●●● ● ●●● ●●●●

●●● ● ● ●● ● ●● ●● ●●●●● ●●●
●●● ● ● ●● ●●

●● ● ● ●● ● ●● ●●●● ●
●●●● ● ● ●●●● ●● ● ● ●●● ●●

●● ● ● ●● ●
●●

●● ●●● ●● ●
●●

●●
●●●● ● ● ● ● ●●

●● ● ●●
● ● ● ● ●

●
●● ● ● ● ● ● ●● ● ●● ●●●● ●● ● ● ● ●● ●●●

●●● ●
●●●●● ● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ●●●●● ●● ●●●●● ●●●●●● ●● ● ●●●●●●●●● ●●● ● ● ● ●●●●● ●●●● ●●● ● ●●●●●● ● ● ● ●●●●● ● ●●● ● ● ●●●● ● ● ● ●●●● ●●● ●● ●● ●●●●●●

●● ● ●
●●●● ●●●●● ●●●●●● ● ●●●●●●● ● ●●● ●●●●● ●●●● ●●●●●●● ● ●●● ●●●●●

●●●●●
● ● ●

●
● ●●

● ● ● ●
●

● ●
●●●● ●● ●● ● ●●●● ●●●● ● ●● ●●● ●●●

● ●
●●● ● ●●● ●● ● ●●●●●●●

●● ● ● ●●●● ●
●●●

● ●●●●●● ●●●●●●●
● ●

●● ● ●●● ●● ●●● ● ●●●
●● ●● ● ● ● ●●●●●● ●●● ● ●●

● ● ● ● ●
●● ●

●● ● ● ●●●●● ● ● ●●●●
● ●●●● ●●● ● ● ●●● ● ●●● ●●● ●●● ● ● ● ●●●●● ●●●●

●●●●●●● ●●● ●●●● ● ● ● ●●●● ●●●●●●●● ● ● ●●●●● ● ● ●● ●●●● ● ●● ●●● ●● ●● ●●●●●● ●●●●●●● ●● ● ●●●● ●
●● ●●● ●● ●●●●●

● ●●● ● ●●● ●● ●●● ● ●● ●●● ●● ●●● ● ●●
●● ● ●● ● ●●●● ●●●● ● ●●●
● ●●●● ● ● ● ●

●
●● ●●● ●●

●●●●●●●●
● ●●●●●● ●● ● ● ●● ●●●● ● ●●

● ● ●●●● ●●●●●●●●●● ●● ●●
● ●●●●● ●

●
● ●

● ●●
●

●● ● ●
● ●

● ●
● ●●●● ● ●●●

●●
●● ● ● ●

● ●●● ● ●● ● ●●
● ● ●●

●●●● ●● ●
●●● ●

●● ●●●●●●
●●●●●● ● ● ●● ● ●●

● ● ●●●● ● ● ●
● ●●● ● ● ●●● ●● ●●● ● ●●●●● ●

● ● ●
●● ●● ● ●● ● ●●● ● ●● ●● ●● ●●● ● ● ● ● ●●●●

● ● ● ● ●●
●● ● ● ● ●●●● ● ● ● ● ● ●●●●● ●●●●● ●●● ●●● ●

● ●
● ●●●●●● ● ●

● ●●● ●● ● ●●● ●●●●●●● ● ● ●● ●●●● ● ●
● ● ● ● ●● ●● ●● ●●● ●● ●●●●●●●●●● ●● ● ●● ● ● ●●●● ●●●●● ●●●●●●●●● ●● ●●●●●● ● ●●●● ● ● ● ●● ● ●●●●● ●●●●● ● ● ●●●● ● ●●●●● ●●● ●● ●●● ●●●●

●●
● ● ●●●

●●●●
● ● ●●●●●●●●● ● ● ● ● ●●●● ● ●●●● ●● ●●●●●

●●●● ●
●●● ● ● ● ●●●●● ●●●●●●●● ●● ● ●●● ● ●●●●

● ● ●●
● ●

●● ●●
●● ● ●● ●

● ● ●● ●●●●●● ● ● ●●●●●
● ● ● ●●●●● ●●●●●●● ●●●●●●●● ● ●

●●
●●●●●

●● ●● ● ●● ●
●● ● ●● ●● ●● ●●●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●●●●● ●● ● ●● ● ● ●●●●● ●●

● ● ●● ● ● ●● ●● ●● ●● ●●●●●●● ●●●● ● ●●●●● ●● ● ● ●●●●●●●●● ●● ● ●● ●● ●●●●●● ●●●●●● ● ● ●●●● ●●●●●●●● ● ●●●● ● ●●●● ● ●●●●●●● ● ● ●●● ●
●● ●●●●● ● ● ● ●●● ●●●●●●●● ● ●● ● ●●

●●● ●● ●
●● ● ●

● ● ●●●●●● ●●
●●●

●●
● ●

●
●● ●●● ● ● ● ● ●

●●●●
● ●●

●●
● ●● ●●●●●●

● ●●
●

● ●●● ● ●●●●● ●●●● ●● ● ● ●●●●●● ●●●
●● ● ● ● ●

● ●
●●

● ● ●
●●

●●
●

● ●●
●● ●

●● ●
● ●

●●● ●
●● ●●●● ●●
● ●

● ● ●●●●●
●● ●●●

● ●●●● ● ● ● ● ● ●●●● ●●●● ● ● ●
●

● ●
●● ●●● ● ●

●●●●● ● ●
●●

●● ● ● ●
●●●●●● ● ●

●●●● ● ● ●●●●● ● ●●●●● ● ● ●●
● ●●

●● ●●●● ●●●●● ● ● ●●● ● ●●● ● ●● ● ●●●●●●● ● ●●● ●● ● ● ● ●●●●●● ● ● ●●●● ● ●●● ● ●● ●●●● ● ● ●●●●● ●●●●●● ● ●● ●●●●●● ● ●●●●● ●●●●●●● ●●●●●● ●● ●●●●●●●●●●●● ●● ●●●● ●●●●● ●●● ● ●●●●● ● ●●● ●●●
● ●● ●●●●● ● ● ●

● ● ● ●●● ●●●●● ● ● ● ●●●●●●●● ●
● ●●●●● ●●●●●● ● ● ● ●●● ●● ●●●●● ●●●● ●●●●●●●

● ● ●
●

● ●
● ●●●● ● ●● ●
●●● ● ●●

●● ● ● ●●
● ●

●
● ●●● ●

●● ●
● ● ●

● ●●● ●●●●●●●●●● ●●●
●

●●●●● ●● ● ●● ● ●●● ●●● ● ●● ●●● ●●● ●
●● ● ● ●

●●● ● ●
●●●●● ● ● ● ●●

●●●●● ●● ● ● ●●●● ● ●●● ●●●●● ● ●●●●● ● ●●● ●● ● ●●● ●● ●● ●●●● ● ● ●
●● ● ●● ●●●● ●● ●●● ●● ●● ●●

● ● ●● ● ● ●●● ●●●●●●●●● ●●● ● ●● ●● ● ● ● ●●● ●●●● ●●●● ● ● ●●●● ●● ● ●●●● ● ● ●● ●● ●●● ● ●●●● ●●●● ●● ● ●●●● ●●●●●●
●●●●●●● ● ●● ●●● ●

●●●●● ●● ●●●●● ● ●● ●● ●●●● ● ●●
●● ●●● ●●●● ●●●●● ● ● ● ●●●● ●● ●●●●●●● ● ●●● ● ●● ● ●●●●

●●● ●●●●●●●● ●●● ●●●●● ● ●●●● ●●● ●●●●●● ● ●●● ●
● ●● ●●●●●

● ● ●
● ● ●●●● ● ● ●●●●● ● ● ●●● ● ●●●●● ●●● ● ● ●●● ● ●●●●●●● ●● ●● ●●●●●●● ●● ● ●

●●●● ●●● ● ● ●●● ●● ● ● ●
●●● ● ●

●
●●●●● ● ●●● ● ●

●●●●● ● ● ●●● ● ● ●●●●● ●● ●●● ● ● ●● ●●● ● ● ●● ●●● ● ●
●●● ●●●● ● ●●●●●●●●● ● ●● ● ●● ●●● ●● ● ●● ●●●● ●●● ●●●●● ● ●●● ●● ●●●●● ● ●●●● ● ●● ●●●●●● ● ●●●●●● ●● ● ●● ●●●●●●●●● ●●● ● ●● ●●●●●● ●●●●● ●●● ●
●●●● ● ●●●● ●●● ● ●●●● ● ● ●●●●●●● ● ● ●●●●●● ● ●●● ● ●●●●●●● ● ●● ●●●● ●●●●●● ●●● ● ● ●●● ● ●● ●● ●●

● ●
●●● ●●● ● ●●● ● ●●●●●●●● ●●●● ●●● ●●●●

● ● ● ●● ●●●
● ●● ●●

● ●
●

●
●

● ●●
●●● ● ●●●● ● ● ●●●●●

●●●● ● ●● ●●● ●● ● ●● ●
●● ● ●●

● ●●● ●● ●● ● ● ●●●●●● ●●● ● ●●●●● ●●
● ●●● ●●● ●●● ● ● ● ● ● ●● ●●●● ● ●●● ●●● ●●●●●●● ● ●●●● ● ●●●●● ● ● ● ● ●●●●● ● ●●● ● ● ●●●● ● ●●●● ● ● ● ●●● ●●●● ● ● ●●●●●●●●●● ●● ● ●● ● ● ●●●● ●●● ● ● ● ● ●●●●●●● ●● ● ● ● ●● ● ●● ●●●● ●●● ●● ●●●●● ●● ●●●● ●●● ●● ● ● ●●●●● ● ●●● ● ● ●●● ● ● ● ● ●●●● ●●● ● ●●●● ●● ● ●●● ● ●● ● ●●●●●●●● ● ●● ● ●● ●● ●●●

●●
●● ●● ●●●● ● ●●

●● ●●●
●● ● ●●● ● ●●

● ● ●●●● ●
●●● ● ●●●●● ●●●● ●

● ●●●● ● ● ●
●● ●● ●●●●●
●●

● ●● ● ● ●● ●
●●● ● ●

●●●
●●

● ● ●●●●●
●●● ●●

●●
●●●
●● ●● ● ●● ●●

●●● ● ●●
●●●● ●● ●●● ●●● ●

● ●● ●●●● ●●
● ● ● ●●

●●
●

●● ● ● ● ●
●● ● ● ●● ●● ●●●●●●● ● ●●●

● ● ●●● ●●● ● ● ●●●● ● ●●● ●● ●● ●●●● ● ●● ● ● ●●● ●
●● ● ●

●● ● ●●●● ● ● ● ●●●●●●● ● ● ●●●●● ● ●
●● ●●● ● ●●●● ●● ●●●●● ●●●● ●● ● ●● ● ●●● ● ●●● ● ● ●●● ●●● ●●●● ● ● ● ●●●●● ● ●● ●● ●●● ●●●● ● ● ●●●●●● ● ●●●● ●● ● ●● ●●●●●●● ●●● ●●●● ●●● ●● ●

●● ● ●●● ● ●● ● ● ●●●●●●●● ● ● ● ● ●●●●● ● ● ●●● ●●● ●●●● ● ● ●●●●● ●●●●●● ●●●● ●●● ●●● ● ● ● ●●●●●●●●● ●●● ●●●
●●

● ● ●● ●
●● ●●●● ●●● ●●● ● ●●

chicago$bc.death <- (chicago$death^lambda.hat - 1)/lambda.hat
bc.lm <- lm(bc.death ~ tmpd, data = chicago)
plot(death ~ tmpd, data = chicago, xlab = "Temperature (Farenheit)", ylab = "Mortality (deaths/day)")
points(chicago[, "tmpd"], (lambda.hat * fitted(bc.lm) + 1)^(1/lambda.hat), pch = 19,

col = "blue")

FIGURE 6.20: Actual data (hollow circles) and fitted values from the Box-Cox transformation.
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It is important to remember that this family of transformations is just something
that Box and Cox made up because it led to tractable math. There is absolutely no
justification for it in probability theory, general considerations of mathematical mod-
eling, or scientific theories. There is also no general reason to think that the correct
model will be one where some transformation of Y is a linear function of the predic-
tor variable plus Gaussian noise. Estimating a Box-Cox transformation by maximum
likelihood does not relieve us of the need to run all the diagnostic checks after the
transformation. Even the best Box-Cox transformation may be utter rubbish.

I will add that while Box-Cox transformations have been part of courses like this
since they were introduced in 1964, I have never encountered a real, non-textbook
data-analysis problem where they helped, with one exception, which I will discuss
immediately.

Log transformations with log-normal multiplicative noise The usual argument
for anticipating Gaussian noise is the central limit theorem: if lots of little disturb-
ing causes add up their contributions to the response variable, and they’re roughly
independent and of comparable size, we’ll expect that their net effect is Gaussian. If
instead of adding up they multiply together, however, the central limit theorem does
not apply directly. Since logarithms turn multiplication into addition, when effects
multiply we may anticipate log-normal fluctuations. If the simple linear regression
model applies after taking the log of everything,

logY = β0+β1 l o g x + ε (6.33)
ε ∼ N (0,σ2) (6.34)
ε independent of X (6.35)

then, undoing the log,

Y = eβ0 xβ1η (6.36)
η ∼ logN (0,σ2)
η independent of X

This sort of model is not actually unheard of in practice, because there really are
situations where causes multiply.

Eq. 6.36 is a different model from

Y = eβ0 xβ1 + ε (6.37)

We would estimate the former model by doing a linear regression of logY on logX
with Gaussian noise. We would estimate the latter model by nonlinear least squares.
The two estimates will not, in general, agree.

6.4 Looking Forward
If you need more exact formulas for the variance and correlation of the residuals, they
are most easily derived from the matrix approach to linear regression, as gone over in
Chapter 11 (specifically §11.2.1).
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113 6.5. RESIDUALS UNDER MISSPECIFICATION

Non-constant variance in a linear model is actually comparatively easy to handle,
if we can work out what variance is: the trick is a modification of the method of least
squares called “weighted least squares”, which we will cover later in the course. Simi-
larly, correlated noise can be handled through a modification called “generalized least
squares”, which we’ll also cover. There are a range of simulation-based techniques
for doing inference when the Gaussian-noise assumption fails; these have opaque,
forcedly-whimsical names like “the jackknife” and “the bootstrap”, and we’ll get to
these towards the end of the course. Dealing with nonlinearity will occupy us for
much of 402, though in a few weeks we will look at polynomial regression.

The easiest direction to go in is to add more predictor variables, and hope that the
response is linear in each of them. We will explore this path after the midterm.

6.5 Residuals under Misspecification
(This section is optional, but strongly recommended.)

Suppose that the conditional expectation function µ(x)≡E [Y |X = x] is not lin-
ear in x, but we use a linear model anyway. We know, from Chapter 1, that there
is a best linear approximation to this µ, with slope β1 = Cov [X ,Y ]/Var [X ] and
intercept β0 =E [Y ]−β1E [X ]. So we can write

Y = µ(x)+ ε (6.38)
Y = β0+β1x +(µ(x)−β0+β1x)+ ε (6.39)

It’s annoying to keep writing out µ(x)−β0 +β1x, so let’s define that to be a new
function, ν(x)≡µ(x)−β0+β1x. You can show (Exercise 3) that

E [ν(X )] = 0 (6.40)

and that
Cov [ν(X ),X ] = 0 (6.41)

However, it is not in general the case that

E [ν(X )|X = x] = 0 (6.42)

Suppose now that — through ignorance or as a deliberate strategy — we fit a linear
model by least squares. It will be the case that

Yi =β0+β1xi +ηi (6.43)

where ηi has expectation zero and is uncorrelated with X . But what we are treating
as noise is partially the real noise, and partially the systematic effect of ignoring the
nonlinearities:

ηi = εi + ν(xi ) (6.44)

Thus, what looks like noise to the linear model will not have conditional expectation
zero:

E [η|X = x] = ν(x) (6.45)
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The conditional variance doesn’t alter,

Var [η|X = x] =Var [ε|X = x] (6.46)

but it’s no longer equal to the expected square:

E
�

η2|X = x
�

= ν2(x)+Var [ε|X = x] (6.47)

As mentioned in earlier chapters, when we run least squares, our slope and inter-
cept will still tend to converge on those of the optimal linear model. We can even
still use the expressions we worked out for β̂0 (or β̂1) in terms of β0 (or β1) and
a weighted sum of random variables — but now those are the ηi , not the εi . This
implies that conditional expectation of the residuals will not be zero (in general), the
conditional expectation of the squared residuals will not be constant, and so forth.

Exercises
1. Using Eq. 6.9, find the covariance, conditional on all the xi , between ei and ek ,

for arbitrary i , k ∈ 1 : n.

2. Show that bλ(y)→ log y as λ→ 0. Hint: L’Hôpital’s rule.

3. Consider the ν(x) function from §6.5.

(a) Show that E [ν(X )] = 0. Hint: Show that E [Y ] =E [µ(X )].
(b) Show thatCov [X , ν(X )] = 0. Hint: Show thatCov [X ,Y ] =Cov [X ,µ(X )].
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Chapter 7

Inference on Parameters

Having gone over the Gaussian-noise simple linear regression model, over ways of
estimating its parameters and some of the properties of the model, and over how to
check the model’s assumptions, we are now ready to begin doing some serious sta-
tistical inference within the model1. In previous chapters, we came up with point
estimators of the parameters and the conditional mean (prediction) function, but we
weren’t able to say much about the margin of uncertainty around these estimates. In
this chapter we will focus on supplementing point estimates with reliable measures
of uncertainty. This will naturally lead us to testing hypotheses about the true pa-
rameters — again, we will want hypothesis tests which are unlikely to get the answer
wrong, whatever the truth might be.

To accomplish all this, we first need to understand the sampling distribution of our
point estimators. We can find them, mathematically, but they involve the unknown
true parameters in inconvenient ways. We will therefore work to find combinations
of our estimators and the true parameters with fixed, parameter-free distributions;
we’ll get our confidence sets and our hypothesis tests from them.

Throughout this chapter, I am assuming, unless otherwise noted, that all of the
assumptions of the Gaussian-noise simple linear regression model hold. After all, we
checked those assumptions last time. . . .

7.1 Sampling Distribution of β̂0, β̂1 and σ̂2

The Gaussian-noise simple linear regression model has three parameters: the intercept
β0, the slope β1, and the noise variance σ2. We’ve seen, previously, how to estimate
all of these by maximum likelihood; the MLE for the βs is the same as their least-

1Presuming, of course, that the model’s assumptions, when thoroughly checked, do in fact hold good.
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squares estimates. These are

β̂1 =
cX Y

s2
X

=
n
∑

i=1

xi − x
ns2

X

yi (7.1)

β̂0 = y − β̂1x (7.2)

σ̂2 =
1
n

n
∑

i=1

(yi − (β̂0+ β̂1xi ))
2 (7.3)

We have also seen how to re-write the first two of these as a deterministic part plus
a weighted sum of the noise terms ε:

β̂1 = β1+
n
∑

i=1

xi − x
ns2

X

εi (7.4)

β̂0 = β0+
1
n

n
∑

i=1

�

1− x
xi − x

s2
X

�

εi (7.5)

Finally, we have our modeling assumption that the εi are independent Gaussians,
εi ∼N (0,σ2).

7.1.1 Reminders of Basic Properties of Gaussian Distributions

Suppose U ∼N (µ,σ2). By the basic algebra of expectations and variances,E [a+ b U ] =
a + bµ, while Var [a+ b U ] = b 2σ2. This would be true of any random variable; a
special property of Gaussians2 is that a+ b U ∼N (a+ bµ, b 2σ2).

Suppose U1, U2, . . . Un are independent Gaussians, with meansµi and variances σ2
i .

Then
n
∑

i=1

Ui ∼N (
∑

i

µi ,
∑

i

σ2
i )

That the expected values add up for a sum is true of all random variables; that the
variances add up is true for all uncorrelated random variables. That the sum follows
the same type of distribution as the summands is a special property of Gaussians3.

7.1.2 Sampling Distribution of β̂1

Since we’re assuming Gaussian noise, the εi are independent Gaussians, εi ∼N (0,σ2).
Hence (using the first basic property of Gaussians)

xi − x
ns2

X

εi ∼N (0,
�

xi − x
ns2

X

�2

σ2)

2There some other families of distributions which have this property; they’re called “location-scale”
families.

3There are some other families of distributions which have this property; they’re called “stable” families.
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117 7.1. SAMPLING DISTRIBUTION OF β̂0, β̂1 AND σ̂2

# Simulate a Gaussian-noise simple linear regression model Inputs: x
# sequence; intercept; slope; noise variance; switch for whether to return
# the simulated values, or run a regression and return the coefficients
# Output: data frame or coefficient vector
sim.gnslrm <- function(x, intercept, slope, sigma.sq, coefficients = TRUE) {

n <- length(x)
y <- intercept + slope * x + rnorm(n, mean = 0, sd = sqrt(sigma.sq))
if (coefficients) {

return(coefficients(lm(y ~ x)))
} else {

return(data.frame(x = x, y = y))
}

}

# Fix an arbitrary vector of x's
x <- seq(from = -5, to = 5, length.out = 42)

FIGURE 7.1: Code setting up a simulation of a Gaussian-noise simple linear regression model, along
a fixed vector of xi values.

Thus, using the second basic property of Gaussians,

n
∑

i=1

xi − x
ns2

X

εi ∼ N (0,σ2
n
∑

i=1

�

xi − x
ns2

X

�2

) (7.6)

= N (0,
σ2

ns2
X

) (7.7)

Using the first property of Gaussians again,

β̂1 ∼N (β1,
σ2

ns2
X

) (7.8)

This is the distribution of estimates we’d see if we repeated the experiment (sur-
vey, observation, etc.) many times, and collected the results. Every particular run of
the experiment would give a slightly different β̂1, but they’d average out to β1, the
average squared difference fromβ1 would be σ2/ns2

X , and a histogram of them would
follow the Gaussian probability density function (Figure 7.2).

It is a bit hard to use Eq. 7.8, because it involves two of the unknown parameters.
We can manipulate it a bit to remove one of the parameters from the probability
distribution,

β̂1−β1 ∼N (0,
σ2

ns2
X

)

but that still has σ2 on the right hand side, so we can’t actually calculate anything. We
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# Run the simulation 10,000 times and collect all the coefficients What
# intercept, slope and noise variance does this impose?
many.coefs <- replicate(10000, sim.gnslrm(x = x, 5, -2, 0.1, coefficients = TRUE))
# Histogram of the slope estimates
hist(many.coefs[2, ], breaks = 50, freq = FALSE, xlab = expression(hat(beta)[1]),

main = "")
# Theoretical Gaussian sampling distribution
theoretical.se <- sqrt(0.1/(length(x) * var(x)))
curve(dnorm(x, mean = -2, sd = theoretical.se), add = TRUE, col = "blue")

FIGURE 7.2: Simulating 10,000 runs of a Gaussian-noise simple linear regression model, calculat-
ing β̂1 each time, and comparing the histogram of estimates to the theoretical Gaussian distribution
(Eq. 7.8, in blue).
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119 7.1. SAMPLING DISTRIBUTION OF β̂0, β̂1 AND σ̂2

could write
β̂1−β1

σ2/
Æ

ns2
X

∼N (0,1)

but now we’ve got two unknown parameters on the left-hand side, which is also awk-
ward.

7.1.3 Sampling Distribution of β̂0

Starting from Eq. 7.5 rather than Eq. 7.4, an argument exactly parallel to the one we
just went through gives

β̂0 ∼N (β0,
σ2

n

�

1+
x2

s2
X

�

)

It follows, again by parallel reasoning, that

β̂0−β0
È

σ2

n

�

1+ x2

s2
X

�

∼N (0,1)

The right-hand side of this equation is admirably simple and easy for us to calculate,
but the left-hand side unfortunately involves two unknown parameters, and that com-
plicates any attempt to use it.

7.1.4 Sampling Distribution of σ̂2

It is mildly challenging, but certainly not too hard, to show that

E
�

σ̂2�=
n− 2

n
σ2

As I have said before, this will be a problem on a future assignment, so I will not give
a proof, but I will note that the way to proceed is to write

σ̂2 =
1
n

n
∑

i=1

e2
i ;

then to write each residual ei as a weighted sum of the noise terms ε; to use E
�

e2
i

�

=
Var [ei ]+ (E [ei ])

2; and finally to sum up over i .
Notice that this implies that E

�

σ̂2
�

= 0 when n = 2. This is because any two
points in the plane define a (unique) line, so if we have only two data points, least
squares will just run a line through them exactly, and have an in-sample MSE of 0. In
general, we get the factor of n−2 from the fact that we are estimating two parameters.

We can however be much more specific. When εi ∼ N (0,σ2), it can be shown
that

nσ̂2

σ2
∼ χ 2

n−2
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Notice, by the way, that this equation involves no unknown parameters on the right-
hand side, and only one on the left-hand side. It lets us calculate the probability that
σ̂2 is within any given factor of σ2. If, for instance, we wanted to know the probability
that σ̂2 ≥ 7σ2, this will let us find it.

I will offer only a hand-waving explanation; I am afraid I am not aware of any truly
elementary mathematical explanation — every one I know of either uses probability
facts which are about as obscure as the result to be shown, or linear-algebraic facts
about the properties of idempotent matrices4, and we’ve not seen, yet, how to write
linear regression in matrix form. I do however want to re-assure you that there are
actual proofs, and I promise to include one in these notes once we’ve seen how to
connect what we’re doing to matrices and linear algebra.

I am afraid I do not have even a hand-waving explanation of a second important
property of σ̂2: it is statistically independent of β̂0 and β̂1. This is not obvious —
after all, all three of these estimators are functions of the same noise variables ε— but
it is true, and, again, I promise to provide a genuine proof in these notes once we’ve
gone over the necessary math.

7.1.4.1 The Hand-Waving Explanation for n− 2

Let’s think for a moment about a related (but strictly different!) quantity from σ̂2,
namely

1
n

n
∑

i=1

ε2
i

This is a weighted sum of independent, mean-zero squared Gaussians, which is where
the connection to χ 2 distributions comes in.

Some reminders about χ 2 If Z ∼ N (0,1), then Z2 ∼ χ 2
1 by definition (of the χ 2

1
distribution). From this, it follows that E

�

χ 2
1

�

= 1, Var
�

χ 2
1

�

=E
�

Z4
�

− (E
�

Z2
�

)2 =
2. If Z1,Z2, . . .Zd ∼ N (0,1) and are independent, then the χ 2

d distribution is defined
to be the distribution of

∑d
i=1 Z2

i . By simple algebra, it follows thatE
�

χ 2
d

�

= d while
Var

�

χ 2
d

�

= 2d .

Back to the sum of squared noise terms εi isn’t a standard Gaussian, but εi/σ is,
so

∑n
i=1 ε

2
i

σ2
=

n
∑

i=1

(
εi

σ
)2 ∼ χ 2

n

The numerator here is like nσ̂2 =
∑

i e2
i , but of course the residuals ei are not the

same as the noise terms εi .
The reason we end up with a χ 2

n−2 distribution, rather than a χ 2
n distribution, is

that we’re estimating two parameters from the data removes two degrees of freedom,
so two of the εi end up making no real contribution to the sum of squared errors.
(Again, if n = 2, we’d be able to fit the two data points exactly with the least squares

4Where M 2 =M .
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line.) If we had estimated more or fewer parameters, we would have had to adjust the
number of degrees of freedom accordingly.

(There is also a geometric interpretation: the sum of squared errors,
∑n

i=1 e2
i , is the

squared length of the n-dimensional vector of residuals, (e1, e2, . . . en). But the residuals
must obey the two equations

∑

i ei = 0,
∑

i xi ei = 0, so the residual vector actually is
confined to an (n− 2)-dimensional linear subspace. Thus we only end up adding up
(n−2) independent contributions to its length. If we estimated more parameters, we’d
have more estimating equations, and so more constraints on the vector of residuals.)

7.1.5 Standard Errors of β̂0 and β̂1

The standard error of an estimator is its standard deviation5. We’ve just seen that
the true standard errors of β̂0 and β̂1 are, respectively,

se
h

β̂1

i

=
σ

sx
p

n
(7.9)

se
h

β̂0

i

=
σ
p

nsX

q

s2
X + x2 (7.10)

Unfortunately, these standard errors involve the unknown parameter σ2 (or its square
root σ , equally unknown to us).

We can, however, estimate the standard errors. The maximum-likelihood esti-
mates just substitute σ̂ for σ :

bse
h

β̂1

i

=
σ̂

sx
p

n
(7.11)

bse
h

β̂0

i

=
σ̂

sX
p

n

q

s2
X + x2 (7.12)

For later theoretical purposes, however, things will work out slightly nicer if we
use the de-biased version, n

n−2 σ̂
2:

bse
h

β̂1

i

=
σ̂

sx
p

n− 2
(7.13)

bse
h

β̂0

i

=
σ̂

sx
p

n− 2

q

s2
X + x2 (7.14)

These standard errors — approximate or estimated though they be — are one im-
portant way of quantifying how much uncertainty there is around our point esti-
mates. However, we can’t use them, alone to say anything terribly precise6 about,

say, the probability that β1 is in the interval [β̂1 − bse
h

β̂1

i

, β̂1 − bse
h

β̂1

i

], which is

5We don’t just call it the standard deviation because we want to emphasize that it is, in fact, telling us
about the random errors our estimator makes.

6Exercise to think through: Could you use Chebyshev’s inequality (the extra credit problem from
Homework 1) here?
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h

β̂
i

122

the sort of thing we’d want to be able to give guarantees about the reliability of our
estimates.

7.2 Sampling distribution of (β̂−β)/bse
h

β̂
i

It should take only a little work with the properties of the Gaussian distribution to
convince yourself that

β̂1−β1

se
h

β̂1

i ∼N (0,1)

the standard Gaussian distribution. If the Oracle told us σ2, we’d know se
h

β̂1

i

, and

so we could assert that (for example)

P
�

β1− 1.96se
h

β̂1

i

≤ β̂1 ≤β1+ 1.96se
h

β̂1

i�

(7.15)

= P
�

−1.96se
h

β̂1

i

≤ β̂1−β1 ≤ 1.96se
h

β̂1

i�

(7.16)

= P






−1.96≤

β̂1−β1

se
h

β̂1

i ≤ 1.96






(7.17)

= Φ(1.96)−Φ(−1.96) = 0.95 (7.18)

where Φ is the cumulative distribution function of the N (0,1) distribution.
Since the oracles have fallen silent, we can’t use this approach. What we can do is

use the following fact7:

Proposition 1 If Z ∼N (0,1), S2 ∼ χ 2
d , and Z and S2 are independent, then

Z
p

S2/d
∼ td

(I call this a proposition, but it’s almost a definition of what we mean by a t dis-
tribution with d degrees of freedom. Of course, if we take this as the definition,
the proposition that this distribution has a probability density∝ (1+ x2/d )−(d+1)/2

would become yet another proposition to be demonstrated.)

Let’s try to manipulate (β̂1−β1)/bse
h

β̂1

i

into this form.

7When I messed up the derivation in class today, I left out dividing by d in the denominator. As I
mentioned at the end of that debacle, this was stupid. As d →∞, td converges on the standard Gaussian
distribution N (0,1). (Notice that E

�

d−1χ 2
d

�

= 1, while Var
�

d−1χ 2
d

�

= 2/d , so d−1χ 2
d → 1.) Without the

normalizing factor of d inside the square root, however, looking just at Z/S, we’ve got a random variable
whose distribution doesn’t change with d being divided by something whose magnitude grows with d , so
Z/S→ 0 as d →∞, not→N (0,1). I apologize again for my error.
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=
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Æ

χ 2
n−2/(n− 2)

(7.26)

= tn−2 (7.27)

where in the last step I’ve used the proposition I stated (without proof) above.
To sum up:

Proposition 2 Using the bse
h

β̂1

i

of Eq. 7.13,

β̂1−β1

bse
h

β̂1

i ∼ tn−2 (7.28)

Notice that we can compute bse
h

β̂1

i

without knowing any of the true parameters

— it’s a pure statistic, just a function of the data. This is a key to actually using the
proposition for anything useful.

By exactly parallel reasoning, we may also demonstrate that

β̂0−β0

bse
h

β̂0

i ∼ tn−2
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7.3 Sampling Intervals for β̂; hypothesis tests for β̂
Let’s trace through one of the consequences of Eq. 7.28. For any k > 0,

P
�

β1− k bse
h

β̂1

i

≤ β̂1 ≤β1+ k bse
h

β̂1

i�

(7.29)

= P
�

k bse
h

β̂1

i

≤ β̂1−β1 ≤ k bse
h

β̂1

i�

(7.30)

= P






k ≤

β̂1−β1

bse
h

β̂1

i ≤ k






(7.31)

=
∫ k

−k
tn−2(u)d u (7.32)

where by a slight abuse of notation I am writing tn−2(u) for the probability density
of the t distribution with n− 2 degrees of freedom, evaluated at the point u.

It should be evident that if you pick any α between 0 and 1, I can find a k(n,α)
such that

∫ k(n,α)

−k(n,α)
tn−2(u)d u = 1−α

I therefore define the (symmetric) 1−α sampling interval for β̂1, when the true slope
is β1, as

[β1− k(n,α)bse
h

β̂1

i

,β1+ k(n,α)bse
h

β̂1

i

] (7.33)

If the true slope is β1, then β̂1 will be within this sampling interval with proba-
bility 1−α. This leads directly to a test of the null hypothesis that the slopeβ1 =β

∗
1:

reject the null if β̂1 is outside the sampling interval for β∗1, and retain the null when

β̂1 is inside that sampling interval. This test is called the Wald test, after the great
statistician Abraham Wald8.

By construction, the Wald test’s probability of rejection under the null hypoth-
esis — the size, or type I error rate, or false alarm rate of the test — is exactly α.
Of course, the other important property of a hypothesis test is its power — the prob-
ability of rejecting the null when it is false. From Eqn. 7.28, it should be clear that
if the true β1 6= β∗1, the probability that β̂1 is inside the sampling interval for β∗1 is
< 1−α, with the difference growing as |β1−β∗1| grows. An exact calculation could be
done (it’d involve what’s called the “non-central t distribution”), but is not especially
informative. The point is that the power is always>α, and grows with the departure
from the null hypothesis.

If you were an economist, psychologist, or something of their ilk, you have a
powerful drive — almost a spinal reflex not involving the higher brain regions — to

8As is common with eponyms in the sciences, Wald was not, in fact, the first person to use the test,
but he made one of the most important early studies of its properties, and he was already famous for other
reasons.
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test whether β1 = 0. Under the Wald test, you would reject that point null hypoth-
esis when |β̂1| exceeds a certain number of standard deviations. As an intelligent
statistician in control of your own actions, you would read the section on “statistical
significance” below, before doing any such thing.

All of the above applies, mutatis mutandis, to β̂0−β0

bse
h

β̂0

i .

7.4 Building Confidence Intervals from Sampling In-
tervals

Once we know how to calculate sampling intervals, we can plot the sampling interval
for every possible value of β1 (Figure 7.3). They’re the region marked off by two

parallel lines, one k(n,α)bse
h

β̂1

i

above the main diagonal and one equally far below

the main diagonal.
The sampling intervals (as in Figure 7.3) are theoretical constructs — mathematical

consequences of the assumptions in the the probability model that (we hope) describes
the world. After we gather data, we can actually calculate β̂1. This is a random quan-
tity, but it will have some particular value on any data set. We can mark this realized
value, and draw a horizontal line across the graph at that height (Figure 7.4).

The β̂1 we observed is within the sampling interval for some (possible or hypo-
thetical) values of β1, and outside the sampling interval for others. We define the
confidence set, with confidence level 1−α, as

n

β1 : β̂1 ∈ [β1− k(n,α)bse
h

β̂1

i

,β1+ k(n,α)bse
h

β̂1

i

]
o

(7.34)

This is precisely the set of β1 which we retain when we run the Wald test with size
α. In other words: we test every possible β1; if we’d reject that null hypothesis, that Confidence set = Test all the

hypotheses!value ofβ1 gets removed from the hypothesis test; if we’d retain that null,β1 stays in
the confidence set9. Figure 7.5 illustrate a confidence set, and shows (unsurprisingly)
that in this case the confidence set is indeed a confidence interval. Indeed, a little
manipulation of Eq. 7.34 gives us an explicit formula for the confidence set, which is
an interval:

[β̂1− k(n,α)bse
h

β̂1

i

, β̂1+ k(n,α)bse
h

β̂1

i

The correct interpretation of a confidence set is that it offers us a dilemma. One
of two10 things must be true:

1. The true β1 is inside the confidence set.

9Cf. the famous Sherlock Holmes line “When you have eliminated the impossible, whatever remains,
however improbable, must be the truth.” In forming the confidence set, we are eliminating the merely
unlikely, rather than the absolutely impossible. This is because, not living in a detective story, we get only
noisy and imperfect evidence.

10Strictly speaking, there is a third option: our model could be wrong. Hence the importance of model
checking before doing within-model inference.
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lm.sim <- lm(y ~ x, data = sim.gnslrm(x = x, 5, -2, 0.1, coefficients = FALSE))
hat.sigma.sq <- mean(residuals(lm.sim)^2)
se.hat.beta.1 <- sqrt(hat.sigma.sq/(var(x) * (length(x) - 2)))
alpha <- 0.02
k <- qt(1 - alpha/2, df = length(x) - 2)
plot(0, xlim = c(-3, -1), ylim = c(-3, -1), type = "n", xlab = expression(beta[1]),

ylab = expression(hat(beta)[1]), main = "")
abline(a = k * se.hat.beta.1, b = 1)
abline(a = -k * se.hat.beta.1, b = 1)
abline(a = 0, b = 1, lty = "dashed")
beta.1.star <- -1.73
segments(x0 = beta.1.star, y0 = k * se.hat.beta.1 + beta.1.star, x1 = beta.1.star,

y1 = -k * se.hat.beta.1 + beta.1.star, col = "blue")

FIGURE 7.3: Sampling intervals for β̂1 as a function of β1. For compatibility with the earlier
simulation, I have set n = 42, s 2

X = 9, and (from one run of the model) σ̂2 = 0.067; and, just
because α = 0.05 is cliched, α = 0.02. Equally arbitrarily, the blue vertical line illustrates the
sampling interval when β1 =−1.73.
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plot(0, xlim = c(-3, -1), ylim = c(-3, -1), type = "n", xlab = expression(beta[1]),
ylab = expression(hat(beta)[1]), main = "")

abline(a = k * se.hat.beta.1, b = 1)
abline(a = -k * se.hat.beta.1, b = 1)
abline(a = 0, b = 1, lty = "dashed")
beta.1.hat <- coefficients(lm.sim)[2]
abline(h = beta.1.hat, col = "grey")

FIGURE 7.4: As in Figure 7.3, but with the addition of a horizontal line marking the observed
value of β̂1 on a particular realization of the simulation (in grey).
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plot(0, xlim = c(-3, -1), ylim = c(-3, -1), type = "n", xlab = expression(beta[1]),
ylab = expression(hat(beta)[1]), main = "")

abline(a = k * se.hat.beta.1, b = 1)
abline(a = -k * se.hat.beta.1, b = 1)
abline(a = 0, b = 1, lty = "dashed")
beta.1.hat <- coefficients(lm.sim)[2]
abline(h = beta.1.hat, col = "grey")
segments(x0 = beta.1.hat - k * se.hat.beta.1, y0 = beta.1.hat, x1 = beta.1.hat +

k * se.hat.beta.1, y1 = beta.1.hat, col = "red")

FIGURE 7.5: As in Figure 7.4, but with the confidence set marked in red. This is the collection of
all β1 where β̂1 falls within the 1−α sampling interval.
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2. β̂1 is outside the sampling interval of the true β1.

We know that the second option has probability at most α, no matter what the true
β1 is, so we may rephrase the dilemma. Either

1. The true β1 is inside the confidence set, or

2. We’re very unlucky, because something whose probability is ≤ α happened.

Since, most of the time, we’re not very unlucky, the confidence set is, in fact, a reliable
way of giving a margin of error for the true parameter β1.

Width of the confidence interval Notice that the width of the confidence interval
is 2k(n,α)bse

h

β̂1

i

. This tells us what controls the width of the confidence interval:

1. As α shrinks, the interval widens. (High confidence comes at the price of big
margins of error.)

2. As n grows, the interval shrinks. (Large samples mean precise estimates.)

3. As σ2 increases, the interval widens. (The more noise there is around the re-
gression line, the less precisely we can measure the line.)

4. As s2
X grows, the interval shrinks. (Widely-spread measurements give us a pre-

cise estimate of the slope.)

What about β0? By exactly parallel reasoning, a 1−α confidence interval forβ0 is

[β̂0− k(n,α)bse
h

β̂0

i

, β̂0+ k(n,α)bse
h

β̂0

i

].

What about σ2? See Exercise 1.

What α should we use? It’s become conventional to set α = 0.05. To be honest,
this owes more to the fact that the resulting k tends to 1.96 as n→∞, and 1.96≈ 2,
and most psychologists and economists could multiply by 2, even in 1950, than to any
genuine principle of statistics or scientific method. A 5% error rate corresponds to
messing up about one working day in every month, which you might well find high.
On the other hand, there is nothing which stops you from increasing α. It’s often
illuminating to plot a series of confidence sets, at different values of α.

What about power? The coverage of a confidence set is the probability that it in-
cludes the true parameter value. This is not, however, the only virtue we want in a
confidence set; if it was, we could just say “Every possible parameter is in the set”,
and have 100% coverage no matter what. We would also like the wrong values of the
parameter to have a high probability of not being in the set. Just as the coverage is
controlled by the size / false-alarm probability / type-I error rate α of the hypothesis
test, the probability of excluding the wrong parameters is controlled by the power /
miss probability / type-II error rate. Test with higher power exclude (correctly) more
parameter values, and give smaller confidence sets.

21:34 Monday 6th May, 2024



7.4. BUILDING CONFIDENCE INTERVALS FROM SAMPLING
INTERVALS 130

7.4.1 Confidence Sets and Hypothesis Tests
I have derived confidence sets for β by inverting a specific hypothesis test, the Wald
test. There is a more general relationship between confidence sets and hypothesis
tests.

1. Inverting any hypothesis test gives us a confidence set.

2. If we have a way of constructing a 1−α confidence set, we can use it to test the
hypothesis thatβ=β∗: reject whenβ∗ is outside the confidence set, retain the
null when β∗ is inside the set.

I will leave it as a pair of exercises (2 and 3) to that inverting a test of size α gives a
1−α confidence set, and that inverting a 1−α confidence set gives a test of size α.

7.4.2 Large-n Asymptotics

As n→∞, σ̂2→ σ2. It follows (by continuity) that bse
h

β̂
i

→ se
h

β̂
i

. Hence,

β̂−β

bse
h

β̂
i →N (0,1)

which considerably simplifies the sampling intervals and confidence sets; as n grows,
we can forget about the t distribution and just use the standard Gaussian distribution.
Figure 7.6 plots the convergence of k(n,α) towards the k(∞,α) we’d get from the
Gaussian approximation. As you can see from the figure, by the time n = 100 —a
quite small data set by modern standards — the difference between the t distribution
and the standard-Gaussian is pretty trivial.
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Sample size (n)

k(
n,

 α
)

α = 0.01
α = 0.05
α = 0.5

curve(qt(0.995, df = x - 2), from = 3, to = 10000, log = "x", ylim = c(0, 10),
xlab = "Sample size (n)", ylab = expression(k(n, alpha)), col = "blue")

abline(h = qnorm(0.995), lty = "dashed", col = "blue")
curve(qt(0.975, df = x - 2), add = TRUE)
abline(h = qnorm(0.975), lty = "dashed")
curve(qt(0.75, df = x - 2), add = TRUE, col = "orange")
abline(h = qnorm(0.75), lty = "dashed", col = "orange")
legend("topright", legend = c(expression(alpha == 0.01), expression(alpha ==

0.05), expression(alpha == 0.5)), col = c("blue", "black", "orange"), lty = "solid")

FIGURE 7.6: Convergence of k(n,α) as n→∞, illustrated for α = 0.01, α = 0.05 and α = 0.5.
(Why do I plot the 97.5th percentile when I’m interested in α= 0.05?)

21:34 Monday 6th May, 2024



7.5. STATISTICAL SIGNIFICANCE: USES AND ABUSES 132

7.5 Statistical Significance: Uses and Abuses

7.5.1 p-Values

The test statistic for the Wald test,

T =
β̂1−β∗1
bse
h

β̂1

i

has the nice, intuitive property that it ought to be close to zero when the null hypoth-
esis β1 =β

∗
1 is true, and take large values (either positive or negative) when the null

hypothesis is false. When a test statistic works like this, it makes sense to summarize
just how bad the data looks for the null hypothesis in a p-value: when our observed
value of the test statistic is Tob s , the p-value is

P = P (|T | ≥ |Tob s |)

calculating the probability under the null hypothesis. (I write a capital P here as a
reminder that this is a random quantity, though it’s conventional to write the phrase
“ p-value” with a lower-case p.) This is the probability, under the null, of getting
results which are at least as extreme as what we saw. It should be easy to convince
yourself that rejecting the null in a level-α test is the same as getting a p-value <α.

It is not too hard (Exercise 4) to show that P has a uniform distribution over [0,1]
under the null hypothesis.

7.5.2 p-Values and Confidence Sets

When our test lets us calculate a p-value, we can form a 1−α confidence set by taking
all the β’s where the p-value is ≥ α. Conversely, if we have some way of making
confidence sets already, we can get a p-value for the hypothesisβ=β∗; it’s the largest
α such that β∗ is in the 1−α confidence set.

7.5.3 Statistical Significance

If we test the hypothesis thatβ1 =β
∗
1 and reject it, we say that the difference between

β1 and β∗1 is statistically significant. Since, as I mentioned, many professions have
an overwhelming urge to test the hypothesis β1 = 0, it’s common to hear people
say that “β1 is statistically significant” when they mean “β1 is difference from 0 is
statistically significant”.

This is harmless enough, as long as we keep firmly in mind that “significant” is
used here as a technical term, with a special meaning, and is not the same as “impor-
tant”, “relevant”, etc. When we reject the hypothesis that β1 = 0, what we’re saying
is “It’s really implausibly hard to fit this data with a flat line, as opposed to one with
a slope”. This is informative, if we had serious reasons to think that a flat line was a
live option.
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It is incredibly common for researchers from other fields, and even some statisti-
cians, to reason as follows: “I tested whether β1 = 0 or not, and I retained the null;
thereforeβ1 is insignificant, and I can ignore it.” This is, of course, a complete fallacy.

To see why, it is enough to realize that there are (at least) two reasons why our
hypothesis test might retain the null β1 = 0:

1. β1 is, in fact, zero,

2. β1 6= 0, but bse
h

β̂1

i

is so large that we can’t tell anything about β1 with any

confidence.

There is a very big difference between data which lets us say “we can be quite confident
that the trueβ1 is, if not perhaps exactly 0, then very small”, and data which only lets
us say “we have no earthly idea what β1 is, and it may as well be zero for all we can
tell”11. It is good practice to always compute a confidence interval, but it is especially
important to do so when you retain the null, so you know whether you can say “this
parameter is zero to within such-and-such a (small) precision”, or whether you have
to admit “I couldn’t begin to tell you what this parameter is”.

Substantive vs. statistical significance Even a huge β1, which it would be crazy

to ignore in any circumstance, can be statistically insignificant, so long as bse
h

β̂1

i

is

large enough. Conversely, any β1 which isn’t exactly zero, no matter how close it

might be to 0, will become statistically significant at any threshold once bse
h

β̂1

i

is

small enough. Since, as n→∞,

bse
h

β̂1

i

→
σ

sX
p

n

we can show that bse
h

β̂1

i

→ 0, and β̂1

bse
h

β̂1

i →±∞, unless β1 is exactly 0 (see below).

Statistical significance is a weird mixture of how big the coefficient is, how big a
sample we’ve got, how much noise there is around the regression line, and how spread
out the data is along the x axis. This has so little to do with “significance” in ordinary
language that it’s pretty unfortunate we’re stuck with the word; if the Ancestors had
decided to say “statistically detectable” or “statistically distinguishable from 0”, we
might have avoided a lot of confusion.

If you confuse substantive and statistical significance in this class, it will go badly
for you.

11Imagine hearing what sounds like the noise of an animal in the next room. If the room is small, brightly
lit, free of obstructions, and you make a thorough search of it with unimpaired vision and concentration,
not finding an animal in it is, in fact, good evidence that there was no animal there to be found. If on the
other hand the room is dark, large, full of hiding places, and you make a hurried search while distracted,
without your contact lenses and after a few too many drinks, you could easily have missed all sorts of
things, and your negative report has little weight as evidence. (In this parable, the difference between a
large |β1| and a small |β1| is the difference between looking for a Siberian tiger and looking for a little
black cat.)
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7.5.4 Appropriate Uses of p-Values and Significance Testing
I do not want this section to give the impression that p-values, hypothesis testing,
and statistical significance are unimportant or necessarily misguided. They’re often
used badly, but that’s true of every statistical tool from the sample mean on down
the line. There are certainly situations where we really do want to know whether we
have good evidence against some exact statistical hypothesis, and that’s just the job
these tools do. What are some of these situations?

Model checking Our statistical models often make very strong, claims about the
probability distribution of the data, with little wiggle room. The simple linear regres-
sion model, for instance, claims that the regression function is exactly linear, and that
the noise around this line has exactly constant variance. If we test these claims and
find very small p-values, then we have evidence that there’s a detectable, systematic
departure from the model assumptions, and we should re-formulate the model.

Actual scientific interest Some scientific theories make very precise predictions
about coefficients. According to Newton, the gravitational force between two masses
is inversely proportional to the square of the distance between them,∝ r−2. The pre-
diction is exactly∝ r−2, not∝ r−1.99 nor∝ r−2.05. Measuring that exponent and
finding even tiny departures from 2 would be big news, if we had reason to think they
were real and not just noise12. One of the most successful theories in physics, quan-
tum electrodynamics, makes predictions about some properties of hydrogen atoms
with a theoretical precision of one part in a trillion; finding even tiny discrepancies
between what the theory predicts and what we estimate would force us to rethink lots
of physics13. Experiments to detect new particles, like the Higgs boson, essentially
boil down to hypothesis testing, looking for deviations from theoretical predictions
which should be exactly zero if the particle doesn’t exist.

Outside of the natural sciences, however, it is harder to find examples of interest-
ing, exact null hypothesis which are, so to speak, “live options”. The best I can come
up with are theories of economic growth and business cycles which predict that the
share of national income going to labor (as opposed to capital) should be constant
over time. Otherwise, in the social sciences, there’s usually little theoretical reason
to think that certain regression coefficients should be exactly zero, or exactly one, or
anything else.

Neutral models A partial exception is the use of neutral models, which comes out
of genetics and ecology. The idea here is to check whether some mechanism is at work
in a particular situation — say, whether some gene is subject to natural selection. One
constructs two models; one incorporates all the mechanisms (which we think are) at
work, including the one under investigation, and the other incorporate all the other
mechanisms, but “neutralizes” the one of interest. (In a genetic example, the neutral

12In fact, it was big news: Einstein’s theory of general relativity.
13Feynman (1985) gives a great conceptual overview of quantum electrodynamics. Currently, theory

agrees with experiment to the limits of experimental precision, which is only about one part in a billion
(https://en.wikipedia.org/wiki/Precision_tests_of_QED).
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model would probably incorporate the effects of mutation, sexual repdouction, the
random sampling of which organisms become the ancestors of the next generation,
perhaps migration, etc. The non-neutral model would include all this plus the effects
of natural selection.) Rejecting the neutral model in favor of the non-neutral one then
becomes evidence that the disputed mechanism is needed to explain the data.

In the cases where this strategy has been done well, the neutral model is usually a
pretty sophisticated stochastic model, and the “neutralization” is not as simple as just
setting some slope to zero. Nonetheless, this is a situation where we do actually learn
something about the world by testing a null hypothesis.

7.6 Any Non-Zero Parameter Becomes Significant with
Enough Information

(This section is optional, but strongly recommended.)
Let’s look more close at what happens to the test statistic when n →∞, and so

at what happens to the p-value. Throughout, we’ll be testing the null hypothesis that
β1 = 0, since this is what people most often do, but the same reasoning applies to
departures from any fixed value of the slope. (Everything carries over with straight-
forward changes to testing hypotheses about the intercept β0, too.)

We know that β̂1 ∼N (β1,σ2/ns2
X ). This means14

β̂1 ∼ β1+N (0,σ2/ns2
X ) (7.35)

= β1+
σ

sX
p

n
N (0,1) (7.36)

= β1+O(1/
p

n) (7.37)

where O( f (n)) is read “order-of f (n)”, meaning that it’s a term whose size grows like
f (n) as n →∞, and we don’t want (or need) to keep track of the details. Similarly,

since n ˆs i g ma
2
/σ2 ∼ χ 2

n−2, we have15

nσ̂2 ∼ σ2χ 2
n−2 (7.38)

σ̂2 ∼ σ2χ
2
n−2

n
(7.39)

Since E
�

χ 2
n−2

�

= n− 2 and Var
�

χ 2
n−2

�

= 2(n− 2),

E
�

χ 2
n−2

n

�

=
n− 2

n
→ 1 (7.40)

Var

�

χ 2
n−2

n

�

=
2(n− 2)

n2
→ 0 (7.41)

14If seeing something like σ
sX
p

n
N (0,1), feel free to introduce random variables Zn ∼N (0,1) (though not

necessarily independent ones), and modify the equations accordingly.
15Again, feel free to introduce the random variableΞn , which just so happens to have aχ 2

n−2 distribution.
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with both limits happening as n→∞. In fact Var
h

χ 2
n−2
n

i

=O(1/n), so

σ̂2 = σ2 �1+O(1/
p

n)
�

(7.42)

Taking the square root, and using the fact16 that (1+ x)a ≈ 1+ ax when |x| � 1,

σ̂ = σ
�

1+O(1/
p

n)
�

(7.43)

Put this together to look at our test statistic:

β̂1

bse
h

β̂1

i =
β1+O(1/

p
n)

σ(1+O(1/
p

n))
sX
p

n

(7.44)

=
p

n
β1+O(1/

p
n)

(σ/sX )
�

1+O(1/
p

n)
� (7.45)

=
p

n
β1

σ/sX

�

1+O(1/
p

n)
�

(7.46)

=
p

n
β1

σ/sX
+O(1) (7.47)

In words: so long as the true β1 6= 0, the test statistic is going to go off to ±∞, and
the rate at which it escapes towards infinity is going to be proportional to

p
n. When

we compare this against the null distribution, which is N (0,1), eventually we’ll get
arbitrarily small p-values.

We can actually compute what those p-values should be, by two bounds on the
standard Gaussian distribution17:

�

1
x
− 1

x3

�

1
p

2π
e−x2/2 < 1−Φ(x)< 1

x
1
p

2π
e−x2/2 (7.48)

Thus

Pn = P

 

|Z | ≥

�

�

�

�

�

�

β̂1

σ̂/
p

nsX
a

�

�

�

�

�

�

!

(7.49)

= 2P

 

Z ≥

�

�

�

�

�

�

β̂1

σ̂/
p

nsX

�

�

�

�

�

�

!

(7.50)

≤ 2
p

2π

e
− 1

2
β̂2

1
σ̂2/ns2

X
�

�

�

�

β̂1
σ̂/
p

nsX

�

�

�

�

(7.51)

16From the binomial theorem, back in high school algebra.
17See Feller (1957), Chapter VII, §1, Lemma 2. For a brief proof online, see http://www.johndcook.

com/normalbounds.pdf.
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To clarify the behavior, let’s take the logarithm and divide by n:

1
n

log Pn ≤ 1
n

log
2
p

2π
(7.52)

− 1
n

log

�

�

�

�

�

�

β̂1

σ̂/
p

nsX

�

�

�

�

�

�

− 1
2n

β̂2
1

σ̂2/ns2
X

=
log
p

2π
n

(7.53)

+
log

�

�

�

�

β̂1
σ̂/sx

�

�

�

�

n

−
log n
2n

−
β̂2

1

2σ̂2/s2
X

Take the limit as n→∞:

lim
n→∞

1
n

log Pn ≤ lim
n

log
p

2π
n

(7.54)

+ lim
n

log β̂1
σ̂/sx

n

− lim
n

log n
2n

− lim
n

β̂2
1

2σ̂2/s2
X

Since β̂1/(σ̂/sX )→β1/(σ/sX ), and n−1 log n→ 0,

lim
n→∞

1
n

log Pn ≤ −
β2

1

2σ2/s2
X

(7.55)

I’ve only used the upper bound on 1− Φ(x) from Eq. 7.48; if we use the lower
bound from that equation, we get (Exercise 5)

lim
n→∞

1
n

log Pn ≥−
β2

1

2σ2/s2
X

(7.56)

Putting the upper and lower limits together,

lim
n→∞

1
n

log Pn =−
β2

1

2σ2/s2
X
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Turn the limit around: at least for large n,

Pn ≈ e
−n

β2
1

2σ2/s2
X (7.57)

Thus, any β1 6= 0 will (eventually) give exponentially small p-values. This is why,
as a saying among statisticians have it, “the p-value is a measure of sample size”: any
non-zero coefficient will become arbitrarily statistically significant with enough data.
This is just another way of saying that with enough data, we can (and will) detect even
arbitrarily small coefficients, which is what we want. The flip-side, however, is that
it’s just senseless to say that one coefficient is important because it has a really small
p-value and another is unimportant because it’s got a big p-value. As we can see from
Eq. 7.57, the p-value runs together the magnitude of the coefficient (|β1|), the sample
size (n), the noise around the regression line (σ2), and how spread out the data is along
the x axis (s2

X ), the last of these because they control how precisely we can estimate
β1. Saying “this coefficient must be really important, because we can measure it really
precisely” is not smart.

7.7 Confidence Sets and p-Values in R

When we estimate a model with lm, R makes it easy for us to extract the confidence
intervals of the coefficients:

confint(object, level = 0.95)

Here object is the name of the fitted model object, and level is the confidence
level; if you want 95% confidence, you can omit that argument. For instance:

library(gamair)
data(chicago)
death.temp.lm <- lm(death ~ tmpd, data = chicago)
confint(death.temp.lm)
## 2.5 % 97.5 %
## (Intercept) 128.8783687 131.035734
## tmpd -0.3096816 -0.269607
confint(death.temp.lm, level = 0.9)
## 5 % 95 %
## (Intercept) 129.0518426 130.8622598
## tmpd -0.3064592 -0.2728294

If you want p-values for the coefficients18, those are conveniently computed as
part of the summary function:

coefficients(summary(death.temp.lm))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 129.9570512 0.55022802 236.18763 0.00000e+00
## tmpd -0.2896443 0.01022089 -28.33845 3.23449e-164

18And, really, why do you?
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Notice how this actually gives us an array with four columns: the point estimate,
the standard error, the t statistic, and finally the p-value. Each row corresponds to a
different coefficient of the model. If we want, say, the p-value of the intercept, that’s

coefficients(summary(death.temp.lm))[1, 4]
## [1] 0

The summary function will also print out a lot of information about the model:

summary(death.temp.lm)
##
## Call:
## lm(formula = death ~ tmpd, data = chicago)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.275 -9.018 -0.754 8.187 305.952
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 129.95705 0.55023 236.19 <2e-16 ***
## tmpd -0.28964 0.01022 -28.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.22 on 5112 degrees of freedom
## Multiple R-squared: 0.1358,Adjusted R-squared: 0.1356
## F-statistic: 803.1 on 1 and 5112 DF, p-value: < 2.2e-16

As my use of coefficients(summary(death.temp.lm)) above suggests, the
summary function actually returns a complex object, which can be stored for later
access, and printed. Controlling how it gets printed is done through the print func-
tion:

print(summary(death.temp.lm), signif.stars = FALSE, digits = 3)
##
## Call:
## lm(formula = death ~ tmpd, data = chicago)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.27 -9.02 -0.75 8.19 305.95
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 129.9571 0.5502 236.2 <2e-16
## tmpd -0.2896 0.0102 -28.3 <2e-16
##
## Residual standard error: 14.2 on 5112 degrees of freedom
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## Multiple R-squared: 0.136,Adjusted R-squared: 0.136
## F-statistic: 803 on 1 and 5112 DF, p-value: <2e-16

Here I am indulging in two of my pet peeves. It’s been conventional (at least since
the 1980s) to decorate this sort of regression output with stars beside the coefficients
which are significant at various traditional levels. Since (as we’ve just seen at tedious
length) statistical significance has almost nothing to do with real importance, this just
clutters the print-out to no advantage19. Also, summary has a bad habit of using far
more significant20 digits than is justified by the precision of the estimates; I’ve reined
that in.

7.7.1 Coverage of the Confidence Intervals: A Demo
Here is a little computational demonstration of how the confidence interval for a
parameter is a random parameter, and how it covers the true parameter value with
the probability we want. I’ll repeat many simulations of the model from Figure 7.2,
calculate the confidence interval on each simulation, and plot those. I’ll also keep
track of how often, in the first m simulations, the confidence interval covers the truth;
this should converge to 1−α as m grows.

19In fact, I strongly recommend running options(show.signif.stars=FALSE) at the beginning of
your R script, to turn off the stars forever.

20A different sense of “significant”!
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# Run 1000 simulations and get the confidence interval from each
CIs <- replicate(1000, confint(lm(y ~ x, data = sim.gnslrm(x = x, 5, -2, 0.1,

FALSE)))[2, ])
# Plot the first 100 confidence intervals; start with the lower limits
plot(1:100, CIs[1, 1:100], ylim = c(min(CIs), max(CIs)), xlab = "Simulation number",

ylab = "Confidence limits for slope")
# Now the lower limits
points(1:100, CIs[2, 1:100])
# Draw line segments connecting them
segments(x0 = 1:100, x1 = 1:100, y0 = CIs[1, 1:100], y1 = CIs[2, 1:100], lty = "dashed")
# Horizontal line at the true coefficient value
abline(h = -2, col = "grey")
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# For each simulation, check whether the interval covered the truth
covered <- (CIs[1, ] <= -2) & (CIs[2, ] >= -2)
# Calculate the cumulative proportion of simulations where the interval
# contained the truth, plot vs. number of simulations.
plot(1:length(covered), cumsum(covered)/(1:length(covered)), xlab = "Number of simulations",

ylab = "Sample coverage proportion", ylim = c(0, 1))
abline(h = 0.95, col = "grey")
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7.8 Further Reading

There is a lot of literature on significance testing and p-values. They are often quite
badly abused, leading to a harsh reaction against them, which in some cases goes as
badly wrong as the abuses being complained of21. I find the work of D. Mayo and
collaborators particularly useful here (Mayo, 1996; Mayo and Cox, 2006; Mayo and
Spanos, 2006). You may also want to read http://bactra.org/weblog/1111.html,
particularly if you find §7.6 interesting, or confusing.

The correspondence between confidence sets and hypothesis tests goes back to
Neyman (1937), which was the first formal, conscious introduction of confidence
sets. (As usual, there are precursors.) That every confidence set comes from inverting
a hypothesis test is a classical result in statistical theory, which can be found in, e.g.,
Casella and Berger (2002). (See also Exercises 2 and 3 below.) Some confusion on this
point seems to arise from people not realizing that “does β̂1 fall inside the sampling
interval for β∗1?” is a test of the hypothesis that β1 =β

∗
1.

In later chapters, we will look at how to get confidence sets for multiple parame-
ters at once (when we do multiple linear regression), and how to get confidence sets
by simulation, without assuming Gaussian noise (when we introduce the bootstrap).

Exercises

1. Confidence interval for σ2: Start with the observation that nσ̂2/σ2 ∼ χ 2
n−2.

(a) Find a formula for the 1−α sampling interval for σ̂2, in terms of the CDF
of the χ 2

n−2 distribution, α, n and σ2. (Some of these might not appear
in your answer.) Is the width of your sampling interval the same for all
σ2, the way the width of the sampling interval for β̂1 doesn’t change with
β1?

(b) Fix α= 0.05, n = 40, and plot the sampling intervals against σ2.

(c) Find a formula for the 1−α confidence interval for σ2, in terms of σ̂2, the
CDF of the χ 2

n−2 distribution, α and n.

2. Suppose we start a way of testing the hypothesis β=β∗ which can be applied
to any β∗, and which has size (false alarm / type I error) probability α for β∗.
Show that the set ofβ retained by their tests is a confidence set, with confidence
level 1−α. What happens if the size is ≤ α for all β∗ (rather than exactly α)?

3. Suppose we start from a way of creating confidence sets which we know has
confidence level 1−α. We test the hypothesis β=β∗ by rejecting when β∗ is
outside the confidence set, and retaining when β∗ is inside the confidence set.
Show that the size of this test is α. What happens if the initial confidence level
is ≥ 1−α, rather exactly 1−α?

21Look, for instance, at the exchange between McCloskey (2002); McCloskey and Ziliak (1996) and
Hoover and Siegler (2008).

21:34 Monday 6th May, 2024

http://bactra.org/weblog/1111.html


7.8. FURTHER READING 144

4. Prove that the p-value P is uniformly distributed under the null hypothesis.
You may, throughout, assume that the test statistic T has a continuous distri-
bution.

(a) Show that if Q ∼Unif(0,1), then P = 1−Q has the same distribution.

(b) Let X be a continuous random variable with CDF F . Show that F (X )∼
Unif(0,1). Hint: the CDF of the uniform distribution FUnif(0,1)(x) = x.

(c) Show that P , as defined, is 1− F|T |(|Tob s |).

(d) Using the previous parts, show that P ∼Unif(0,1).

5. Use Eq. 7.48 to show Eq. 7.56, following the derivation of Eq. 7.55.

21:34 Monday 6th May, 2024



21:34 Monday 6th May, 2024
Copyright ©Cosma Rohilla Shalizi; do not distribute without permission

updates at http://www.stat.cmu.edu/~cshalizi/TALR/

Chapter 8

Predictive Inference for the
Simple Linear Model

There are (at least) three levels at which we can make predictions with a regression
model: we can give a single best guess about what Y will be when X = x, a point
prediction; we can try to guess the whole probability distribution of possible Y val-
ues, a distributional prediction; or we can, less ambitiously, try to make an interval
prediction, saying “with such-and-probability, Y will be in the interval between here
and there”.

8.1 Confidence intervals for conditional means
The conditional mean at any particular x is just a number; we can do inference on
it as though it were a parameter; it is, after all, a function of the parameters. More
specifically, the true conditional mean is

m(x)≡E [Y |X = x] =β0+β1x (8.1)

while our estimate of the conditional mean is

m̂(x) = β̂0+ β̂1x (8.2)

(See note on notation below.)
We’ve seen, in Chapter 3, that

m̂(x) =β0+β1x +
1
n

n
∑

i=1

�

1+(x − x)
xi − x

s2
X

�

εi (8.3)

so that
E [m̂(x)] =β0+β1x = m(x) (8.4)

and

Var [m̂(x)] =
σ2

n

�

1+
(x − x)2

s2
X

�

(8.5)
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Under the Gaussian noise assumption, m̂(x) is Gaussian (why?),

m̂(x)∼N
�

m(x),
σ2

n

�

1+
(x − x)2

s2
X

��

(8.6)

Notice how the variance grows as we move further and further away from the
center of the data along the x axis. Also notice how all the unknown parameters
show up on the right-hand side of the equation.

Exact confidence intervals At this point, getting confidence intervals for m(x)
works just like getting confidence intervals forβ0 orβ1: we use as our standard error

bse [m̂(x)] =
σ̂

p
n− 2

√

√

√1+
(x − x)2

s2
X

(8.7)

and then find
m̂(x)−m(x)
bse [m̂(x)]

∼ tn−2 (8.8)

by entirely parallel arguments. 1−α confidence intervals follow as before as well.

What about using CIs for β0 and β1? That’s not a bad idea, but since m(x) is a
function of both parameters, we’d need a simultaneous confidence region, not two
confidence intervals. Similarly, we could try using the sampling distributions of β̂0

and β̂1 to get the distribution of m̂(x), but then we need to worry about the covari-
ance between them. Eq. 8.3 effectively handles all those awkward complications for
us, by breaking m̂(x) down into its component parts.

Notation The textbook, following an old tradition, talks about ŷ as the conditional
mean. This is not a good tradition, since it leads to great awkwardness in distinguish-
ing the true conditional mean from our estimate of it. Hence my use of m(x) and
m̂(x).

8.1.1 Interpreting the confidence interval

This confidence interval has the same interpretation as one for the parameters: either

1. The true value of m(x), i.e., the true value of E [Y |X = x], is in the interval, or

2. Something very unlikely happened when we got our data.

This is all well and good, but it does not tell us about how often future values of Y
will be in this interval; it tells us about how often we capture the conditional average.
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8.1.2 Large-n approximation
As n grows, the t distribution with n−2 degrees of freedom becomes, approximately,
the standard Gaussian. It follows that for large n,

m̂(x)−m(x)
bse [m̂(x)]

≈N (0,1) (8.9)

so
m̂(x)≈N (m(x), bse [m̂(x)]2) (8.10)

and an approximate 1−α confidence interval for m(x) is

m̂(x)± zα/2
σ̂
p

n

√

√

√1+
(x − x)2

s2
X

(8.11)

(It doesn’t matter whether we use n− 2 or n in the denominator for bse.) Notice that
the width of this interval→ 0 as n→∞.

8.1.3 Confidence intervals and transformations
Transforming the predictor variable raises no particular issues. Transforming the re-
sponse, however, is quite delicate.

When we transform the response, the model becomes

g (Y ) =β0+β1x + ε (8.12)

for ε IID Gaussian, N (0,σ2). Now

E [g (Y ) |X = x] =β0+β1x (8.13)

and so if we go through the calculates above, we get confidence intervals forE [g (Y ) |X = x],
the conditional expectation of the transformed response.

In general, however,

E [Y |X = x] 6= g−1(β0+β1x) (8.14)

so just applying g−1 to the confidence limits for E [g (Y ) |X = x] won’t give us a
confidence interval for E [Y |X = x].

8.2 Prediction Interval
A 1−α prediction interval for Y |X = x is a an interval [l , u] where

P (l ≤ Y ≤ u|X = x) = 1−α (8.15)

Since Y |X = x ∼ N (m(x),σ2), it would be a simple matter to find these limits if we
knew the parameters: the lower limit would be m(x) + zα/2σ , and the upper limit
m(x)+ z1−α/2σ . Unfortunately, we don’t know the parameters.
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# Simulate a Gaussian-noise simple linear regression model Inputs: x
# sequence; intercept; slope; noise variance; switch for whether to return
# the simulated values, or run a regression and return the estimated model
# Output: data frame or coefficient vector
sim.gnslrm <- function(x, intercept, slope, sigma.sq, mdl = TRUE) {

n <- length(x)
y <- intercept + slope * x + rnorm(n, mean = 0, sd = sqrt(sigma.sq))
if (mdl) {

return(lm(y ~ x))
} else {

return(data.frame(x = x, y = y))
}

}

# Read in a model and get it to give a prediction interval at a given x This
# will be convenient when we want to have lots of models make predictions at
# the same point Inputs: the model, the value of x Output: vector giving
# prediction interval
extract.pred.int <- function(mdl, x, level = 0.95) {

predict(mdl, newdata = data.frame(x = x), interval = "prediction", level = level)
}

# No magic numbers!
x.new <- 1/137
m <- 1000
alpha <- 0.05
beta.0 <- 5
beta.1 <- -2
sigma.sq <- 0.1

FIGURE 8.1: Code setting up a simulation of a Gaussian-noise simple linear regression model, along
a fixed vector of xi values, followed by some default values we’ll use in the later simulations.
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# Simulate Y from the model
y.new <- sim.gnslrm(x = rep(x.new, m), beta.0, beta.1, sigma.sq, mdl = FALSE)$y
# All the prediction intervals are the same (because x isn't changing)
pred.int <- beta.0 + beta.1 * x.new + sqrt(sigma.sq) * qnorm(c(alpha/2, 1 -

alpha/2))
names(pred.int) <- c("lwr", "upr") # Names make for clearer code
par(mfrow = c(1, 2)) # Set up for 2 side-by-side plots
# Plot the first 25 runs of Y (so we can see what's happening)
plot(1:25, y.new[1:25], xlab = "Simulation number", ylab = "Y", ylim = c(2,

8))
# Add vertical segments for the prediction intervals
segments(x0 = 1:25, x1 = 1:25, y0 = pred.int["lwr"], y1 = pred.int["upr"], lty = "dashed")
# For each Y, check if it's covered by the interval
covered <- (y.new >= pred.int["lwr"]) & (y.new <= pred.int["upr"])
# Plot the running mean of the fraction of Y's covered by the interval
plot(1:m, cumsum(covered)/(1:m), xlab = "Number of simulations", ylab = "Cumulative coverage proportion",

ylim = c(0.5, 1))
abline(h = 1 - alpha, col = "grey") # Theoretical coverage level
par(mfrow = c(1, 1)) # Restore ordinary plot layout for later

FIGURE 8.2: Demonstration of the coverage of the prediction intervals. Here, we are seeing what
would happen if we got to use the true coefficients, which are β0 = 5, β1 = −2, σ2 = 0.1; we are
always trying to predict Y when X = 1/137.
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However, we do know how the parameters are related to our estimates, so let’s
try to use that:

Y |X = x ∼ N (m(x),σ2) (8.16)
= m(x)+N (0,σ2) (8.17)

= m̂(x)+N
�

0,
σ2

n

�

1+
(x − x)2

s2
X

��

+N (0,σ2) (8.18)

= m̂(x)+N
�

0,σ2
�

1+
1
n
+
(x − x)2

ns2
X

��

(8.19)

where in the last line I’ve used the fact that, under the assumptions of the model, the
new Y we’re trying to predict is independent of the old Y used to estimate the param-
eters. The variance, as we’ve seen, has two parts: the true noise variance about the
regression line, plus the variance coming from our uncertainty in where that regres-
sion line is. Both parts of the variance are proportional to σ2. Let’s call the whole
thing σ2

p r ed (x).
So, we have a random variable with a Gaussian distribution centered at m̂(x) and

with a variance σ2
p r ed (x) proportional to σ2. We can estimate that variance as

s2
p r ed (x) = σ̂

2 n
n− 2

�

1+
1
n
+
(x − x)2

ns2
X

�

(8.20)

Going through the now-familiar argument once again,

Y − m̂(x)
sp r ed (x)

|X = x ∼ tn−2 (8.21)

and we can use this to give prediction intervals.
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# Run simulations where we get a new estimate of the model on each run, but
# with fixed X vector (to keep it simple)
x.seq <- seq(from = -5, to = 5, length.out = 42)
# Run the simulation many times, and give a _list_ of estimated models
# simplify=FALSE forces the return value to be a list
mdls <- replicate(m, sim.gnslrm(x = x.seq, beta.0, beta.1, sigma.sq, mdl = TRUE),

simplify = FALSE)
# Extract the prediction intervals for every one of the models
pred.ints <- sapply(mdls, extract.pred.int, x = x.new)
rownames(pred.ints)[2:3] <- names(pred.int) # Fix the names
# Now make plots like the previous figure
par(mfrow = c(1, 2))
plot(1:25, y.new[1:25], xlab = "Simulation number", ylab = "Y", ylim = c(2,

8))
segments(x0 = 1:25, x1 = 1:25, y0 = pred.ints["lwr", ], y1 = pred.ints["upr",

], lty = "dashed")
covered <- (y.new >= pred.ints["lwr", ]) & (y.new <= pred.ints["upr", ])
plot(1:m, cumsum(covered)/(1:m), xlab = "Number of simulations", ylab = "Cumulative coverage proportion",

ylim = c(0.5, 1))
abline(h = 1 - alpha, col = "grey")
par(mfrow = c(1, 1))

FIGURE 8.3: As in Figure 8.2, but we are now using coefficients estimated by drawing 42 observa-
tions from the model, with the X ’s being evenly spaced from −5 to 5. Here, as you can see from
the code, each prediction is made on the basis of a different random realization of the data before
estimating the model. (See §8.3 below for details on how to use predict to return intervals.)
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Again, as usual, as n → ∞, the t distribution turns into a standard Gaussian,
while s2

p r ed (x) → σ2
p r ed (x) → σ2. With enough data, then, our prediction intervals

approach the ones we’d use if we knew the parameters and they were exactly our
point estimates. Notice that the width of these prediction intervals does not go to
zero as n→∞— there is always some noise around the regression line!

8.2.1 Interpretation of the prediction interval
The interpretation of the prediction interval here is a bit tricky.

What we want for a prediction interval is that

P (l ≤ Y ≤ u |X = x) = 1−α (8.22)

Now our limits l and u involve the estimated parameters. To be explicit,

P
�

m̂(x)+ tn−2(α/2)sp r ed (x)≤ Y ≤ m̂(x)+ tn−2(1−α/2)sp r ed (x) |X = x
�

= 1−α
(8.23)

But m̂(x) and sp r ed (x) are both random variables. The experiment we’re imagining
repeating when we write out Eq. 8.23 involves both estimating the parameters and
predicting a new Y at X = x every time.

If we estimate the parameters just once, and then try repeatedly measuring Y
when X = x, we’ll see that our coverage level, while close to 1−α, is not quite 1−α,
sometimes less and sometimes more. (But over many estimates, the coverage must
average out to 1 − α — why?) The coverage gets closer to the desired level as the
number of points n used to estimate the model grows, but simply predicting more
observations with fixed estimates won’t budge it.

It is nonetheless a Bad Sign for the model if the actual coverage level is very far from
1− α, especially if the coverage for certain regions of the x axis is very far from this
desired or nominal level. One might, however, need to do some simulations (along
the lines of the code provided here. . . ) to see how big a departure should be expected
if all the model assumptions hold.
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# What's the coverage if we use just one estimate of the model? Pick the
# first two, arbitrarily, to show how this varies Get the prediction
# interval for our x.new
pred.ints <- sapply(mdls[1:2], extract.pred.int, x = x.new)
rownames(pred.ints)[2:3] <- c("lwr", "upr")
# Make the plots
par(mfrow = c(1, 2))
plot(1:25, y.new[1:25], xlab = "Simulation number", ylab = "Y", ylim = c(2,

8))
segments(x0 = 1:25, x1 = 1:25, y0 = pred.ints["lwr", 1], y1 = pred.ints["upr",

1], lty = "dashed")
# Slightly off-set one of the intervals for visibility
segments(x0 = 0.2 + 1:25, x1 = 0.2 + 1:25, y0 = pred.ints["lwr", 2], y1 = pred.ints["upr",

2], lty = "dashed", col = "red")
# Calculate two cumulative coverage proportions
covered.1 <- (y.new >= pred.ints["lwr", 1]) & (y.new <= pred.ints["upr", 1])
covered.2 <- (y.new >= pred.ints["lwr", 2]) & (y.new <= pred.ints["upr", 2])
plot(1:m, cumsum(covered.1)/(1:m), xlab = "Number of simulations", ylab = "Cumulative coverage proportion",

ylim = c(0.5, 1))
points(1:m, cumsum(covered.2)/(1:m), col = "red")
abline(h = 1 - alpha, col = "grey")
par(mfrow = c(1, 1))

FIGURE 8.4: As in Figure 8.3, but all the new realizations of Y are being predicted based on the
coefficients of one single estimate of the coefficients (the first estimate for the black intervals, the
second estimate for the red). — The code for all three figures is very similar; could you write one
function which, with appropriate arguments, would make all three of them?
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8.2.2 Prediction intervals and transformations
Transforming the predictor variable raises no issues for prediction intervals. If we’ve
transformed the response, though, we need to take account of it.

A model with a transformed response looks like this:

g (Y ) =β0+β1X + ε (8.24)

for ε IID Gaussian, and some invertible, non-linear function g . Since g is invertible,
it must be either increasing or decreasing; to be definite, I’ll say it’s increasing, but it
should be clear as we go what needs to change for decreasing transformations.

When we estimated the model after transforming Y , what we have above gives us
a prediction interval for g (Y ). Remember what this means:

P (L≤ g (Y )≤U |X = x) = 1−α (8.25)

Since g is an increasing function, so is g−1, and therefore

{L≤ g (Y )≤U }⇔
�

g−1(L)≤ Y ≤ g−1(U )
	

(8.26)

Since the two events are logically equivalent, they must have the same probability, no
matter what we condition on:

P
�

g−1(L)≤ Y ≤ g−1(U ) |X = x
�

= 1−α (8.27)

Thus, we get a prediction interval for Y by taking the prediction interval for g (Y )
and undoing the transformation.

8.3 Prediction intervals in R
For linear models, all of the calculations needed to find confidence intervals for m̂ or
prediction intervals for Y are automated into the predict function, introduced in
Chapter 4.

predict(object, newdata, interval = c("none", "confidence", "prediction"), level = 0.95)

The object argument is the estimated model returned by lm; newdata is a data
frame containing a column whose name matches that of the predictor variable. We
saw these arguments before (see Chapter 4 again); what’s new are the other two.
interval controls whether to give point predictions ("none", the default) or inter-
vals, and if so which kind. level is of course the confidence level (default 0.95 for
tradition’s sake.)

To illustrate, let’s revisit our old friend chicago:

library(gamair)
data(chicago)
death.temp.lm <- lm(death ~ tmpd, data = chicago)
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Figure 8.5 shows a scatter-plot of the data and the estimated line, together with
confidence limits for the conditional mean at each point1. Because we have thousands
of data points and reasonably large s2

X , the confidence limits are quite narrow, though
you can see, from the plot, how they widen as we move away from the mean temper-
ature2.

Figure 8.6 shows the prediction limits for the same model. These are much wider,
because their width is mostly coming from (the estimate of) σ , the noise around the
regression line, the model being very confident that it knows what the line is. Despite
their width, the bands don’t include all the data points. This is not, in itself, alarming
— they should only contain about 95% of the data points! I will leave it as an exercise
to check what the actual coverage level is here.

1The confidence limits we’ve worked out are for m(x) at a specific x. If we wanted curves L(x), U (x)
which would bracket m(x) everywhere with high probability (i.e., P (∀x, L(x)≤ m(x)≤U (x)) = 1−α,
we need a slightly more complicated construction.

2You’ll notice that they don’t widen enough to include the non-parametric (spline) estimate of the
conditional mean. This is another sign that the model is making systematic mistakes at high temperatures.
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plot(death ~ tmpd, data = chicago, pch = 19, cex = 0.5, col = "grey", ylim = c(0,
200), xlab = "Daily mean temperature (F)", ylab = "Mortality (deaths/day)")

abline(death.temp.lm)
temp.seq <- seq(from = -20, to = 100, length.out = 100)
death.temp.CIs <- predict(death.temp.lm, newdata = data.frame(tmpd = temp.seq),

interval = "confidence")
lines(temp.seq, death.temp.CIs[, "lwr"], lty = "dashed", col = "blue")
lines(temp.seq, death.temp.CIs[, "upr"], lty = "dashed", col = "blue")

FIGURE 8.5: Data from the Chicago death example (grey dots), together with the regression line
(solid black) and the 95% confidence limits on the conditional mean (dashed blue curves). I have re-
stricted the vertical range to help show the confidence limits, though this means some high-mortality
days are off-screen.

21:34 Monday 6th May, 2024



157 8.3. PREDICTION INTERVALS IN R

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

● ●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●
●●

●

●
●●

● ●

● ●

●

●

● ●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●
● ●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●● ●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

● ●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−20 0 20 40 60 80

0
50

10
0

15
0

20
0

Daily mean temperature (F)

M
or

ta
lit

y 
(d

ea
th

s/
da

y)

plot(death ~ tmpd, data = chicago, pch = 19, cex = 0.5, col = "grey", ylim = c(0,
200), xlab = "Daily mean temperature (F)", ylab = "Mortality (deaths/day)")

abline(death.temp.lm)
temp.seq <- seq(from = -20, to = 100, length.out = 100)
death.temp.CIs <- predict(death.temp.lm, newdata = data.frame(tmpd = temp.seq),

interval = "confidence")
lines(temp.seq, death.temp.CIs[, "lwr"], lty = "dashed", col = "blue")
lines(temp.seq, death.temp.CIs[, "upr"], lty = "dashed", col = "blue")
death.temp.PIs <- predict(death.temp.lm, newdata = data.frame(tmpd = temp.seq),

interval = "prediction")
lines(temp.seq, death.temp.PIs[, "lwr"], col = "red")
lines(temp.seq, death.temp.PIs[, "upr"], col = "red")

FIGURE 8.6: Adding 95% prediction intervals (red) to the previous plot.
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Chapter 9

Interpreting Parameters after
Transformation

9.1 Transformed Predictor
The model becomes

Y =β0+β1 f (X )+ ε (9.1)

for some invertible, nonlinear function f , with ε still IID Gaussian. The usual inter-
pretations apply, but now are all in terms of f (x), not x:

1. We can never find coefficients γ0,γ1 where

β0+β1 f (x) = γ0+ γ1x (9.2)

for all x. That is to say, applying a nonlinear transformation to the predictor
doesn’t just amount to making some adjustment to the slope and intercept.

2. β0 =E [Y | f (X ) = 0]. This is (usually) not E [Y |X = 0].

(a) β0 is still the intercept when f (x) goes on the horizontal axis.

(b) Instead, E [Y |X = 0] =β0+β1 f −1(0).

3. β1 is the slope in units of Y per units of f (X ). That is, it’s the difference in the
expected response for a difference in f (x) of 1, not for a difference in x of 1.

(a) A difference of 1 in x predicts a difference ofβ1( f (x)− f (x−1)) in E [Y ]
if x decreases by 1, and a difference of β1( f (x + 1)− f (x)) if x increases
by 1. (These are generally not the same.) So even the response to increases
and decreases isn’t necessarily of the same size.

(b) Very small differences in x, of size h, predict very small differences in
E [Y ], of size hβ1

d f
d x (x). So there is a slope at each point, but it changes.

(That’s what makes f non-linear.)
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159 9.2. TRANSFORMING THE RESPONSE

4. σ2 is still the variance of the Gaussian noise around the regression curve, but
now that curve really is curved and not a straight line.

(a) A plot of yi against xi should not be a straight line.

(b) A plot of ei = yi − (β̂0+ β̂1 f (xi )) should still be a flat line around 0.

We estimate the model by transforming the data, going from (x1, y1), . . . (xn , yn) to
( f (x1), y1), . . . ( f (xn), yn), and then running a regression of yi on f (xi ).

9.1.1 Special case: Log transformation of the predictor
Suppose we select f = log. Our model then is

Y =β0+β1 logX + ε (9.3)

In this setting,

• logX = 0 means X = 1, so β0 =E [Y |X = 1].

• A k unit change in log x means multiplying x by ek :

k + log x = log ek + log x = log xek (9.4)

Hence, β1 is the expected difference in Y for an e -fold change in X .

• The slope of E [Y ] with respect to X decreases in x:

dE [Y |X = x]
d x

=
β1

x
(9.5)

9.2 Transforming the response
Again, we select an invertible, non-linear function g , and transform the response vari-
able:

g (Y ) =β0+β1X + ε (9.6)

All of the parameters retain their old interpretations in terms of g (Y ). None of them
have their old interpretations in terms of Y . This is because the model for Y is now

Y = g−1(β0+β1X + ε) (9.7)

1. We can never find coefficients γ0,γ1 where

β0+β1x = g (γ0+ γ1x) (9.8)

for all x. That is to say, applying a nonlinear transformation to the response
doesn’t just amount to making some adjustment to the slope and intercept.

2. β0 =E [g (Y )|X = 0]. Note that since g is not a linear function, neither is g−1,
and so E [Y |X = 0] 6= g−1(β0).
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9.2. TRANSFORMING THE RESPONSE 160

3. More generally, E [Y |X = x] 6= g−1(β0+β1x).

(a) Since we’re assuming ε is Gaussian centered at 0, the median value of ε= 0.
Therefore, according to the model,

P (g (Y )≤β0+β1x |X = x) = 0.5 (9.9)

Since g is invertible, it is therefore also true that

P
�

Y ≤ g−1(β0+β1x) |X = x
�

= 0.5 (9.10)

and the transformation can be simply undone for the conditional median,
but not the conditional mean.

(b) In particular, g−1(β0) is the conditional median of Y when X = 0.

4. β1 is the difference in the mean of g (Y ) predicted by a 1 unit change in X .

(a) There is generally no simple interpretation of β1 for the original Y .

(b) By the argument above, increasing x by h predicts that the conditional
median will change by g−1(β0 + β1x + β1h) − g−1(β0 + β1x). This,
generally speaking, does not simplify.

(c) When the change h is very small, the change to the conditional median
will tend towards hβ1

d g−1(u)
d u

�

�

�

u=β0+β1 x
.

5. σ2 is the variance of the Gaussian noise around the regression line for g (Y ).

(a) Because g−1 is a nonlinear transformation, the noise around the regression
curve for Y , g−1(β0+β1x), will not (in general) be Gaussian.

(b) In fact, the noise around that curve will generally not have mean zero,
or constant variance, or even just be an additive perturbation around the
curve. (See the example for the log transformation below.)

(c) A plot of Y against X will not show a straight line, though a plot of g (Y )
against X should.

(d) Residuals for Y , calculated as yi − g−1(β̂0+β̂1xi ) need not be centered at
0, or have constant variance, etc., etc.

(e) Residuals for the transformed response, calculated as g (yi )− (β̂0+ β̂1xi ),
should show all the usual properties.

9.2.1 Special case: log transformation of the response
If we select g = log, the model becomes

logY =β0+β1X + ε (9.11)

and the interpretation simplifies slightly, especially on taking the inverse transforma-
tion:

Y = eβ0+β1X+ε = eβ0 eβ1 x eε (9.12)
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1. eβ0 is the median value of Y when X = 0. It is common to abbreviate it as a
single number, say y0.

2. A one-unit increase in x predicts that Y should be larger by a factor of eβ1 . That
is, additive, equal-size changes to x lead to multiplicative changes in Y .

3. The slope of Y with respect to x isβ1eβ1 x , so, again, there is no one answer to
“what gets added to Y when x changes a little?”

4. Because ε∼N (0,σ2), eε is not Gaussian (no matter what mean and variance we
might try). Rather, we say that eε is log-normal or log-gaussian, because it’s
log is normal or Gaussian1 (R functions: dlnorm, plnorm, qlnorm, rlnorm).
This is written eε ∼ LN (0,σ2), i.e., the log-normal is parameterized by the
mean and variance of its log.

(a) eε ≥ 0, so the LN distribution is supported on the positive numbers, not
(like the N ) the whole number line.

(b) It further follows that E [eε]> 0.
(c) By the argument above, the median of eε = 1.
(d) Because making ε < 0 can only decrease eε a little below 1 (at worst to 0),

but making ε > 0 can increase eε by a lot (up to∞), the distribution is
skewed to the right.

(e) By directly using the transformation-of-variables formula (which you re-
member from your probability class), the probability density function of
an LN (µ,σ2) distribution is

1

x
p

2πσ2
e−

1
2
(µ−log x)2

σ2 (9.13)

(Figure 9.1). By integration, then, one can show that the expectation of
this distribution is eµ+σ

2/2, and its variance is e2µ+σ2(eσ2 − 1).
(f) Specifically, E [eε] = expσ2/2.

(g) Similarly, Var [eε] = eσ
2(eσ2 − 1).

(h) The noise eε multiplies the deterministic function eβ0+β1 x , it does not add
to it. Therefore we have

E [Y |X = x] = E
�

eβ0+β1 x+ε |X = x
�

(9.14)

= eβ0 eβ1 xE [eε |X = x] (9.15)

= eβ0 eβ1 xE [eε] (9.16)

= eσ
2/2eβ0 eβ1 x (9.17)

Var [Y |X = x] = Var
�

eβ0+β1 x eε |X = x
�

(9.18)

= e2(β0+β1 x)Var [eε |X = x] (9.19)

= eσ
2
(eσ

2 − 1)e2(β0+β1 x) (9.20)
1Some people prefer to call eε “anti-log-normal”, which has a kind of logic to it, but they’re very much

a minority.
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par(mfrow = c(2, 2)) # Set up 2x2 plotting grid
curve(dlnorm(x, 0, 1), from = 1e-04, to = 10)
curve(dlnorm(x, 0, 1), from = 1e-04, to = 10, log = "x")
curve(dlnorm(x, 0, 1), from = 1e-04, to = 10, log = "y")
curve(dlnorm(x, 0, 1), from = 1e-04, to = 10, log = "xy")
par(mfrow = c(1, 1)) # Restore usual plot playout for later

FIGURE 9.1: Probability density function of the standard log-normal distribution, LN (0,1). Top
left: ordinary (linear) scale on both axes; top right: log scale on horizontal axis; bottom left: log
scale on vertical axis; bottom right: log scale on both axes.
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9.3 Transforming both predictor and response
The model is

g (Y ) =β0+β1 f (X )+ ε (9.21)

All the considerations of both the previous sections apply.

1. If this model applies, no linear model also applies.

2. β0 =E [g (Y )| f (X ) = 0].

3. β1 is the slope of the curve of g (Y ) against f (X ).

(a) There is generally no simple way to express this in terms of the original
variables.

(b) There is also generally no simple way to write the slope of the curve of Y
on X .

4. σ2 is the variance of the Gaussian noise around the line of g (Y ) against f (X ).
The distribution of Y around its curve against f (X ), let alone against X , is
generally not even additive.

5. The function g−1(β0+β1 f (x)) continues to give the conditional median of Y .

9.3.1 Special case: log of both predictor and response
The model is

logY =β0+β1 logX + ε (9.22)

Undo the log on both sides:
Y = eβ0 Xβ1 eε (9.23)

Because this says that Y is some power of X , up to noise, this sort of model is often
called a power law.

Abbreviate eβ0 by y0. Then, in the power law model with log-normal noise,

1. y0 is the median value of Y when X = 1.

2. β1 is the slope of logY against logX . It is also power to which we raise X to
get the systematic part of Y .

(a) In the jargon, one says that “Y scales like Xβ1 ”.
(b) Ignore the noise temporarily, so we have a deterministic relationship y =

y0xβ1 . A small difference in x, say d x, means a fractional difference of
d x/x. The ratio of the fractional difference in y, d y/y to the fractional
difference in x, sometimes called the elasticity of y with respect to x, is
(d y/y)/(d x/x) = (d y/d x)/(y/x), is2

d y
d x
y
x

=
y0β1xβ1−1

y0 xβ1

x

=β1 (9.24)

2If you are appalled by expressions like d y/y, you have good mathematical taste, and are invited to
reach this conclusion through a proper proof using limits. (It can be done.)
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3. E [Y |X = x] 6= y0xβ1 .

(a) y0xβ1 is the conditional median, however.

(b) By parallel reasoning to what we went through above with the log-normal,

E [Y |X = x] = y0xβ1 eσ
2/2 (9.25)

Var [Y |X = x] = y2
0 x2β1 eσ

2
(eσ

2 − 1) (9.26)

Notice that this is a different statistical model from

Y = y0Xβ1 + ε (9.27)

which would lead toE [Y |X = x] = y0Xβ1 , Var [Y |X = x] = σ2. (It is, unfortunately,
often unclear whether people mean a power law with multiplicative, log-normal noise
or with additive, normal noise.) I will leave it as an exercise to check how the inter-
pretations change.
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Chapter 10

F -Tests, R2, and Other
Distractions

10.1 The F Test
The F distribution with a, b degrees of freedom is defined to be the distribution of
the ratio

χ 2
a /a
χ 2

b /b

when χ 2
a and χ 2

b are independent.
Since χ 2 distributions arise from sums of Gaussians, F -distributed random vari-

ables tend to arise when we are dealing with ratios of sums of Gaussians. The out-
standing examples of this are ratios of variances.

10.1.1 F test of β1 = 0 vs. β1 6= 0

Let’s consider testing the null hypothesis β1 = 0 against the alternative β1 6= 0, in
the context of the Gaussian-noise simple linear regression model. That is, we won’t
question, in our mathematics, whether or not the assumptions of that model hold,
we’ll presume that they all do, and just ask how we can tell whether β1 = 0.

We have said, ad nauseam, that under the unrestricted model,

σ̂2 =
1
n

n
∑

i=1

(yi − (β̂0+ β̂1xi ))
2

with
nσ̂2

σ2
∼ χ 2

n−2

This is true no matter what β1 is, so, in particular, it continues to hold when β1 = 0
but we estimate the general model anyway.
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The null model is that
Y =β0+ ε

with ε∼N (0,σ2), independent of X and independently across measurements. It’s an
exercise from 36-226 to show (really, remind!) yourself that, in the null model

β̂0 = y ∼N (β0,σ2/n)

It is another exercise to show

σ̂2 =
1
n

n
∑

i=1

(yi − y)2 = s2
Y

and
ns2

Y

σ2
∼ χ 2

n−1

However, s2
Y is not independent of σ̂2. What is statistically independent of σ̂2 is

the difference
s2
Y − σ̂

2

and
n(s2

Y − σ̂
2)

σ2
∼ χ 2

1

I will not pretend to give a proper demonstration of this. Rather, to make it plausible,
I’ll note that s2

Y − σ̂
2 is the extra mean squared error which comes from estimating

only one coefficient rather than two, that each coefficient kills one degree of freedom
in the data, and the total squared error associated with one degree of freedom, over
the entire data set, should be about σ2χ 2

1 .
Taking the previous paragraph on trust, then, let’s look at a ratio of variances:

s2
Y − σ̂

2

σ̂2
=

n(s2
Y − σ̂

2)
nσ̂2

(10.1)

=
n(s2

Y−σ̂
2)

σ2

nσ̂2

σ2

(10.2)

=
χ 2

1

χ 2
n−2

(10.3)

To get our F distribution, then, we need to use as our test statistic

s2
Y − σ̂

2

σ̂2

n− 2
1
=
�

s2
Y

σ̂2
− 1

�

(n− 2)

which will have an F1,n−2 distribution under the null hypothesis that β1 = 0.
Note that the only random, data-dependent part of this is the ratio of s2

Y /σ̂
2. We

reject the null β1 = 0 when this is too large, compared to what’s expected under
the F1,n−2 distribution. Again, this is the distribution of the test statistic under the
null β1 = 0. The variance ratio will tend to be larger under the alternative, with its
expected size growing with |β1|.
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Running this F test in R The easiest way to run the F test for the regression slope
on a linear model in R is to invoke the anova function, like so:

anova(lm(y ~ x))

This will give you an analysis-of-variance table for the model. The actual object
the function returns is an anova object, which is a special type of data frame. The
columns record, respectively, degrees of freedom, sums of squares, mean squares, the
actual F statistic, and the p value of the F statistic. What we’ll care about will be the
first row of this table, which will give us the test information for the slope on X .

To illustrate more concretely, let’s revisit our late friends in Chicago:

library(gamair)
data(chicago)
death.temp.lm <- lm(death ~ tmpd, data = chicago)
anova(death.temp.lm)
## Analysis of Variance Table
##
## Response: death
## Df Sum Sq Mean Sq F value Pr(>F)
## tmpd 1 162473 162473 803.07 < 2.2e-16 ***
## Residuals 5112 1034236 202
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As with summary on lm, the stars are usually a distraction; see Chapter 7 for how
to turn them off.
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# Simulate a Gaussian-noise simple linear regression model Inputs: x sequence;
# intercept; slope; noise variance; switch for whether to return the simulated
# values, or the ratio of s^2_Y/\hat{\sigma}^2 Output: data frame or
# coefficient vector
sim.gnslrm <- function(x, intercept, slope, sigma.sq, var.ratio = TRUE) {

n <- length(x)
y <- intercept + slope * x + rnorm(n, mean = 0, sd = sqrt(sigma.sq))
if (var.ratio) {

mdl <- lm(y ~ x)
hat.sigma.sq <- mean(residuals(mdl)^2)
# R uses the n-1 denominator in var(), but we need the MLE
s.sq.y <- var(y) * (n - 1)/n
return(s.sq.y/hat.sigma.sq)

} else {
return(data.frame(x = x, y = y))

}
}

# Parameters
beta.0 <- 5
beta.1 <- 0 # We are simulating under the null!
sigma.sq <- 0.1
x.seq <- seq(from = -5, to = 5, length.out = 42)

FIGURE 10.1: Code setting up a simulation of a Gaussian-noise simple linear regression model,
returning either the actual simulated data frame, or just the variance ratio s 2

Y /σ̂
2.
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# Run a bunch of simulations under the null and get all the F statistics Actual
# F statistic is in the 4th column of the output of anova()
f.stats <- replicate(1000, anova(lm(y ~ x, data = sim.gnslrm(x.seq, beta.0, beta.1,

sigma.sq, FALSE)))[1, 4])
# Store histogram of the F statistics, but hold off on plotting it
null.hist <- hist(f.stats, breaks = 50, plot = FALSE)
# Run a bunch of simulations under the alternative and get all the F statistics
alt.f <- replicate(1000, anova(lm(y ~ x, data = sim.gnslrm(x.seq, beta.0, -0.05,

sigma.sq, FALSE)))[1, 4])
# Store a histogram of this, but again hold off on plotting
alt.hist <- hist(alt.f, breaks = 50, plot = FALSE)
# Create an empty plot
plot(0, xlim = c(0, 30), ylim = c(0, 1.2), xlab = "F", ylab = "Density", type = "n")
# Add the histogram of F under the alternative, then under the null
plot(alt.hist, freq = FALSE, add = TRUE, col = "grey", border = "grey")
plot(null.hist, freq = FALSE, add = TRUE)
# Finally, the theoretical F distribution
curve(df(x, 1, length(x.seq) - 2), add = TRUE, col = "blue")

FIGURE 10.2: Comparing the actual distribution of F statistics when we simulate under the null
model (black histogram) to the theoretical F1,n−2 distribution (blue curve), and to the distribution
under the alternative β1 =−0.05.
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# Take the simulated F statistics and convert to p-values
p.vals <- pf(f.stats, 1, length(x.seq) - 2, lower.tail = FALSE)
alt.p <- pf(alt.f, 1, length(x.seq) - 2, lower.tail = FALSE)
hist(alt.p, col = "grey", freq = FALSE, xlab = "p-value", main = "", border = "grey",

xlim = c(0, 1))
plot(hist(p.vals, plot = FALSE), add = TRUE, freq = FALSE)

FIGURE 10.3: Distribution of p-values from repeated simulations, under the null hypothesis (black)
and the alternative (grey). Notice how the p-values under the null are uniformly distributed, while
under the alternative they are bunched up towards small values at the left.
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Assumptions In deriving the F distribution, it is absolutely vital that all of the as-
sumptions of the Gaussian-noise simple linear regression model hold: the true model
must be linear, the noise around it must be Gaussian, the noise variance must be con-
stant, the noise must be independent of X and independent across measurements.
The only hypothesis being tested is whether, maintaining all these assumptions, we
must reject the flat model β1 = 0 in favor of a line at an angle. In particular, the test
never doubts that the right model is a straight line.

The “general linear test” As a preview of coming attractions, we can look at what
happens when we compare a linear, Gaussian-noise model with p parameters to a re-
stricted Gaussian-noise linear model model with only q free parameters. Each model
gives us an estimate of the noise variance, say σ̂2

A and σ̂2
0 (respectively); these are just

the mean squared residuals in each model. It will not surprise you to learn that, under
the null that the smaller, restricted model is true

n(σ̂2
0 − σ̂

2
A)

σ2
∼ χ 2

p−q

while
nσ̂2

A

σ2
∼ χ 2

n−p

The F statistic for testing the restriction of the full model to the sub-model is therefore

σ̂2
0 − σ̂

2
A

σ̂2
A

n− p
p − q

and it has an Fp−q ,n−p distribution.

ANOVA Some readers will notice that I made no use of the ponderous machinery
of analysis of variance (“ANOVA”) which is often wheeled out in connection with the
F test. Despite (or because) of all of its size and complexity, this machinery is really
just a historical relic. In serious applied work from the modern (say, post-1985) era,
I have never seen any study where filling out an ANOVA table for a regression, etc.,
was at all important.

There is more to be said for analysis of variance where the observations are divided
into discrete, categorical groups, and one wants to know about differences between
groups versus variation within a group. In a few chapters, when we see how to handle
categorical predictor variables, it will turn out that this useful form of ANOVA is
actually a special case of linear regression (§14.3).

10.1.2 The Likelihood Ratio Test

The F test is a special case of a much more general procedure, the likelihood ratio test,
which works as follows. We start with a general model, where the parameter is a vec-
tor θ= (θ1,θ2, . . .θp ). We contemplate a restriction, where θ= (θ1,θ2, . . .θq , 0, . . . 0),

21:34 Monday 6th May, 2024



10.1. THE F TEST 172

q < p. (See below on other possible restrictions.) The restricted sub-model is the null
hypothesis, and the full model is the alternative.

Both the restricted model and the full model have maximum likelihood estima-
tors; call these θ̂ and Θ̂, respectively. Let’s write L for the log-likelihood function, so
L(θ̂) is the maximized log-likelihood under the restricted null model, and L(Θ̂) is the
maximized log-likelihood under the unrestricted, alternative, full model. Then

Λ≡ L(Θ̂)− L(θ̂)

is the log of the likelihood ratio between the models (because loga/b = loga−log b ).
Λ is the test statistic in the likelihood ratio test1.

Under some “regularity” conditions, which I’ll sketch in a moment, there is a
simple asymptotic distribution for Λ under the null hypothesis. As n→∞

2Λ∼ χ 2
p−q

Let me first try to give a little intuition, then hand-wave at the math, and then
work things through for test β1 = 0 vs. β1 6= 0.

The null model is, as I said, a restriction of the alternative model. Any possible
parameter value for the null model is also allowed for the alternative. This means the
parameter space for the null, sayω, is a strict subset of that for the alternative,ω ⊂Ω.
The maximum of the likelihood over the larger space must be at least as high as the
maximum over the smaller space:

L(Θ̂) =max
θ∈Ω

L(θ)≥max
θ∈ω

L(θ) = L(θ̂)

Thus, Λ ≥ 0. What’s more surprising is that its distribution doesn’t change with n
(asymptotically), and that depends on the difference in the number of free parameters.
Because the MLE is consistent, under the null the estimates of θq+1,θq+2 . . .θp in Θ̂
all converge to zero, because those parameters are zero under the null. In fact, they
get closer and closer to zero, but end up making larger and larger contributions to L,
because L grows with n. The two effects cancel out, and each free parameter ends up
contributing one χ 2

1 term.

Why χ 2? Well, for large n, θ̂ and Θ̂ both have Gaussian distributions around the
true θ, and the contributions to the log-likelihood end up depending on the squares
of parameter estimates. Since the square of a Gaussian is proportional to a χ 2, it’s
not surprising that we get something χ 2-ish, though it is nice how everything cancels
out. I defer a fuller explanation to the option §10.5.

Sketch of the regularity conditions where the likelihood-ratio test has a χ 2 null
First, the MLE must be consistent for both models, and must have a Gaussian distri-
bution around the true parameter (for large n). Second, the restricted model has to
“lie in the interior” of the unrestricted, alternative model, and not on the boundary.
That is, it must make sense in the alternative model for all the zeroed-out parameters

1Some people, being a bit pedantic, call it the log-likelihood-ratio test.
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to be either positive or negative. (This would be violated, for instance, if one of the
parameters set to zero by the null were a variance.) And that’s mostly it. Again, see
§10.5 for more mathematical details.

Testing β1 = 0 What’s the log-likelihood at the MLE of the simple linear model?
Dredging up the log-likelihood function from Chapter 5,

L(β̂0, β̂1, σ̂2) =−n
2

log2π− n
2

log σ̂2− 1

2σ̂2

n
∑

i=1

(yi − (β̂0+ β̂1xi ))
2 (10.4)

But

σ̂2 =
1
n

n
∑

i=1

(yi − (β̂0+ β̂1xi ))
2

Substituting into Eq. 10.4,

L(β̂0, β̂1, σ̂2) =−n
2

log2π− n
2

log σ̂2−
nσ̂2

2σ̂2
=−n

2
(1+ log2π)− n

2
log σ̂2

So we get a constant which doesn’t depend on the parameters at all, and then some-
thing proportional to log σ̂2.

The intercept-only model works similarly, only its estimate of the intercept is y,
and its noise variance, σ̂2

0 , is just the sample variance of the yi :

L(y, 0, s2
Y ) =−

n
2
(1+ log2π)− n

2
log s2

Y

Putting these together,

L(β̂0, β̂1, σ̂2)− L(y, 0, s2
Y ) =

n
2

log
s2
Y

σ̂2

Thus, under the null hypothesis,

n log
s2
Y

σ̂2
∼ χ 2

1

Figure 10.4 shows a simulation confirming this bit of theory.

Connection to F tests The ratio s2
Y /σ̂

2 is, of course, the F -statistic, up to constants
not depending on the data. Since, for this problem, the likelihood ratio test and the F
test use equivalent test statistics, if we fix the same size or level α for the two tests, they
will have exactly the same power. In fact, even for more complicated linear models —
the “general linear tests” — the F test is always equivalent to a likelihood ratio test, at
least when the presumptions of the former are met. The likelihood ratio test, how-
ever, applies to problems which do not involve Gaussian-noise linear models, while
the F test is basically only good for them. If you can only remember one of the two
tests, remember the likelihood ratio test.
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# Simulate from the model 1000 times, capturing the variance ratios
var.ratios <- replicate(1000, sim.gnslrm(x.seq, beta.0, beta.1, sigma.sq))
# Convert variance ratios into log likelihood-ratios
LLRs <- (length(x.seq)/2) * log(var.ratios)
# Create a histogram of 2*LLR
hist(2 * LLRs, breaks = 50, freq = FALSE, xlab = expression(2 * Lambda), main = "")
# Add the theoretical chi^2_1 distribution
curve(dchisq(x, df = 1), col = "blue", add = TRUE)

FIGURE 10.4: Comparison of log-likelihood ratios (black histogram) with theoretical χ 2
1 distribu-

tion (blue). Note we are simulating under the null hypothesis β1 = 0. Can you add a histogram
of the distribution under the alternative, and make histograms of p-values, as in Figures 10.2 and
10.3?

21:34 Monday 6th May, 2024



175 10.2. WHAT THE F TEST REALLY TESTS

Other constraints Setting p − q parameters to zero is really a special case of im-
posing p − q linearly independent constraints on the p parameters. For instance,
requiring θ2 = θ1 while θ3 =−2θ1 is just as much a two-parameter restriction as fix-
ing θ2 = θ3 = 0. This is because we could transform to a new set of parameters, say
ψ1 = θ1, ψ2 = θ2−θ1, ψ3 = θ3+2θ1, where the restrictions are ψ2 =ψ3 = 0, and we
can transform back to the θ parameters without loss of information. So the theory of
the likelihood ratio test applies whenever we have linearly independent constraints.

More generally, that theory applies under the following (admittedly rather com-
plicated) conditions:

• Under the null model, θmust obey equations f1(θ) = 0, f2(θ) = 0, . . . fp−q (θ) =
0.

• Any θ which obeys those equations is in the null model.

• There is an invertible function g where, writing ψ = g (θ), in the null model,
ψ always has ψq+1, . . .ψp = 0, and under the alternative, ψ is unrestricted.

Basically, we need to be able to come up with a change of coordinates where the re-
strictions amount to fixing some coordinates to zero, but leaving the others alone.

10.2 What the F Test Really Tests
The textbook (§2.7–2.8) goes into great detail about an F test for whether the simple
linear regression model “explains” (really, predicts) a “significant” amount of the vari-
ance in the response. What this really does is compare two versions of the simple lin-
ear regression model. The null hypothesis is that all of the assumptions of that model
hold, and the slope, β1, is exactly 0. (This is sometimes called the “intercept-only”
model, for obvious reasons.) The alternative is that all of the simple linear regression
assumptions hold2, with β1 6= 0. The alternative, non-zero-slope model will always
fit the data better than the null, intercept-only model (why?); the F test asks if the
improvement in fit is larger than we’d expect under the null3.

There are situations where it is useful to know about this precise quantity, and
so run an F test on the regression. It is hardly ever, however, a good way to check
whether the simple linear regression model is correctly specified, because neither re-
taining nor rejecting the null gives us information about what we really want to know.

Suppose first that we retain the null hypothesis, i.e., we do not find any significant
share of variance associated with the regression. This could be because (i) there is no
such variance — the intercept-only model is right; (ii) there is some variance, but we
were unlucky; (iii) the test doesn’t have enough power to detect departures from the
null. To expand on that last point, the power to detect a non-zero slope is going to
increase with the sample size n, decrease with the noise level σ2, and increase with

2To get an exact F distribution for the test statistic, we also need the Gaussian-noise assumptions, but
under the weaker assumptions of uncorrelated noise, we’ll often approach an F distribution asymptotically.

3This is also what the likelihood ratio test of §10.1.2 is asking, just with a different notion of measuring
fit to the data (likelihood vs. squared error). Everything I’m about to say about F tests applies, suitably
modified, to likelihood ratio tests.
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the magnitude of the slope |β1|. As σ2/n → 0, the test’s power to detect any depar-
tures from the null→ 1. If we have a very powerful test, then we can reliably detect
departures from the null. If we don’t find them, then, we can be pretty sure they’re
not there. If we have a low-power test, not detecting departures from the null tells us
little4. If σ2 is too big or n is too small, our test is inevitably low-powered. Without
knowing the power, retaining the null is ambiguous between “there’s no signal here”
and “we can’t tell if there’s a signal or not”. It would be more useful to look at things
like a confidence interval for the regression slope, or, if you must, for σ2. Of course,
there is also possibility (iv), that the real relationship is nonlinear, but the best lin-
ear approximation to it has slope (nearly) zero, in which case the F test will have no
power to detect the nonlinearity.

Suppose instead that we reject the null, intercept-only hypothesis. This does not
mean that the simple linear model is right. It means that the latter model predicts better
than the intercept-only model — too much better to be due to chance. The simple lin-
ear regression model can be absolute garbage, with every single one of its assumptions
flagrantly violated, and yet better than the model which makes all those assumptions
and thinks the optimal slope is zero.

Figure 10.5 provides simulation code for a simple set up where the true regression
function is nonlinear and the noise around it has non-constant variance. (Indeed,
regression curve is non-monotonic and the noise is multiplicative, not additive.) Still,
because a tilted straight line is a much better fit than a flat line, the F test delivers
incredibly small p-values — the largest, when I simulate drawing 200 points from
the model, is around 10−35, which is about the probability of drawing any particular
molecule from 3 billion liters of water. This is the math’s way of looking at data like
Figure 10.6 and saying “If you want to run a flat line through this, instead of one with
a slope, you’re crazy”5. This is, of course, true; it’s just not an answer to “Is simple
linear model right here?”

10.2.1 The Essential Thing to Remember
Neither the F test of β1 = 0 vs. β1 6= 0 nor the likelihood ratio test nor the Wald/t
test of the same hypothesis tell us anything about the correctness of the simple linear
regression model. All these tests presume the simple linear regression model with
Gaussian noise is true, and check a special case (flat line) against the general one (titled
line). They do not test linearity, constant variance, lack of correlation, or Gaussianity.

4Refer back to the discussion of hypothesis testing in Chapter 7.
5Similarly, when on p. 10.1.1 we’re told the p-value is ≤ 2.2× 10−16, that doesn’t mean that there’s

overwhelming evidence for the simple linear model, it again means that it’d be really stupid to prefer a flat
line to a titled one.
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# Simulate from a non-linear, non-constant-variance model Curve: Y = (X-1)^2 *
# U U ~ Unif(0.8, 1.2) X ~ Exp(0.5) Inputs: number of data points; whether to
# return data frame or F test of a simple linear model

sim.non.slr <- function(n, do.test = FALSE) {
x <- rexp(n, rate = 0.5)
y <- (x - 1)^2 * runif(n, min = 0.8, max = 1.2)
if (!do.test) {

return(data.frame(x = x, y = y))
} else {

# Fit a linear model, run F test, return p-value
return(anova(lm(y ~ x))[["Pr(>F)"]][1])

}
}

FIGURE 10.5: Code to simulate a non-linear model with non-constant variance (in fact, multi-
plicative rather than additive noise).
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not.slr <- sim.non.slr(n = 200)
plot(y ~ x, data = not.slr)
curve((x - 1)^2, col = "blue", add = TRUE)
abline(lm(y ~ x, data = not.slr), col = "red")

FIGURE 10.6: 200 points drawn from the non-linear, heteroskedastic model defined in Figure 10.5
(black dots); the true regression curve (blue curve); the least-squares estimate of the simple linear
regression (red line). Anyone who’s read Chapter 6 and looks at this can realize the linear model is
badly wrong here.
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f.tests <- replicate(10000, sim.non.slr(n = 200, do.test = TRUE))
hist(log10(f.tests), breaks = 30, freq = FALSE, main = "", xlab = "log (base ten) of p value")

FIGURE 10.7: Distribution of p values from the F test for the simple linear regression model when
the data come from the non-linear, heteroskedastic model of Figure 10.5, with sample size of n =
200. The p-values are all so small that rather than plotting them, I plot their logs in base 10, so
the distribution is centered around a p-value of 10−60, and the largest, least-significant p-values
produced in ten thousand simulations were around 10−35.
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10.3 R2

R2 has several definitions which are equivalent when we estimate a linear model by
least squares. The most basic one is the ratio of the sample variance of the fitted values
to the sample variance of Y .

R2 ≡
s2
m̂

s2
Y

(10.5)

Alternatively, it’s the ratio between the sample covariance of Y and the fitted values,
to the sample variance of Y :

R2 =
cY,m̂

s2
Y

(10.6)

Let’s show that these are equal. Clearly, it’s enough to show that the sample vari-
ance of m̂ equals its covariance with Y . The key observations are that (i) that each
yi = m̂(xi )+ ei , while (ii) the sample covariance between ei and m̂(xi ) is exactly zero.
Thus

cY,m̂ = cm̂+e ,m̂ = s2
m̂ + ce ,m̂ = s2

m̂

and we see that, for linear models estimated by least squares, Eqs. 10.5 and 10.6 do in
fact always give the same result.

That said, what is s2
m̂? Since m̂(xi ) = β̂0+ β̂1xi ,

s2
m̂ = s2

β̂0+β̂1X
= s2

β̂1X
= β̂2

1 s2
X

We thus get a third expression for R2:

R2 = β̂2
1

s2
X

s2
Y

(10.7)

From this, we can derive yet a fourth expression:

R2 =
�

cX Y

sX sY

�2

(10.8)

which we can recognize as the squared correlation coefficient between X and Y (hence
the square in R2). A noteworthy feature of this equation is that it shows we get exactly
the same R2 whether we regress Y on X , or regress X on Y .

A final expression for R2 is

R2 =
s2
Y − σ̂

2

s2
Y

(10.9)

Since σ̂2 is the sample variance of the residuals, and the residuals are uncorrelated (in
sample) with m̂, it’s not hard to show that the numerator is equation to s2

m̂ .

21:34 Monday 6th May, 2024



181 10.3. R2

“Adjusted” R2 As you remember, σ̂2 has a slight negative bias as an estimate of σ2.
One therefore sometimes sees an “adjusted” R2, using n

n−2 σ̂
2 in place of σ̂2, that being

an unbiased estimate of σ2.

Limits for R2 From Eq. 10.7, it is clear that R2 will be 0 when β̂1 = 0. On the
other hand, if all the residuals are zero, then s2

Y = β̂
1
2 s2

X and R2 = 1. It is not too hard
to show that R2 can’t possible be bigger than 1, so we have marked out the limits: a
sample slope of 0 gives an R2 of 0, the lowest possbile, and all the data points falling
exactly on a straight line gives an R2 of 1, the largest possible.

10.3.1 Theoretical R2

Suppose we knew the true coefficients. What would R2 be? Using Eq. 10.5, we’d see

R2 =
Var [m(X )]

Var [Y ]
(10.10)

=
Var [β0+β1X ]

Var [β0+β1X + ε]
(10.11)

=
Var [β1X ]

Var [β1X + ε]
(10.12)

=
β2

1Var [X ]
β2

1Var [X ]+σ2
(10.13)

Since all our parameter estimates are consistent, and this formula is continuous in all
the parameters, the R2 we get from our estimate will converge on this limit.

As you will recall from Chapter 1, even if the linear model is totally wrong, our
estimate ofβ1 will converge on Cov [X ,Y ]/Var [X ]. Thus, whether or not the simple
linear model applies, the limiting theoretical R2 is given by Eq. 10.13, provided we
interpret β1 appropriately.

10.3.2 Distraction or Nuisance?
This section occasioned some dis-
cussion on Reddit (link in PDF),
which readers may find interest-
ing.

Unfortunately, a lot of myths about R2 have become endemic in the scientific com-
munity, and it is vital at this point to immunize you against them.

1. The most fundamental is that R2 does not measure goodness of fit.

(a) R2 can be arbitrarily low when the model is completely correct. Look at Eq.
10.13. By making Var [X ] small, or σ2 large, we drive R2 towards 0, even
when every assumption of the simple linear regression model is correct in
every particular.

(b) R2 can be arbitrarily close to 1 when the model is totally wrong. For a demon-
stration, the R2 of the linear model fitted to the simulation in §10.2 is
0.791. There is, indeed, no limit to how high R2 can get when the true
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model is nonlinear. All that’s needed is for the slope of the best linear
approximation to be non-zero, and for Var [X ] to get big.

2. R2 is also pretty useless as a measure of predictability.

(a) R2 says nothing about prediction error. Go back to Eq. 10.13, the ideal case:
even with σ2 exactly the same, and no change in the coefficients, R2 can be
anywhere between 0 and 1 just by changing the range of X . Mean squared
error is a much better measure of how good predictions are; better yet are
estimates of out-of-sample error which we’ll cover later in the course.

(b) R2 says nothing about interval forecasts. In particular, it gives us no idea
how big prediction intervals, or confidence intervals for m(x), might be.

3. R2 cannot be compared across data sets: again, look at Eq. 10.13, and see that
exactly the same model can have radically different R2 values on different data.

4. R2 cannot be compared between a model with untransformed Y and one with
transformed Y , or between different transformations of Y . More exactly: it’s
a free country and no one will stop you from doing that, but it’s meaningless;
R2 can easily go down when the model assumptions are better fulfilled, etc.

5. The one situation where R2 can be compared is when different models are fit
to the same data set with the same, untransformed response variable. Then
increasing R2 is the same as decreasing in-sample MSE (by Eq. 10.9). In that
case, however, you might as well just compare the MSEs.

6. It is very common to say that R2 is “the fraction of variance explained” by the
regression. This goes along with calling R2 “the coefficient of determination”.
These usages arise from Eq. 10.9, and have nothing to recommend them. Eq.
10.8 shows that if we regressed X on Y , we’d get exactly the same R2. This in
itself should be enough to show that a high R2 says nothing about explaining
one variable by another. It is also extremely easy to devise situations where R2

is high even though neither one could possible explain the other6. Unless you
want to re-define the verb “to explain” in terms of R2, there is no connection
between it and anything which might be called a scientific explanation7.

Using adjusted R2 instead of R2 does absolutely nothing to fix any of this.
At this point, you might be wondering just what R2 is good for — what job it does

that isn’t better done by other tools. The only honest answer I can give you is that
I have never found a situation where it helped at all. If I could design the regression
curriculum from scratch, I would never mention it. Unfortunately, it lives on as a
historical relic, so you need to know what it is, and what mis-understandings about
it people suffer from.

6Imagine, for example, regressing deaths in Chicago on the number of Chicagoans wearing t-shirts each
day. For that matter, imagine regressing the number of Chicagoans wearing t-shirts on the number of
deaths. For thousands of examples with even less to recommend them as explanations, see http://www.
tylervigen.com/spurious-correlations.

7Some people (e.g., Weisburd and Piquero 2008; Low-Décarie et al. 2014) have attempted to gather all the
values of R2 reported in scientific papers on, say, ecology or crime, to see if ecologists or criminologists have
gotten better at explaining the phenomena they study. I hope it’s clear why these exercises are pointless.
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10.4 The Correlation Coefficient
As you know, the correlation coefficient between X and Y is

ρX Y =
Cov [X ,Y ]

p

Var [X ]Var [Y ]

which lies between −1 and 1. It takes its extreme values when Y is a linear function
of X .

Recall, from Chapter 1, that the slope of the ideal linear predictor β1 is

Cov [X ,Y ]
Var [X ]

so

ρX Y =β1

√

√

√
Var [X ]
Var [Y ]

It’s also straightforward to show (Exercise 1) that if we regress Y /
p

Var [Y ], the stan-
dardized version of Y , on X /

p

Var [X ], the standardized version of X , the regression
coefficient we’d get would be ρX Y .

In 1954, the great statistician John W. Tukey wrote (Tukey, 1954, p. 721)

Does anyone know when the correlation coefficient is useful, as op-
posed to when it is used? If so, why not tell us?

Sixty years later, the world is still waiting for a good answer8.

10.5 More on the Likelihood Ratio Test
This section is optional, but strongly recommended.

We’re assuming that the true parameter value, call it θ, lies in the restricted class
of models ω. So there are q components to θ which matter, and the other p − q
are fixed by the constraints defining ω. To simplify the book-keeping, let’s say those
constraints are all that the extra parameters are zero, so θ = (θ1,θ2, . . .θq , 0, . . . 0),
with p − q zeroes at the end.

The restricted MLE bθ obeys the constraints, so

bθ= (bθ1, bθ2, . . . bθq , 0, . . . 0) (10.14)

The unrestricted MLE does not have to obey the constraints, so it’s

bΘ = (bΘ1, bΘ2, . . . bΘq , bΘq+1, . . . bΘp ) (10.15)

8To be scrupulously fair, Tukey did admit there was one clear case where correlation coefficients were
useful; they are, as we have just seen, basically the slopes in simple linear regressions. But even so, as soon as
we have multiple predictors (as we will in two weeks), regression will no longer match up with correlation.
Also, covariances are useful, but why turn a covariance into a correlation?
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Because both MLEs are consistent, we know that bθi → θi , bΘi → θi if 1≤ i ≤ q , and
that bΘi → 0 if q + 1≤ i ≤ p.

Very roughly speaking, it’s the last extra terms which end up making L(bΘ) larger
than L(bθ). Each of them tends towards a mean-zero Gaussian whose variance is
O(1/n), but their impact on the log-likelihood depends on the square of their sizes,
and the square of a mean-zero Gaussian has a χ 2 distribution with one degree of free-
dom. A whole bunch of factors cancel out, leaving us with a sum of p−q independent
χ 2

1 variables, which has a χ 2
p−q distribution.

In slightly more detail, we know that L(bΘ)≥ L(bθ), because the former is a maxi-
mum over a larger space than the latter. Let’s try to see how big the difference is by
doing a Taylor expansion around bΘ, which we’ll take out to second order.

L(bθ) ≈ L(bΘ)+
p
∑

i=1

(bΘi − bθi )
�

∂ L
∂ θi

�

�

�

�

�

bΘ

�

+
1
2

p
∑

i=1

p
∑

j=1

(bΘi − bθi )
�

∂ 2L
∂ θi∂ θ j

�

�

�

�

�

bΘ

�

(bΘ j − bθ j )

= L(bΘ)+
1
2

p
∑

i=1

p
∑

j=1

(bΘi − bθi )
�

∂ 2L
∂ θi∂ θ j

�

�

�

�

�

bΘ

�

(bΘ j − bθ j ) (10.16)

All the first-order terms go away, because bΘ is a maximum of the likelihood, and so
the first derivatves are all zero there. Now we’re left with the second-order terms.
Writing all the partials out repeatedly gets tiresome, so abbreviate ∂ 2L/∂ θi∂ θ j as
L,i j .

To simplify the book-keeping, suppose that the second-derivative matrix, or Hes-
sian, is diagonal. (This should seem like a swindle, but we get the same conclusion
without this supposition, only we need to use a lot more algebra — we diagonalize
the Hessian by an orthogonal transformation.) That is, suppose L,i j = 0 unless i = j .
Now we can write

L(bΘ)− L(bθ) ≈ −1
2

p
∑

i=1

(bΘi − bθi )
2L,i i (10.17)

2
�

L(bΘ)− L(bθ)
�

≈ −
q
∑

i=1

(bΘi − bθi )
2L,i i −

p
∑

i=q+1

(bΘi )
2L,i i (10.18)

At this point, we need a fact about the asymptotic distribution of maximum likeli-
hood estimates: they’re generally Gaussian, centered around the true value, and with a
shrinking variance that depends on the Hessian evaluated at the true parameter value;
this is called the Fisher information, F or I . (Call it F .) If the Hessian is diagonal,
then we can say that

bΘi   N (θi ,−1/nFi i ) (10.19)
bθi   N (θ1,−1/nFi i ) 1≤ i ≤ q (10.20)
bθi = 0 q + 1≤ i ≤ p (10.21)

Also, (1/n)L,i i →−Fi i .
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Putting all this together, we see that each term in the second summation in Eq.
10.18 is (to abuse notation a little)

−1
nFi i
(N (0,1))2L,i i → χ 2

1 (10.22)

so the whole second summation has a χ 2
p−q distribution. The first summation, mean-

while, goes to zero because bΘi and bθi are actually strongly correlated, so their differ-
ence is O(1/n), and their difference squared is O(1/n2). Since L,i i is only O(n), that
summation drops out.

A somewhat less hand-wavy version of the argument uses the fact that the MLE is
really a vector, with a multivariate normal distribution which depends on the inverse
of the Fisher information matrix:

bΘ N (θ, (1/n)F −1) (10.23)

Then, at the cost of more linear algebra, we don’t have to assume that the Hessian is
diagonal.

10.6 Concluding Comment

The tone I have taken when discussing F tests, R2 and correlation has been dismissive.
This is deliberate, because they are grossly abused and over-used in current practice,
especially by non-statisticians, and I want you to be too proud (or too ashamed) to
engage in those abuses. In a better world, we’d just skip over them, but you will have
to deal with colleagues, and bosses, who learned their statistics in the bad old days,
and so have to understand what they’re doing wrong. (“Science advances funeral by
funeral”.)

In all fairness, the people who came up with these tools were great scientists, strug-
gling with very hard problems when nothing was clear; they were inventing all the
tools and concepts we take for granted in a class like this. Anyone in this class, me
included, would be doing very well to come up with one idea over the whole of our
careers which is as good as R2. But we best respect our ancestors, and the tradition
they left us, when we improve that tradition where we can. Sometimes that means
throwing out the broken bits.

10.7 Further Reading
Refer back to Chapter 6 on diagnostics for ways of actually checking whether the rela-
tionship between Y and X is linear (along with the other assumptions of the model).
For more on the topic of conducting formal tests of linearity, or other parametric re-
gression specifications, see the chapter “Testing Regression Specifications” in Shalizi
(forthcoming).

Refer back to Chapter 7, on parametric inference, for advice on when it is actually
interesting to test the hypothesis β1 = 0.
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Full mathematical treatments of likelihood ratio tests can be found in many text-
books, e.g., Schervish (1995) or Gouriéroux and Monfort (1989/1995, vol. II). The
original proof that it has a χ 2

p−q asymptotic distribution was given by Wilks (1938).
Vuong (1989) provides an interesting and valuable treatment of what happens to the
likelihood ratio test when neither the null nor the alternative is strictly true, but we
want to pick the one which is closer to the truth; that paper also develops the theory
when the null is not a restriction of the alternative, but rather the two hypotheses
come from distinct statistical models.

People have been warning about the fallacy of R2 to measure goodness of fit for a
long time (Anderson and Shanteau, 1977; Birnbaum, 1973), apparently without hav-
ing much of an impact. (See Hamilton (1996) for a discussion of how academic com-
munities can keep on teaching erroneous ideas long after they’ve been shown to be
wrong, and some speculations about why this happens.)

That R2 has got nothing to do with explaining anything has also been pointed out,
time after time, for decades (Berk, 2004). A small demo of just how silly “variance
explained” can get, using the Chicago data, can be found at http://bactra.org/
weblog/874.html. Just what it does means to give a proper scientific explanation,
and what role statistical models might play in doing so, is a topic full of debate, not to
say confusion. Shmueli (2010) attempts to relate some of these debates to the practical
conduct of statistical modeling. Personally, I have found Salmon (1984) very helpful
in thinking about these issues.

Exercises
1. Define Ỹ = Y /

p

Var [Y ] and X̃ = X /
p

Var [X ]. Show that the slope of the
optimal linear predictor of Ỹ from X̃ is ρX Y .

2. Work through the likelihood ratio test for testing regression through the origin
(β0 = 0) against the simple linear model (β0 6= 0); that is, writeΛ in terms of the
sample statistics and simplify as much as possible. Under the null hypothesis,
2Λ follows a χ 2 distribution with a certain number of degrees of freedom: how
many?
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Chapter 11

Simple Linear Regression in
Matrix Format

So far, we have not used any notions, or notation, that goes beyond basic algebra and
calculus (and probability). This has forced us to do a fair amount of book-keeping,
as it were by hand. This is just about tolerable for the simple linear model, with one
predictor variable. It will get intolerable if we have multiple predictor variables. For-
tunately, a little application of linear algebra will let us abstract away from a lot of the
book-keeping details, and make multiple linear regression hardly more complicated
than the simple version1.

These notes will not remind you of how matrix algebra works. However, they
will review some results about calculus with matrices, and about expectations and
variances with vectors and matrices.

Throughout, bold-faced letters will denote matrices, as a as opposed to a scalar a.

11.1 Least Squares in Matrix Form

Our data consists of n paired observations of the predictor variable X and the re-
sponse variable Y , i.e., (x1, y1), . . . (xn , yn). We wish to fit the model

Y =β0+β1X + ε (11.1)

where E [ε|X = x] = 0, Var [ε|X = x] = σ2, and ε is uncorrelated across measure-
ments2.

1Historically, linear models with multiple predictors evolved before the use of matrix algebra for re-
gression. You may imagine the resulting drudgery.

2When I need to also assume that ε is Gaussian, and strengthen “uncorrelated” to “independent”, I’ll
say so.
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11.1.1 The Basic Matrices

Group all of the observations of the response into a single column (n× 1) matrix y,

y=











y1
y2
...

yn











(11.2)

Similarly, we group both the coefficients into a single vector (i.e., a 2× 1 matrix)

β=
�

β0
β1

�

(11.3)

We’d also like to group the observations of the predictor variable together, but we
need something which looks a little unusual at first:

x=











1 x1
1 x2
...

...
1 xn











(11.4)

This is an n×2 matrix, where the first column is always 1, and the second column con-
tains the actual observations of X . We have this apparently redundant first column
because of what it does for us when we multiply x by β:

xβ=











β0+β1x1
β0+β1x2

...
β0+β1xn











(11.5)

That is, xβ is the n× 1 matrix which contains the point predictions.
The matrix x is sometimes called the design matrix.

11.1.2 Mean Squared Error

At each data point, using the coefficientsβ results in some error of prediction, so we
have n prediction errors. These form a vector:

e(β) = y− xβ (11.6)

(You can check that this subtracts an n× 1 matrix from an n× 1 matrix.)
When we derived the least squares estimator, we used the mean squared error,

M SE(β) =
1
n

n
∑

i=1

e2
i (β) (11.7)
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How might we express this in terms of our matrices? I claim that the correct form is

M SE(β) =
1
n

eT e (11.8)

To see this, look at what the matrix multiplication really involves:

[e1e2 . . . en]











e1
e2
...

en











(11.9)

This, clearly equals
∑

i e2
i , so the MSE has the claimed form.

Let us expand this a little for further use.

M SE(β) =
1
n

eT e (11.10)

=
1
n
(y− xβ)T (y− xβ) (11.11)

=
1
n
(yT −βT xT )(y− xβ) (11.12)

=
1
n

�

yT y− yT xβ−βT xT y+βT xT xβ
�

(11.13)

Notice that (yT xβ)T =βT xT y. Further notice that this is a 1×1 matrix, so yT xβ=
βT xT y. Thus

M SE(β) =
1
n

�

yT y− 2βT xT y+βT xT xβ
�

(11.14)

11.1.3 Minimizing the MSE

First, we find the gradient of the MSE with respect to β:

∇M SE(β =
1
n

�

∇yT y− 2∇βT xT y+∇βT xT xβ
�

(11.15)

=
1
n

�

0− 2xT y+ 2xT xβ
�

(11.16)

=
2
n

�

xT xβ− xT y
�

(11.17)

We now set this to zero at the optimum, bβ:

xT x bβ− xT y= 0 (11.18)

This equation, for the two-dimensional vector bβ, corresponds to our pair of normal
or estimating equations for β̂0 and β̂1. Thus, it, too, is called an estimating equation.
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Solving,
bβ= (xT x)−1xT y (11.19)

That is, we’ve got one matrix equation which gives us both coefficient estimates.
If this is right, the equation we’ve got above should in fact reproduce the least-

squares estimates we’ve already derived, which are of course

β̂1 =
cX Y

s2
X

=
xy − x̄ ȳ

x2− x̄2
(11.20)

and

β̂0 = y − β̂1x (11.21)

Let’s see if that’s right.
As a first step, let’s introduce normalizing factors of 1/n into both the matrix

products:
bβ= (n−1xT x)−1(n−1xT y) (11.22)

Now let’s look at the two factors in parentheses separately, from right to left.

1
n

xT y =
1
n

�

1 1 . . . 1
x1 x2 . . . xn

�











y1
y2
...

yn











(11.23)

=
1
n

� ∑

i yi
∑

i xi yi

�

(11.24)

=
�

y
xy

�

(11.25)

Similarly for the other factor:

1
n

xT x =
1
n

�

n
∑

i xi
∑

i xi
∑

i x2
i

�

(11.26)

=
�

1 x
x x2

�

(11.27)

Now we need to take the inverse:

�

1
n

xT x
�−1

=
1

x2− x̄2

�

x2 −x
−x 1

�

(11.28)

=
1
s2
X

�

x2 −x
−x 1

�

(11.29)
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Let’s multiply together the pieces.

(xT x)−1xT y =
1
s2
X

�

x2 −x
−x 1

�

�

y
xy

�

(11.30)

=
1
s2
X

�

x2y − x xy
−xy + xy

�

(11.31)

=
1
s2
X

�

(s2
X + x̄2)y − x(cX Y + x̄ ȳ)

cX Y

�

(11.32)

=
1
s2
X

�

s2
x y + x̄2y − xcX Y − x2 ȳ

cX Y

�

(11.33)

=
�

y − cX Y
s2
X

x
cX Y
s2
X

�

(11.34)

which is what it should be.
So: n−1xT y is keeping track of y and xy, and n−1xT x keeps track of x and x2. The

matrix inversion and multiplication then handles all the book-keeping to put these
pieces together to get the appropriate (sample) variances, covariance, and intercepts.
We don’t have to remember that any more; we can just remember the one matrix
equation, and then trust the linear algebra to take care of the details.

11.2 Fitted Values and Residuals
Remember that when the coefficient vector is β, the point predictions for each data

point are xβ. Thus the vector of fitted values, Õm(x), or Òm for short, is

Òm= x bβ (11.35)

Using our equation for bβ,
Òm= x(xT x)−1xT y (11.36)

Notice that the fitted values are linear in y. The matrix

H≡ x(xT x)−1xT (11.37)

does not depend on y at all, but does control the fitted values:

Òm=Hy (11.38)

If we repeat our experiment (survey, observation. . . ) many times at the same x, we get
different y every time. But H does not change. The properties of the fitted values are
thus largely determined by the properties of H. It thus deserves a name; it’s usually
called the hat matrix, for obvious reasons, or, if we want to sound more respectable,
the influence matrix.

Let’s look at some of the properties of the hat matrix.
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1. Influence Since H is not a function of y, we can easily verify that ∂ Òmi/∂ y j =
Hi j . Thus, Hi j is the rate at which the i th fitted value changes as we vary the
j th observation, the “influence” that observation has on that fitted value.

2. Symmetry It’s easy to see that HT =H.

3. Idempotency A square matrix a is called idempotent3 when a2 = a (and so ak = a
for any higher power k). Again, by writing out the multiplication, H2 =H, so
it’s idempotent.

Idemopotency, Projection, Geometry Idempotency seems like the most obscure
of these properties, but it’s actually one of the more important. y and Òm are n-
dimensional vectors. If we project a vector u on to the line in the direction of the
length-one vector v, we get

vvT u (11.39)

(Check the dimensions: u and v are both n× 1, so vT is 1× n, and vT u is 1× 1.) If
we group the first two terms together, like so,

(vvT )u (11.40)

where vvT is the n×n projection matrix or projection operator for that line. Since
v is a unit vector, vT v= 1, and

(vvT )(vvT ) = vvT (11.41)

so the projection operator for the line is idempotent. The geometric meaning of idem-
potency here is that once we’ve projected u on to the line, projecting its image on to
the same line doesn’t change anything.

Extending this same reasoning, for any linear subspace of the n-dimensional space,
there is always some n× n matrix which projects vectors in arbitrary position down
into the subspace, and this projection matrix is always idempotent. It is a bit more
convoluted to prove that any idempotent matrix is the projection matrix for some
subspace, but that’s also true. We will see later how to read off the dimension of the
subspace from the properties of its projection matrix.

11.2.1 Residuals

The vector of residuals, e, is just

e≡ y− x bβ (11.42)

Using the hat matrix,
e= y−Hy= (I−H)y (11.43)

Here are some properties of I−H:

3From the Latin idem, “same”, and potens, “power”.

21:34 Monday 6th May, 2024
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1. Influence ∂ ei/∂ y j = (I−H)i j .

2. Symmetry (I−H)T = I−H.

3. Idempotency (I−H)2 = (I−H)(I−H) = I−H−H+H2. But, since H is
idempotent, H2 =H, and thus (I−H)2 = (I−H).

Thus,

M SE( bβ) =
1
n

yT (I−H)T (I−H)y (11.44)

simplifies to

M SE( bβ) =
1
n

yT (I−H)y (11.45)

11.2.2 Expectations and Covariances

We can of course consider the vector of random variables Y. By our modeling as-
sumptions,

Y= xβ+ ε (11.46)

where ε is an n × 1 matrix of random variables, with mean vector 0, and variance-
covariance matrix σ2I. What can we deduce from this?

First, the expectation of the fitted values:

E [HY] = HE [Y] (11.47)
= Hxβ+HE [ε] (11.48)

= x(xT x)−1xT xβ+ 0 (11.49)
= xβ (11.50)

which is as it should be, since the fitted values are unbiased.
Next, the variance-covariance of the fitted values:

Var [HY] = Var [H(xβ+ ε)] (11.51)
= Var [Hε] (11.52)

= HVar [ε]HT (11.53)
= σ2HIH (11.54)
= σ2H (11.55)

using, again, the symmetry and idempotency of H.
Similarly, the expected residual vector is zero:

E [e] = (I−H)(xβ+E [ε]) = xβ− xβ= 0 (11.56)
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The variance-covariance matrix of the residuals:

Var [e] = Var [(I−H)(xβ+ ε)] (11.57)
= Var [(I−H)ε] (11.58)

= (I−H)Var [ε] (I−H))T (11.59)

= σ2(I−H)(I−H)T (11.60)
= σ2(I−H) (11.61)

Thus, the variance of each residual is not quite σ2, nor (unless H is diagonal) are the
residuals exactly uncorrelated with each other.

Finally, the expected MSE is

E
�

1
n

eT e
�

(11.62)

which is
1
n
E
�

εT (I−H)ε
�

(11.63)

We know (because we proved it in the exam) that this must be (n− 2)σ2/n; we’ll see
next time how to show this.

11.3 Sampling Distribution of Estimators
Let’s now “turn on” the Gaussian-noise assumption, so the noise terms εi all have the
distribution N (0,σ2), and are independent of each other and of X . The vector of all
n noise terms, ε, is an n × 1 matrix. Its distribution is a multivariate Gaussian or
multivariate normal4, with mean vector 0, and variance-covariance matrix σ2I. We
may use this to get the sampling distribution of the estimator bβ:

bβ = (xT x)−1xT Y (11.64)

= (xT x)−1xT (xβ+ ε) (11.65)

= (xT x)−1xT xβ+(xT x)−1xT ε (11.66)

= β+(xT x)−1xT ε (11.67)

Since ε is Gaussian and is being multiplied by a non-random matrix, (xT x)−1xT ε is
also Gaussian. Its mean vector is

E
�

(xT x)−1xT ε
�

= (xT x)−1xTE [ε] = 0 (11.68)

while its variance matrix is

Var
�

(xT x)−1xT ε
�

= (xT x)−1xT Var [ε]
�

(xT x)−1xT �T (11.69)

= (xT x)−1xT σ2Ix(xT x)−1 (11.70)

= σ2(xT x)−1xT x(xT x)−1 (11.71)

= σ2(xT x)−1 (11.72)
4Some people write this distribution as MV N , and others also as N . I will stick to the former.
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Since Var
�

bβ
�

=Var
�

(xT x)−1xT ε
�

(why?), we conclude that

bβ∼MV N (β,σ2(xT x)−1) (11.73)

Re-writing slightly,

bβ∼MV N (β,
σ2

n
(n−1xT x)−1) (11.74)

will make it easier to prove to yourself that, according to this, bβ0 and bβ1 are both

unbiased (which we know is right), that Var
h

β̂1

i

= σ2

n s2
X (which we know is right)

and that Var
h

β̂0

i

= σ2

n (1+ x̄2/s2
X ) (which we know is right). This will also give us

Cov
h

ˆb e t a0, β̂1

i

, which otherwise would be tedious to calculate.

I will leave you to show, in a similar way, that the fitted values Hy are multivariate
Gaussian, as are the residuals e, and to find both their mean vectors and their variance
matrices.

11.4 Derivatives with Respect to Vectors
This is a brief review, not intended as a full course in vector calculus.

Consider some scalar function of a vector, say f (x), where x is represented as a
p × 1 matrix. (Here x is just being used as a place-holder or generic variable; it’s
not necessarily the design matrix of a regression.) We would like to think about the
derivatives of f with respect to x.

Derivatives are rates of change; they tell us how rapidly the function changes in
response to minute changes in its arguments. Since x is a p × 1 matrix, we could also
write

f (x) = f (x1, x1, xp ) (11.75)

This makes it clear that f will have a partial derivative with respect to each component
of x. How much does f change when we vary the components? We can find this out
by using a Taylor expansion. If we pick some base value of the matrix x0 and expand
around it,

f (x) ≈ f (x0)+
p
∑

i=1

(x− x0)i
∂ f
∂ xi

�

�

�

�

�

x0

(11.76)

= f (x0)+ (x− x0)T∇ f (x0) (11.77)

where we define the gradient,∇ f , to be the vector of partial derivatives,

∇ f ≡















∂ f
∂ x1
∂ f
∂ x2
...
∂ f
∂ xp















(11.78)
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Notice that this defines ∇ f to be a one-column matrix, just as x was taken to be.
You may sometimes encounter people who want it to be a one-row matrix; it comes
to the same thing, but you may have to track a lot of transposes to make use of their
math.

All of the properties of the gradient can be proved using those of partial deriva-
tives. Here are some basic ones we’ll need.

1. Linearity
∇ (a f (x)+ b g (x)) = a∇ f (x)+ b∇g (x) (11.79)

PROOF: Directly from the linearity of partial derivatives.

2. Linear forms If f (x) = xT a, with a not a function of x, then

∇(xT a) = a (11.80)

PROOF: f (x) =
∑

i xi ai , so ∂ f /∂ xi = ai . Notice that a was already a p × 1
matrix, so we don’t have to transpose anything to get the derivative.

3. Linear forms the other way If f (x) = bx, with b not a function of x, then

∇(bx) = bT (11.81)

PROOF: Once again, ∂ f /∂ xi = bi , but now remember that b was a 1× p
matrix, and∇ f is p × 1, so we need to transpose.

4. Quadratic forms Let c be a p × p matrix which is not a function of x, and con-
sider the quadratic form xT cx. (You can check that this is scalar.) The gradient
is

∇(xT cx) = (c+ cT )x (11.82)

PROOF: First, write out the matrix multiplications as explicit sums:

xT cx=
p
∑

j=1

x j

p
∑

k=1

c j k xk =
p
∑

j=1

p
∑

k=1

x j c j k xk (11.83)

Now take the derivative with respect to xi .

∂ f
∂ xi

=
p
∑

j=1

p
∑

k=1

∂ x j c j k xk

∂ xi
(11.84)

If j = k = i , the term in the inner sum is 2ci i xi . If j = i but k 6= i , the term
in the inner sum is ci k xk . If j 6= i but k = i , we get x j c j i . Finally, if j 6= i and
k 6= i , we get zero. The j = i terms add up to (cx)i . The k = i terms add up to
(cT x)i . (This splits the 2ci i xi evenly between them.) Thus

∂ f
∂ xi

= ((c+ cT x)i (11.85)

and
∇ f = (c+ cT )x (11.86)

(You can, and should, double check that this has the right dimensions.)
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5. Symmetric quadratic forms If c= cT , then

∇xT cx= 2cx (11.87)

11.4.1 Second Derivatives
The p × p matrix of second partial derivatives is called the Hessian. I won’t step
through its properties, except to note that they, too, follow from the basic rules for
partial derivatives.

11.4.2 Maxima and Minima
We need all the partial derivatives to be equal to zero at a minimum or maximum.
This means that the gradient must be zero there. At a minimum, the Hessian must
be positive-definite (so that moves away from the minimum always increase the func-
tion); at a maximum, the Hessian must be negative definite (so moves away always
decrease the function). If the Hessian is neither positive nor negative definite, the
point is neither a minimum nor a maximum, but a “saddle” (since moving in some di-
rections increases the function but moving in others decreases it, as though one were
at the center of a horse’s saddle).

11.5 Expectations and Variances with Vectors and Ma-
trices

If we have p random variables, Z1,Z2, . . .Zp , we can grow them into a random vec-
tor Z = [Z1Z2 . . .Zp]

T . (That is, the random vector is an n × 1 matrix of random
variables.)

This has an expected value:

E [Z]≡
∫

zp(z)dz (11.88)

and a little thought shows

E [Z] =











E [Z1]
E [Z2]

...
E
�

Zp

�











(11.89)

Since expectations of random scalars are linear, so are expectations of random vectors:
when a and b are non-random scalars,

E [aZ+ bW] = aE [Z]+ bE [W] (11.90)

If a is a non-random matrix,
E [aZ] = aE [Z] (11.91)
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Every coordinate of a random vector has some covariance with every other coor-
dinate. The variance-covariance matrix of Z is the p × p matrix which stores these:

Var [Z]≡















Var [Z1] Cov [Z1,Z2] . . . Cov
�

Z1,Zp

�

Cov [Z2,Z1] Var [Z2] . . . Cov
�

Z2,Zp

�

...
...

...
...

Cov
�

Zp ,Z1

�

Cov
�

Zp ,Z2

�

. . . Var
�

Zp

�















(11.92)

This inherits properties of ordinary variances and covariances. Just Var [Z] =
E
�

Z2
�

− (E [Z])2,
Var [Z] =E

�

ZZT �−E [Z] (E [Z])T (11.93)
For a non-random vector a and a non-random scalar b ,

Var [a+ bZ] = b 2Var [Z] (11.94)

For a non-random matrix c,

Var [cZ] = cVar [Z]cT (11.95)

(Check that the dimensions all conform here: if c is q × p, Var [cZ] should be q × q ,
and so is the right-hand side.)

For a quadratic form, ZT cZ, with non-random c, the expectation value is

E
�

ZT cZ
�

=E [Z]T cE [Z]+ trcVar [Z] (11.96)

where tr is of course the trace of a matrix, the sum of its diagonal entries. To see this,
notice that

ZT cZ= trZT cZ (11.97)
because it’s a 1×1 matrix. But the trace of a matrix product doesn’t change when we
cyclic permute the matrices, so

ZT cZ= trcZZT (11.98)

Therefore

E
�

ZT cZ
�

= E
�

trcZZT � (11.99)

= trE
�

cZZT � (11.100)

= trcE
�

ZZT � (11.101)

= trc(Var [Z]+E [Z]E [Z]T ) (11.102)

= trcVar [Z]+ trcE [Z]E [Z]T ) (11.103)

= trcVar [Z]+ trE [Z]T cE [Z] (11.104)

= trcVar [Z]+E [Z]T cE [Z] (11.105)

using the fact that tr is a linear operation so it commutes with taking expectations; the
decomposition of Var [Z]; the cyclic permutation trick again; and finally dropping tr
from a scalar.

Unfortunately, there is generally no simple formula for the variance of a quadratic
form, unless the random vector is Gaussian.
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11.6 Further Reading
Linear algebra is a pre-requisite for this class; I strongly urge you to go back to your
textbook and notes for review, if any of this is rusty. If you desire additional resources,
I recommend Axler (1996) as a concise but thorough course. Petersen and Pedersen
(2012), while not an introduction or even really a review, is an extremely handy com-
pendium of matrix, and matrix-calculus, identities.
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Chapter 12

Multiple Linear Regression

12.1 Recap on Simple Linear Regression in Matrix Form

Let’s start with a brief summary of re-doing simple linear regression with matrices.
We collect all our observations of the response variable into a vector, which we write
as an n × 1 matrix y, one row per data point. We group the two coefficients into a
2×1 matrixβ. We create an n×2 matrix x, where the first column consists entirely
of 1s, and the second column contains all our observations of the predictor variable,
again, one row per data point. Our point predictions are then given by xβ, and the
mean squared error by n−1(y− xβ)T (y− xβ).

The derivative of the MSE with respect to β is

2
n
(−xT y+ xT xβ) (12.1)

Setting this to zero at the optimum coefficient vector bβ gives the (matrix) estimating
equation

− xT y+ xT x bβ= 0 (12.2)

whose solution is of course
bβ= (xT x)−1xT y (12.3)

We verified last time that bβ does, in fact, coincide with what we already know
the least squares solutions to be. Before, we had two estimating equations for two
unknowns (β̂0 and β̂1), and we had to keep track of how they related to each other
and how to solve either one. The matrix inversion and multiplication in Eq. 12.3
encapsulates all of that book-keeping.

We also saw that the fitted values at the data points used to estimate the model
are linear combinations of the observed responses, with weights given by the hat or
influence matrix:

Òm= x(xT x)−1xT y=Hy (12.4)
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Geometrically, this means that we find the fitted values by taking the vector of ob-
served responses y and projecting it on to a certain plane, which is entirely defined by
the values in x.

12.2 Multiple Linear Regression
We are now ready to go from the simple linear regression model, with one predictor
variable, to em multiple linear regression models, with more than one predictor vari-
able1. Let’s start by presenting the statistical model, and get to estimating it in just a
moment.

12.2.1 The Statistical Model, without Assuming Gaussian Noise
In the basic form of the multiple linear regression model,

1. There are p quantitative predictor variables, X1,X2, . . .Xp . We make no as-
sumptions about their distribution; in particular, they may or may not be de-
pendent. X without a subscript will refer to the vector of all of these taken
together.

2. There is a single response variable Y .

3. Y =β0+
∑p

i=1βi Xi + ε, for some constants (coefficients) β0,β1, . . .βp .

4. The noise variable ε hasE [ε|X = x] = 0 (mean zero), Var [ε|X = x] = σ2 (con-
stant variance), and is uncorrelated across observations.

In matrix form, when we have n observations,

Y=Xβ+ ε (12.5)

where X is a n×(p+1)matrix of random variables (including an all-and-always 1 first
column), and ε is an n × 1 matrix of noise variables. By the modeling assumptions,
E [ε|X] = 0 while Var [ε|X] = σ2I.

12.2.2 The Statistical Model, Assuming Gaussian Noise
In the multiple linear regression model with Gaussian noise,

1. There are p quantitative predictor variables, X1,X2, . . .Xp . We make no as-
sumptions about their distribution; in particular, they may or may not be de-
pendent. X without a subscript will refer to the vector of all of these taken
together.

2. There is a single response variable Y .

1You might wonder why the jargon here contrasts “simple” with “multiple”, rather than with “com-
plex”. The reason is that the older sense of “simple” is “having only one part” or “made from just one
ingredient”.
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3. The variables are related through

Y =β0+
p
∑

i=1

βi Xi + ε , (12.6)

for some constants (coefficients) β0,β1, . . .βp .

4. The noise variables ε have a jointly-Gaussian MV N (0,σ2I) distribution, inde-
pendent of X.

From these assumptions, it follows that, conditional on X, Y has a multivariate
Gaussian distribution,

Y|X∼MV N (Xβ,σ2I) (12.7)

12.2.3 Parameter Interpretation
β0 is the expected value of Y are the origin:

β0 =E
�

Y |X1 = 0,X2 = 0, . . .Xp = 0
�

(12.8)

The multiple linear regression model assumes that each predictor variable makes a
separate contribution to the expected response, that these contributions add up with-
out any interaction, and that each predictor’s contribution is linear2. Thus βi is the
rate at which E [Y ] changes as Xi , and only Xi , changes, regardless of where Xi starts
(linearity in Xi ), and regardless of what any of the other variables might be (additivity
across variables).

12.3 Derivation of the Least Squares Estimator
We now wish to estimate the model by least squares. Fortunately, we did essentially
all of the necessary work last time.

This is because the formula we derived for the mean squared error,

1
n
(y− xβ)T (y− xβ) (12.9)

did not actually care whether x was n×2 or n× (p+1) for any larger p, so long asβ
was (p+1)×1. Neither did any of the matrix calculus we did, so it remains true that

∇βM SE(β) =
2
n

�

−xT y+ xT xβ
�

; (12.10)

that the estimating equation is

− xT y+ xT x bβ= 0 (12.11)

2We will see some ways of allowing predictor variables to interact later in this class. The topic will be
explored more fully in 402, along with additive but nonlinear models.
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and that the solution, the ordinary least squares (OLS) estimator, is

bβ= (xT x)−1xT y (12.12)

Eq. 20.18 is going to keep coming up again and again; whether you memorize it
deliberately or through sheer exposure is up to you.

(We didn’t have to use matrix notation to arrive at this point. In principle, we
could have written out the MSE as an explicit sum over data points, and then taken
p + 1 partial derivatives with respect to the p + 1 coefficients. This would have led
to a system of p + 1 linear equations in p + 1 unknowns, which we could then try
to solve. But all of this machinery is conveniently assembled into the linear algebra,
which makes it much easier to handle.)

12.3.1 Slightly Alternate Derivation
To appreciate what’s going on in Eq. 20.18, it may help to look at a slightly different
derivation, which explicitly separates the intercept from the other coefficients. So, in
this subsection, and this sub-section only, β0 will be the scalar intercept, β will be a
p × 1 vector of slope coefficients (not (p + 1)× 1!), and x will be an n× p matrix of
observations of the predictors (i.e., no column of 1s).

The mean squared error will be

1
n
(y−β01− xβ)T (y−β01− xβ) (12.13)

where 1 is the n× 1 matrix of all 1s. The relevant derivatives are

∂ M SE
∂ β0

=− 2
n

1T (y−β01− xβ) (12.14)

and
∇βM SE =

2
n
(β0x

T 1− xT y+ xT xβ) (12.15)

Setting both derivatives to zero at the optimum, we get

β̂0 =
1
n

1T y− 1
n

1T x bβ (12.16)

Notice that n−11T y is just our old friend y. Similarly, 1
n 1T x is the 1× p matrix giving

the sample means for each coordinate of x; lets call this x. Thus

β̂0 = y − x bβ (12.17)

and the intercept will make sure the regression surface goes through the mean of the
data.

Turning to the equation for bβ,

0= β̂0
1
n

xT 1− 1
n

xT y+
1
n

xT x bβ (12.18)
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At this point, let’s make two moves which will simplify things later. First, notice that
β̂0 is a scalar, so we can move it all the way to the right of the first term we’re adding,
getting

0=
1
n

xT 1β̂0−
1
n

xT y+
1
n

xT x bβ (12.19)

Second, notice that n−1xT 1= xT . Thus

0= xT β̂0−
1
n

xT y+
1
n

xT x bβ (12.20)

Now substitute in Eq. 12.17 for β̂0:

0 = xT (y − x bβ)− 1
n

xT y+
1
n

xT x bβ (12.21)

0 = xT y − xT x bβ− 1
n

xT y+
1
n

xT x bβ (12.22)

1
n

xT x bβ− xT x bβ = −xT y ++
1
n

xT y (12.23)
�

1
n

xT x− xT x
�

bβ =
1
n

xT y− xT y (12.24)

It is straight-forward to check that (Exercise 1)

1
n

xT y− xT y (12.25)

is the p × 1 matrix whose i th entry is the sample covariance between Xi and Y . Sim-
ilarly (Exercise 2),

1
n

xT x− xT x (12.26)

is the p × p sample variance-covariance matrix of the Xi ’s. (This is why I left in the
seeming-redundant factors of 1/n.)

Let us call these two matrices, respectively, cX ,Y and vX . Then our equation for
the vector of slopes is

vX
bβ= cX ,Y (12.27)

which of course has the solution

bβ= v−1
X cX ,Y (12.28)

In words: we find the slopes by first finding the covariance between each predictor
and the response, and then multiplying by the inverse of the predictor’s covariance
matrices. The intercept is just a fudge-factor to make sure the regression surface goes
through the mean of the data.
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Taking the n→∞ limit As the sample size grows, the law of large numbers tells us
vX →Var [X ], the true p× p variance-covariance matrix of the predictors. Similarly,
cX,Y →Cov [X ,Y ], the p × 1 matrix of covariances between the predictors and the
response. Hence (by continuity)

bβ→Var [X ]−1 Cov [X ,Y ] (12.29)

I leave it as an exercise (3) to show that, first, under the model assumptions, the
true vector of slopesβ is indeed equal to Var [X ]−1 Cov [X ,Y ], and, second, that this
vector of slopes would minimize the expected squared error (not the in-sample mean
squared error).

12.3.2 Why Multiple Regression Isn’t Just a Bunch of Simple Re-
gressions

When we do multiple regression, the slopes we get for each variable aren’t the same
as the ones we’d get if we just did p separate simple regressions. Why not?

The book-keeping answer In §12.3.1, we saw that the slopes are determined by
v−1

X cX ,Y . If v−1
X is diagonal, then our multiple regression will give the same slopes as

many simple regressions. In turn, v−1
X is diagonal if and only if vX is diagonal, which

means that none of the predictor variables can have any (sample) correlation with
any of the others. Otherwise, minimizing the mean squared error means shifting the
slopes away from what they’d be in simple regressions.

(Since x is called the design matrix, a data set where vX is diagonal is said to
have an orthogonal design. As the word suggests, this is much more common in
deliberately planned experiments than in observational studies.)

The predictive answer Suppose the real model is Y = β0 + β1X1 + β2X2 + ε.
(Nothing turns on p = 2, it just keeps things short.) What would happen if we did a
simple regression of Y on just X1? We know (Chapter 1) that the optimal (population)
slope on X1 should be

Cov [X1,Y ]
Var [X1]

(12.30)

Let’s substitute in the model equation for Y :

Cov [X1,Y ]
Var [X1]

=
Cov [X1,β0+β1X1+β2X2+ ε]

Var [X1]
(12.31)

=
β1Var [X1]+β2Cov [X1,X2]+Cov [X1,ε]

Var [X1]
(12.32)

= β1+
β2Cov [X1,X2]+ 0

Var [X1]
(12.33)

= β1+β2
Cov [X1,X2]

Var [X1]
(12.34)
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The total covariance between X1 and Y includes X1’s direct contribution to Y , plus
the indirect contribution through correlation with X2, and X2’s contribution to Y .
(All of this applies, with subscripts swapped, to regressing Y on X2 as well.)

Said slightly differently, when there’s correlation between X1 and X2, we can pre-
dict (a bit of) X2 from X1 and vice versa. When we do simple regression, we don’t care
— adding up the direct and indirect relationships of Y and X1 is fine. When we do
multiple regression, we don’t want to “double count” that contribution to Y , so the
slopes should just reflect the relationship the response and the part of each predictor
variable we couldn’t have already guessed from knowing the others.

(If you’re wondering, “Wait, what if there’s really an X3 but we only regressed on
X1 and X2, wouldn’t we have the same sort of problem?”, congratulations — you’ve
just discovered omitted variable bias.)

The geometric answer Refer again to §12.3.1. The optimal slopes are given by

Var [X ]−1 Cov [X ,Y ] (12.35)

which means that the optimal predictions are given by

X T Var [X ]−1 Cov [X ,Y ] (12.36)

(The transpose on X is because I chose to write vectors as column matrices, and we
need to make this come out a scalar.)

Now, Var [X ] is a square, symmetric p × p matrix, so it makes sense to talk
about its square root3, i.e., a symmetric p × p matrix Var [X ]1/2 such that Var [X ] =
Var [X ]1/2 Var [X ]1/2. It follows that Var [X ]−1 also has a square root, Var [X ]−1/2,

given by
�

Var [X ]1/2
�−1

. Thus we can say that the optimal predictions are given by

X T Var [X ]−1 Cov [X ,Y ] = X T Var [X ]−1/2 Var [X ]−1/2 Cov [X ,Y ] (12.37)

= (Var [X ]−1/2 X )T Cov
�

Var [X ]−1/2 X ,Y
�

(12.38)

By the rules for algebra with variances,

Var
�

Var [X ]−1/2 X
�

= Var [X ]−1/2 Var [X ]Var [X ]−1/2 (12.39)

= Var [X ]−1/2 Var [X ]1/2 Var [X ]1/2 Var [X ]−1/2 = I(12.40)

Multiplying a vector by a matrix rotates and stretches the coordinate system for the
vector. Multiplying X by Var [X ]−1/2 rotates and stretches the coordinates so that all
the components of X are uncorrelated with each other, and they all have variance 1.
The point of the Var [X ]−1 in the formula for the regression slopes is that it, implicitly,
finds the new coordinate system where the predictors are uncorrelated, and then does
a bunch of simple regressions.

3For instance, we know from the “spectral” or “eigendecomposition” theorem in linear algebra that
such a matrix can be written as UΛU T , where U is the p× p matrix whose columns are the eigenvectors,
and Λ is the diagonal matrix of eigenvalues.
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12.3.3 Point Predictions and Fitted Values

Just as with simple regression, the vector of fitted values Òm is linear in y, and given by
the hat matrix:

Òm = x bβ (12.41)

= x(xT x)−1xT y (12.42)
= Hy (12.43)

All of the interpretations given of the hat matrix in the previous chapter still apply.
The hat matrix remains square (n×n), symmetric (HT =H) and idempotent (HH=
H). One important property needs to be added for this general case: the trace is the
number of coefficients, trH= p + 1 (Exercise 6).

12.4 Properties of the Estimates

We will only look at the most basic properties of bias and variance here, deferring the
full sampling distribution, and confidence sets, to next time.

The fundamental observation is the following. Let’s hold x fixed, and let Y vary
randomly. Since

bβ= (xT x)−1xT Y (12.44)

and

Y= xβ+ ε (12.45)

we have
bβ= (xT x)−1xT xβ+(xT x)−1xT ε=β+(xT x)−1xT ε (12.46)

12.4.1 Bias

This is straight-forward:

E
�

bβ|x
�

= E
�

β+(xT x)−1xT ε|x
�

(12.47)

= β+(xT x)−1xTE [ε|x] (12.48)
= β (12.49)

Thus, the least squares estimate of the general linear model’s coefficients is condition-
ally unbiased, no matter what p is.

Notice that we needed to use one of the modeling assumptions to get this: if the
true regression function wasn’t linear, we couldn’t say E [ε|x] = 0.
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12.4.2 Variance and Standard Errors

This needs a little more work.

Var
�

bβ|x
�

= Var
�

β+(xT x)−1xT ε|x
�

(12.50)

= Var
�

(xT x)−1xT ε|x
�

(12.51)

= (xT x)−1xT Var [ε|x]x(xT x)−1 (12.52)

= (xT x)−1xT σ2Ix(xT x)−1 (12.53)

= σ2(xT x)−1xT x(xT x)−1 (12.54)

= σ2(xT x)−1 (12.55)

Again, this is true whatever p might be.
To understand this a little better, let’s re-write it slightly:

Var
�

bβ|x
�

=
σ2

n
(n−1xT x)−1 (12.56)

The first term, σ2/n, is what we’re familiar with from the simple linear model. As n
grows, we expect the entries in xT x to be increasing in magnitude, since they’re sums
over all n data points; dividing all entries in the matrix by n compensates for this. If
the sample covariances between all the predictor variables were 0, when we took the
inverse we’d get 1/s2

Xi
down the diagonal (except for the top of the diagonal), just as

we got 1/s2
X in the simple linear model.

12.5 Collinearity

I have been silently assuming that (xT x)−1 exists, that xT x is “invertible” or “non-
singular”. There are a number of equivalent conditions for a matrix to be invertible:

1. Its determinant is non-zero.

2. It is of “full column rank”, meaning all of its columns are linearly independent4.

3. It is of “full row rank”, meaning all of its rows are linearly independent.

The equivalence of these conditions are mathematical facts, proved in linear algebra;
I will not re-prove them here.

What does this amount to in terms of our data? It means (Exercise 5) that the
variables must be linearly independent in our sample. That is, there must not be any
set of constants a0,a1, . . .ap where, for all rows i ,

a0+
p
∑

j=1

a j xi j = 0 (12.57)

4Recall that a set of vectors is linearly independent if no linear combination of them is exactly zero.
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This, in other words, means that x must be of full column rank.
To understand why linearly dependence among variables is a problem, take an

easy case, where two predictors, say X1 and X2, are exactly equal to each other. It’s
then not surprising that we don’t have any way of estimating their coefficients. If we
get one set of predictions with coefficients β1,β2, we’d get exactly the same predic-
tions fromβ1+γ ,β2−γ , no matter what γ might be. If there are other exact linear
relations among two variables, we can similarly trade off their coefficients against each
other, without any change in anything we can observe. If there are exact linear rela-
tionships among more than two variables, all of their coefficients become ill-defined.

We will come back in a few chapters to what to do when faced with collinearity.
For now, we’ll just mention a few clear situations:

• If n < p + 1, the data are collinear.

• If one of the predictor variables is constant, the data are collinear.

• If two of the predictor variables are proportional to each other, the data are
collinear.

• If two of the predictor variables are otherwise linearly related, the data are
collinear.

While it’s important to double-check for these, for right now, we’ll hope it doesn’t
happen. That does mean, however, that we need to look and see whether it is hap-
pening.

12.6 R Practicalities

12.6.1 lm

lm works in almost the same way as for simple linear models. Let’s look at the model
from the last data analysis project:

mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")

The only real change is that we need to tell lm, through the formula, what all the
predictor variables are; we do this with + signs:

# Fit a model with three predictors
mob.lm <- lm(Mobility ~ Commute + Latitude + Longitude, data = mobility)

The order of the predictor variables only matters for the order in which the co-
efficients will be listed. All of the utility functions we already know still work, in
exactly the same way:

# Basic print-out:
print(mob.lm)
##
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## Call:
## lm(formula = Mobility ~ Commute + Latitude + Longitude, data = mobility)
##
## Coefficients:
## (Intercept) Commute Latitude Longitude
## -3.136e-02 2.010e-01 9.383e-04 -4.305e-05
# Coefficients:
coefficients(mob.lm)
## (Intercept) Commute Latitude Longitude
## -3.136000e-02 2.009679e-01 9.383055e-04 -4.304546e-05
# Confidence intervals for parameters:
confint(mob.lm)
## 2.5 % 97.5 %
## (Intercept) -0.0563094963 -0.0064104992
## Commute 0.1738437953 0.2280920687
## Latitude 0.0003580771 0.0015185339
## Longitude -0.0002827799 0.0001966889
# Fitted values:
head(fitted(mob.lm))
## 1 2 3 4 5 6
## 0.07172344 0.06156703 0.07867982 0.06006085 0.06464329 0.06943562
# Residuals:
head(residuals(mob.lm))
## 1 2 3 4 5 6
## -0.009524631 -0.007915094 -0.006044680 -0.003779634 -0.019842494 -0.017599771

summary is also basically the same, but slightly more elaborate.

summary(mob.lm)
##
## Call:
## lm(formula = Mobility ~ Commute + Latitude + Longitude, data = mobility)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.17583 -0.02222 -0.00586 0.01758 0.32290
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.136e-02 1.271e-02 -2.468 0.01383 *
## Commute 2.010e-01 1.382e-02 14.546 < 2e-16 ***
## Latitude 9.383e-04 2.956e-04 3.175 0.00156 **
## Longitude -4.305e-05 1.221e-04 -0.353 0.72456
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04227 on 725 degrees of freedom
## Multiple R-squared: 0.3583,Adjusted R-squared: 0.3557
## F-statistic: 134.9 on 3 and 725 DF, p-value: < 2.2e-16
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This lists t -tests for every coefficient; we will go exactly how to interpret those
next time.

As usual, it is much better to use a formula with just column names and a data
argument than to hard-code in particular vectors.

12.6.2 predict
predict also works in exactly the same way, only we need to give a data frame with
columns for each of the predictor variables:

predict(mob.lm, newdata = data.frame(Commute = 0.5, Latitude = 40.35, Longitude = -79.92)) # Where is that?
## 1
## 0.1104248

Confidence intervals for conditional means, and prediction intervals, work in just
the same way as before.

12.6.3 Exploratory Plots
While we will go over the diagnostic plots next time, some exploratory plots are
needed at this point. The simplest thing to do is a bivariate scatter-plot for every
pair of variables. You could do this by writing plot umpteen times, but this is such a
common task that there’s a useful R function to make all possible scatterplots, called
pairs (Figure 12.1).
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pairs(~Mobility + Commute + Latitude + Longitude, data = mobility)

FIGURE 12.1: Example of using pairs: the formula has an empty left-hand side (because there isn’t
really a distinguished response variable), and all the variables we want to plot on the right-hand
side. If we left out the formula, we’d get plots of all variables against all others: why isn’t that
sensible here? What would happen if we used the formula Mobility ∼ Commute + Latitude +
Longitude?
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12.7 Exercises
1. Show that

1
n

xT y− xT y (12.58)

is the p×1 matrix whose i th entry is the sample covariance between Xi and Y .

2. Show that
1
n

xT x− xT x (12.59)

is the p × p matrix whose i , j entry is the sample covariance between Xi and
X j .

3. ) Show the following:

(a) That in the multiple-regression model, the true vector of slopes β equals
Var [X ]−1 Cov [X ,Y ].

(b) That this vector of slopes minimizes the expected squared error.

4. Assume p = 2. Work out n−1xT x and (n−1xT x)−1 in terms of x1, x2, x1x2, x2
1

and x2
2 .

5. (a) Show if x is of full column rank, than xT x is also of full rank.

(b) Show that if xT x is not of full rank, then x must be of less than full column
rank.

6. Suppose that we have p predictor variables in a multiple linear regression. Show
that trH, the trace of the hat matrix, is exactly p + 1.

Hint: Use the “cyclic rule” for traces: for any three matrices a, b and c, where
abc is a square matrix, tr (abc) = tr (bca) = tr (cab).

Alternative hint (harder): First, show that H is idempotent, HH = H. Next,
show that the only possible eigenvalues of any idempotent matrix are 0 and 1.
Finally, show that H has exactly p + 1 non-zero eigenvalues.
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Chapter 13

Diagnostics and Inference for
Multiple Linear Regression

13.1 Lighting Review of Multiple Linear Regression
In the multiple linear regression model, we assume that the response Y is a linear
function of all the predictors, plus a constant, plus noise:

Y =β0+β1X1+β2X2+ . . .βp Xp + εi (13.1)

We assume nothing about the (marginal or joint) distributions of the Xi , but we do
assume that E [ε|X ] = 0, that Var [ε|X ] = σ2, and that εi is uncorrelated across data
points i . In matrix form, the model is

Y=Xβ+ ε (13.2)

where X includes an initial column of all 1s.
When we add the Gaussian noise assumption, we are making all of the assumptions

above, and further assuming that

ε∼MV N (0,σ2I) (13.3)

independently of X.
The least squares estimate of the coefficients is

bβ= (xT x)−1xT y (13.4)

Under the Gaussian noise assumption, this is also the maximum likelihood estimate.
The fitted values (i.e., estimates of the conditional means at data points used to

estimate the model) come from the “hat” or “influence” matrix:

Òm= x bβ=Hy (13.5)
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which is symmetric and idempotent. The vector of residuals is

e= (I−H)y (13.6)

and I−H is also symmetric and idempotent.
The expected mean squared error, which is the maximum likelihood estimate of

σ2, has a small negative bias:

E
�

σ̂2�=E
�

1
n

eT e
�

= σ2 n− p − 1
n

= σ2
�

1−
p + 1

n

�

(13.7)

Since Hxβ= xβ, the residuals are also

e= (I−H)ε (13.8)

hence
E [e] = 0 (13.9)

and
Var [e] = σ2(I−H) (13.10)

Under the Gaussian noise assumption, bβ, Òm and e all have Gaussian distributions
(about which more below, §13.3.1).

13.1.1 Point Predictions
Say that x′ is the m× (p + 1) dimensional matrix storing the values of the predictor
variables at m points where we want to make predictions. (These may or may not
include points we used to estimate the model, and m may be bigger, smaller or equal
to n.) Similarly, let Y′ be the m × 1 matrix of random values of Y at those points.
The point predictions we want to make are

E
�

Y′|X′ = x′
�

=m(x′) = x′β (13.11)

and we estimate this by
Òm(x′) = x′ bβ (13.12)

which is to say
Òm(x′) = x′(xT x)−1xT y (13.13)

(It’s easy to verify that when x′ = x, this reduces to Hy.)
Notice that the point predictions we make anywhere are always weighted sums

(linear combinations) of the values of the response we happened to observe when we
estimated the model. The weights just depend on the values of the predictors at the
original data points, and at the points where we’ll be making predictions — changing
the responses doesn’t change those weights.

13.2 Diagnostics for Multiple Linear Regression
Before proceeding to detailed statistical inference, we need to check our modeling
assumptions, which means we need diagnostics.
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13.2.1 Plot All the Things!

All of the plots we learned how to do for simple linear regression remain valuable:

1. Plot the residuals against the predictors. This now means p distinct plots, of
course. Each of them should show a flat scatter of points around 0 (because
E [ε|Xi ] = 0), of roughly constant width (because Var [ε|Xi ] = σ

2). Curvature
or steps to this plot is a sign of potential nonlinearity, or of an omitted variable.
Changing width is a potential sign of non-constant variance.

2. Plot the squared residuals against the predictors. Each of these p plots should
show a flat scatter of points around σ̂2.

3. Plot the residuals against the fitted values. This is an extra plot, redundant when
we only have one predictor (because the fitted values were linear in the predic-
tor).

4. Plot the squared residuals against the fitted values.

5. Plot the residuals against coordinates. If observations are dated, time-stamped,
or spatially located, plot the residuals as functions of time, or make a map. If
there is a meaningful order to the observations, plot residuals from successive
observations against each other. Because the εi are uncorrelated, all of these
plots should show a lack of structure.

6. Plot the residuals’ distribution against a Gaussian.

Out-of-sample predictions, with either random or deliberately selected testing
sets, also remain valuable.

13.2.1.1 Collinearity

A linear dependence between two (or more) columns of the x matrix is called collinear-
ity, and it keeps us from finding a solution by least squares. (In fact, collinearity
at the population level makes the coefficients ill-defined, not just impossible to esti-
mate.) Collinearity between a pair of variables will show up in a pairs plot as an exact
straight line. Collinearity among more than two variables will not. For instance, if
X3 = (X1+X2)/2, we can’t include all three variables in a regression, but we’d not see
that from any of the pairs.

Computationally, collinearity will show up in the form of the determinant of xT x
being zero. Equivalently, the smallest eigenvalue of xT x will be zero. If lm is given a
collinear set of predictor variables, it will sometimes give an error messages, but more
often it will decide not to estimate one of the collinear variables, and return an NA for
the offending coefficient.

We will return to the subject of collinearity in Chapter 15
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# Minimal simulation of interactions Model: Y = sin(X1*X2) + noise
X <- matrix(runif(200), ncol = 2)
Y <- sin(X[, 1] * X[, 2]) + rnorm(200, 0, 0.1)
df <- data.frame(Y = Y, X1 = X[, 1], X2 = X[, 2])
missed.interact <- lm(Y ~ X1 + X2, data = df)

FIGURE 13.1: Simulating data from the model Y = sinX1X2 + ε, to illustrate detecting interac-
tions. Self-checks: what is the distribution of X1 and X2? what is σ2?

13.2.1.2 Interactions

Another possible complication for multiple regression which we didn’t have with the
simple regression model is that of interactions between variables. One of our assump-
tions is that each variable makes a distinct, additive contribution to the response, and
the size of this contribution is completely insensitive to the contributions of other
variables. If this is not true — if the relationship between Y and Xi changes depend-
ing on the value of another predictor, X j — then there is an interaction between
them.

There are several ways of looking for interactions. We will return to this subject
in Chapter 17, but, for now, I’ll stick with describing some diagnostic procedures.

Sub-divide and re-estimate The simplest thing to do, if you suspect an interaction
between Xi and X j , is to sub-divide the data based on the value of X j , into two or
more parts, and re-estimate the model. If there is no interaction, the coefficient on
Xi should be the same, up to estimation error, in each part of the data. (That is, there
should be no significant difference in the estimated coefficients.) While in principle
straightforward, drawbacks to this include having to guess how to sub-divide the data
(into two parts? three? more?), and at what values of X j to make the cuts.

Scatterplot with color or symbols A more visual alternative is to plot the residuals
against Xi , as usual, but to give each point a color which varies continuously with the
value of X j . In the absence of interactions, there should be no pattern to the colors.
If there are interactions, however, we could predict what the residuals will be from
knowing both variables, so we should tend to see similarly-colored regions in the plot.

If color is not available, a similar effect can be obtained by using different plotting
symbols, corresponding to different values of X j .

3D Plots
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coefficients(summary(lm(Y ~ X1 + X2, data = df, subset = which(df$X2 < median(df$X2)))))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08750095 0.03203652 -2.731288 7.495314e-03
## X1 0.16382609 0.04505160 3.636410 4.449144e-04
## X2 0.49163582 0.08118309 6.055890 2.645673e-08
coefficients(summary(lm(Y ~ X1 + X2, data = df, subset = which(df$X2 > median(df$X2)))))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2388972 0.05086796 -4.696418 8.718322e-06
## X1 0.6225676 0.03652214 17.046308 6.188960e-31
## X2 0.3837526 0.06733542 5.699120 1.294438e-07

FIGURE 13.2: Here we have sub-setted the data based on the value of the second predictor (dividing
it, somewhat arbitrarily, at its median). Notice that the difference in the two coefficients for X1
is much larger than their standard errors. Can you give a significance level for the difference in
means?
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# Create a vector of gradually-changing colors, with one entry for each data
# point
the.colors <- rainbow(n = nrow(df))
# For each data point, see how it ranks according to X2, from smallest (1)
# to largest
the.ranks <- rank(df$X2)
# Plot residuals vs. X1, colored according to X2 Defining the color and rank
# vectors makes this next line a bit less mysterious, but it's not
# necessary; this could all be a one-liner.
plot(df$X1, residuals(missed.interact), pch = 19, col = the.colors[the.ranks],

xlab = expression(X[1]), ylab = "Residuals")

FIGURE 13.3: Plotting residuals from the linear model against X1, with the color of the point set
by the value of X2. Notice the clumping of points with similar colors: this means that knowing
both X1 and X2 lets us predict the residual. Horizontal bands of the same color, on the other hand,
would show that X2 helped predict the residuals but X1 did not, pointing to a mis-specification for
the dependence of Y on X2.
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library(scatterplot3d)
# Make a 3D scatterplot of residuals against the two predictor variables
s3d <- scatterplot3d(x = df$X1, y = df$X2, z = residuals(missed.interact), tick.marks = TRUE,

label.tick.marks = TRUE, xlab = expression(X[1]), ylab = expression(X[2]),
zlab = "Residuals")

# Add a plane with intercept 0 and both slopes also 0, for visual reference
s3d$plane3d(c(0, 0, 0), lty.box = "solid")

FIGURE 13.4: Residuals (vertical axis) vs. predictor variables. Notice that there are regions where
the residuals are persistent positive or negative, but that these are defined by the value of both vari-
ables, not one or the other alone.
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13.2.2 Remedies
All of the remedies for model problems we discussed earlier, for the simple linear
model, are still available to us.

Transform the response We can change the response variable from Y to g (Y ), in
the hope that the assumptions of the linear-Gaussian model are more nearly satisfied
for this new variable. That is, we hope that

g (Y ) =β0+β1X1+ . . .+βp Xp + ε, ε∼N (0,σ02 (13.14)

The Box-Cox method, if you want to use it, will work as well as it did for sim-
ple linear models. Computationally, we’d just fill the n × 1 response matrix with
[g (y1) g (y2) . . . g (yn)]

T , and proceed as with any other multiple regression.
However, see the handout on transformations for cautions on interpretation after

such transformations.

Transform the predictors We can also transform each of the predictors, making
the model

Y =β0+β1 f1(X1)+ . . .βp fp (Xp )+ ε, ε∼N (0,σ2) (13.15)

As the notation suggests, each Xi could be subject to a different transformation. Again,
it’s just a matter of what we put in the columns of the x matrix before solving for bβ.
Again, see the handout on transformations for cautions on interpretations.

(A model of this form is called an additive model; in 402 we will look extensively
at how they can be estimated, by automatically searching for near-optimal transfor-
mations.)

An alternative is to transform, not each predictor variable, but their linear com-
bination:

Y = h
�

β0+β1X1+ . . .βp Xp

�

+ ε, ε∼N (0,σ2) (13.16)

This is called a “single index” model, because there is only one combination of the
predictors, the weighted sumβ1X1+. . .βp Xp , which matters to the response. Notice
that this is not the same model as the transform-Y model, even if h = g−1, because of
the different role of the noise.

Changing the variables used One option which is available to us with multiple
regression is to add in new variables, or to remove ones we’re already using. This
should be done carefully, with an eye towards satisfying the model assumptions, rather
than blindly increasing some score. We will discuss this extensively in Chapters 19
and 22.

13.2.3 Plot All the Things?
There is one important caution about exuberant diagnostics plotting. This is that
the more checks you run, the bigger the chance that you will find something which
looks weird just by chance. If we were doing formal hypothesis tests, and insisted on a
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223 13.3. INFERENCE FOR MULTIPLE LINEAR REGRESSION

uniform false positive rate of α, then after running r tests, we’d expect to make≈ rα
rejections, even if all of our null hypotheses are true. (Why?) If you are doing lots of
diagnostic plots — say, 20 or 30 or more — it becomes a very good idea to do some
randomization to see whether the magnitude of the bad-looking things you’re seeing
is about what you should be anticipating from one plot or another, even if everything
was absolutely fine.

13.3 Inference for Multiple Linear Regression

Unless I say otherwise, all results in this section presume that all of the modeling
assumptions, Gaussian noise very much included, are correct. Also, all distributions
stated are conditional on x.

13.3.1 Sampling Distributions

As in the simple linear model, the sampling distributions are the basis of all inference.

13.3.1.1 Gaussian Sampling Distributions

Gaussian distribution of coefficient estimators In the simple linear model, be-
cause the noise ε is Gaussian, and the coefficient estimators were linear in the noise,
bβ0 and bβ1 were also Gaussian. This remains true in for Gaussian multiple linear
regression models:

bβ = (xT x)xT Y (13.17)

= (xT x)xT (xβ+ ε) (13.18)

= β+(xT x)xT ε (13.19)

Since (xT x)xT ε is a constant times a Gaussian, it is also a Gaussian; adding on another
Gaussian still leaves us with a Gaussian. We saw the expectation and variance last time,
so

bβ∼MV N (β,σ2(xT x)−1) (13.20)

It follows that
bβi ∼N

�

βi ,σ
2(xT x)−1

i i

�

(13.21)

Gaussian distribution of estimated conditional means The same logic applies to
the estimates of conditional means. In §13.1.1, we saw that the estimated conditional
means at new observations x′ are given by

Òm(x′) = x′(xT x)−1xT y (13.22)

so (Exercise )
Òm(x′)∼MV N (x′β,σ2x′(xT x)−1(x′)T ) (13.23)
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Gaussian distribution of fitted values Eq. 13.23 simplifies for the special case of
the fitted values, i.e., the estimated conditional means on the original data.

Òm(x′)∼MV N (xβ,σ2H) (13.24)

Gaussian distribution of residuals Similarly, the residuals have a Gaussian distri-
bution:

e∼MV N (0,σ2(I−H) (13.25)

13.3.1.2 σ̂2 and Degrees of Freedom

The in-sample mean squared error σ̂2 = n−1eT e has the distribution

nσ̂2

σ2
∼ χ 2

n−(p+1) (13.26)

I won’t prove this here, because it involves the same sort of tedious manipulations
of Gaussians as I evaded in showing the special-case χ 2

n−2 result for simple linear mod-
els. To give a hint of what’s going on, though, I’ll make two (related) observations.

Constraints on the residuals The residuals are not all independent of each other.
In the case of the simple linear model, the fact that we estimated the model by least
squares left us with two constraints,

∑

i ei = 0 and
∑

i ei xi = 0. If we had only one
constraint, that would let us fill in the last residual if we knew the other n−1 residu-
als. Having two constraints meant that knowing any n− 2 residuals determined the
remaining two.

We got those constraints from the normal or estimating equations, which in turn
came from setting the derivative of the mean squared error (or of the log-likelihood)
to zero. In the multiple regression model, when we set the derivative to zero, we get
the matrix equation

xT (y− x bβ) = 0 (13.27)

But the term in parentheses is just e, so the equation is

xT e= 0 (13.28)

Expanding out the matrix multiplication,











∑

i ei
∑

i xi1ei
...

∑

i xi p ei











=











0
0
...
0











(13.29)

Thus the residuals are subject to p+1 linear constraints, and knowing any n−(p+1)
of them will fix the rest.
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Geometric interpretation of constraints The vector of residuals e is a point in
an n-dimensional space. As a random vector, without any constraints it could lie
anywhere in that space, as, for instance, ε can. The constraints, however, for it to live
in a lower-dimensional subspace, specifically, a space of dimension n− (p + 1).

Bias of σ̂2 As more of a formal manipulation, when we look at the expectation of
σ̂2, we get

E
�

σ̂2� =
1
n
E
�

eT e
�

(13.30)

=
1
n
E
�

((I−H)e)T ((I−H)e)
�

(13.31)

=
1
n
E
�

eT (IT −HT )(I−H)e
�

(13.32)

=
1
n
E
�

eT (I−H−HT +HT H)e
�

(13.33)

=
1
n
E
�

eT (I−H)e
�

(13.34)

using the easily-checked facts that H = HT , and that H2 = H. We’ve therefore re-
duced the expectation to a quadratic form, and so (Chapter 11)

E
�

σ̂2� =
1
n

tr ((I−H)Var [e]) (13.35)

=
1
n

tr ((I−H)σ2(I−H)) (13.36)

=
σ2

n
tr (I−H)2 (13.37)

=
σ2

n
tr (I−H) (13.38)

since we’ve just seen that (I−H)2 = (I−H), and (Eq. 13.10) Var [e] = σ2(I−H).
Making one last push,

E
�

σ̂2�=
σ2

n
(n− p − 1) (13.39)

since tr I= n while (as you proved in the homework) tr H = p + 1.

13.3.2 t Distributions for Coefficient and Conditional Mean Es-
timators

From Eq. 13.21, it follows that

β̂i −βi

σ2(xT x)−1
i i

∼N (0,1) (13.40)
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This would be enough to let us do hypothesis tests and form confidence intervals, if
only we knew σ2, Since that’s estimated itself, and σ̂2 has a distribution derived from
a χ 2

n−p−1, we can go through the same arguments we did in the simple linear model
case to get t distributions. Specifically,

β̂i −βi

bse
h

β̂i

i ∼ tn−p−1 (13.41)

The same applies to the estimated conditional means, and to the distribution of a
new Y ′ around the estimated conditional mean (in a prediction interval). Thus, all
the theory we did for parametric and predictive inference in the simple model carries
over, just with a different number of degrees of freedom.

As with the simple model, tn−p−1 → N (0,1), so t statistics approach z statistics
as the sample size grows.

13.3.3 What, Exactly, Is R Testing?

The summary function lists a p-value for each coefficient in a linear model. For each
coefficient, say βi , this is the p-value in testing the hypothesis that βi = 0. It is
important to be very clear about exactly what this means.

The hypothesis being tested is “Y is a linear function of all of the Xi , i ∈ 1 : p, with
constant-variance, independent Gaussian noise, and it just so happens that βi = 0”.
Since, as we saw in Chapter 12, the optimal coefficients for each predictor variable
depend on which other variables are included in the model (through the off-diagonal
terms in (xT x)−1), this is a very specific hypothesis. In particular, whether the null
hypothesis that βi = 0 is true or not can easily depend on what other variables are
included in the regression. What is really being checked here is, in ordinary language,
something like “If you included all these other variables, would the model really fit
that much better if you gave Xi a non-zero slope?”

13.3.3.1 Why, on Earth, Would You Want to Test That?

I am afraid that usually the answer is “you do not actually want to test that”. You
should ask yourself, carefully, whether it would really make any difference to you to
know that the coefficient was precisely zero. (See Chapter 7, for some ideas about
when that’s worth testing and when it isn’t.)

13.3.3.2 What Will Tend to Make a β̂ Significant?

The t statistic for testing βi = 0 is

β̂i

bse
h

β̂i

i (13.42)
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227 13.3. INFERENCE FOR MULTIPLE LINEAR REGRESSION

We know that β̂i , being unbiased, will have a distribution centered on βi , and the

typical deviation away from that will in fact be about bse
h

β̂i

i

in size, so we need to

get a grip on that standard error.
From the theory above,

bse
h

β̂i

i

=

√

√

√ σ̂2

n

�

1
n

xT x
�−1

(13.43)

You showed in the homework (problem 3) that

�

1
n

xT x
�

=













1 x1 x2 . . . xp

x1 x2
1 x1x2 . . . x1xp

...
...

...
...

...
xp x1xp . . . x2

p













(13.44)

What will happen when we invert this? You can check (Exercise 4) that if xi x j =
x̄i x̄ j for all i , j , we’ll get a diagonal matrix. Except for the very first entry on the
diagonal (corresponding to the intercept), the entries will be inversely proportional
to the variances of the predictor variables. If xi x j 6= x̄i x̄ j , the predictors are correlated,
and this is going to increase the variance of their coefficients.

So, to sum up, four things control the standard error in β̂i : σ
2, the variance

around the true regression function, since all standard errors are proportional to σ ;
n, since (all else being equal) all the standard errors are proportional to 1/

p
n; the

sample variance of Xi (since having data more widely spread on that axis makes it eas-
ier to find the slope); and the sample correlation between Xi and the other X j (since
strong correlations, positive or negative, make it harder to find their specific slopes).

What are the consequences?

1. Since, on any one data set, σ2 and n are the same for all coefficients, the ones
which are going to have the biggest test statistics, and so be “most significant”,
are the ones where (i) |βi | is large, (ii) the sample variance of Xi is large, and
(iii) the sample correlation of Xi with other predictors is small.

2. The coefficients with the smallest p-values aren’t necessarily the largest, let
alone the most important; they may just be the most precisely measured.

3. Two people dealing with the same system, with precisely the same parameters
and even the same n, can find different sets of coefficients to be significant,
if their design matrices x differ. In fact, there need be no overlap in which
coefficients are significant at all1.

4. Adding or removing predictors will change which coefficients are significant,
not just by changing the βi , but also changing the standard error.

1In this case, the natural thing to do would be to combine the data sets.
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5. Holding all the parameters fixed and letting n grow, the t statistic will go off
to ±∞, unless βi = 0 exactly. Every non-zero coefficient eventually becomes
significant at arbitrarily small levels.

The same reasoning as in Chapter 7 shows that p-values will tend to go to zero
exponentially fast as n grows, unless of course βi = 0.

13.3.3.3 Things It Would Be Very Stupid to Do, So Of Course You Would
Never Even Think of Doing Them

• Saying “βi wasn’t significantly different from zero, so Xi doesn’t matter for
Y ”. After all, Xi could still be an important cause of Y , but we don’t have
enough data, or enough variance on Xi , or enough variance in Xi uncorrelated
with other X ’s, to accurately estimate its slope. All of these would prevent us
from saying thatβi was significantly different from 0, i.e., distinguishable from
0 with high reliability.

• Saying “βi was significantly different from zero, so Xi really matters to Y ”.
After all, any βi which is not exactly zero can be made arbitrarily significant
by increasing n and/or the sample variance of Xi . That is, its t statistic will go
to ±∞, and the p-value as small as you have patience to make it.

• Deleting all the variables whose coefficients didn’t have stars by them, and re-
running the regression. After all, since it makes no sense to pretend that the
statistically significant variables are the only ones which matter, limiting the
regression to the statistically significant variables is even less sensible.

• Saying “all my coefficients are really significant, so the linear-Gaussian model
must be right”. After all, all the hypothesis tests on individual coefficients pre-
sume the linear Gaussian model, both in the null and in the alternative. The
tests have no power to notice nonlinearities, non-constant noise variance, or
non-Gaussian noise.

13.4 Further Reading

The marginal figures are taken from Allie Brosh, “This Is Why I’ll Never Be an Adult”,
Hyperbole and a Half, 17 June 2010, without permission but with the deepest possible
respect. If these notes do nothing beyond inspiring you to read one of the greatest
moral psychologists of our age, they will have done more than many classes.

On a profoundly lower plane, Berk (2004) has one of the most sensible discussions
of the uses and abuses of statistical inference in multiple regression I know of.

For an extensive discussion of additive models, where we automatically search
for transformations of the predictors, see Shalizi (forthcoming, ch. 9). Single-index
models are used widely in econometrics; see, for instance, Li and Racine (2007).
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13.5 Exercises
1. Prove Eq. 13.10.

2. Prove Eq. 13.23

3. What if all null hypotheses were true? (After Freedman 1983) Draw a Y from
a standard Gaussian distribution with 1000 observations. Draw X by setting
p = 100, and giving each Xi a standard Gaussian distribution.

(a) Regress Y on all 100 X ’s (plus an intercept). How many of the βi s are
significant at the 10% level? At the 5% level? At the 1% level? What is the
R2? The adjusted R2?

(b) Re-run the regression using just the variables which are significant at the
5% level. Plot a histogram of the change in coefficient for each variable
from the old regression to the new regression. How many variables are
now significant at the 1% level? What is the R2? The adjusted R2?

4. Standard errors and correlations among the predictors Assume that p = 2, so
n−1xT x is a 3× 3 matrix.

(a) Suppose that x1x2 = x̄1 x̄2, so there is no sample covariance between the
two predictors. Find ( 1

n xT x)−1 in terms of x̄1, x̄2, x2
1 and x2

2 . Simplify,
where possible, to eliminate second moments in favor of variances.

(b) Give the general form of the inverse, ( 1
n xT x)−1, without assuming x1x2 =

x̄1 x̄2. How, qualitatively, do the variances of the slope estimates depend
on the variances and covariances of the predictors?
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Chapter 14

Polynomial and Categorical
Regression

14.1 Essentials of Multiple Linear Regression
We predict a scalar random variable Y as a linear function of p different predictor
variables X1, . . .Xp , plus noise:

Y =β0+β1X1+ . . .βp Xp + ε

and assume that E [ε|X ] = 0, Var [ε|X ] = σ2, with ε being uncorrelated across obser-
vations. In matrix form,

Y=Xβ+ ε

the design matrix X including an extra column of 1s to handle the intercept, and
E [ε|X] = 0, Var [ε|X] = σ2I.

If we add the Gaussian noise assumption, ε ∼ MV N (0,σ2I), independent of all
the predictor variables.

The least squares estimate of the coefficient vector, which is also the maximum
likelihood estimate if the noise is Gaussian, is

bβ= (xT x)−1xT y

These are unbiased, with variance σ2(xT x)−1. Under the Gaussian noise assumption,
bβ itself has a Gaussian distribution. The standard error bse

h

β̂i

i

= σ
Æ

(xT x)−1
i i . Fitted

values are given by x bβ = Hy, and residuals by e = (I−H)y. Fitted values bm and
residuals e are also unbiased and have Gaussian distributions, with variance matrices
σ2H and σ2(I−H), respectively.

When (as is usually the case) σ2 is unknown, the maximum likelihood estimator
is the in-sample mean-squared error, n−1(eT e) is a negatively biased estimator of σ2:
E
�

σ̂2
�

= σ2 n−p−1
n . Under the Gaussian noise assumption, nσ̂2/σ2 ∼ χ 2

n−p−1. Also

230

http://www.stat.cmu.edu/~cshalizi/TALR/


231 14.2. ADDING CURVATURE: POLYNOMIAL REGRESSION

under the Gaussian noise assumption, the Gaussian sampling distribution of any par-
ticular coefficient or conditional mean can be converted into a t distribution, with
n − p − 1 degrees of freedom, by using the appropriate standard error, obtained by
plugging in the de-biased estimate of σ2.

None of these results require any assumptions on the predictor variables Xi , except
that they take real numerical values, and that they are linearly independent.

14.2 Adding Curvature: Polynomial Regression

Because the predictor variables are almost totally arbitrary, there is no harm in making
one predictor variable a function of another, so long as it isn’t a linear function. In
particular, there is nothing wrong with a model like

Y =β0+β1X1+β2X 2
1 + . . .βd X d

1 +βd+1X2+ . . .βp+d−1Xp + ε

where instead of Y being linearly related to X1, it’s polynomially related, with the
order of the polynomial being d . We just add d − 1 columns to the design matrix
x, containing x2

1 , x3
1 , . . . xd

1 , and treat them just as we would any other predictor vari-

ables. With this expanded design matrix, it’s still true that bβ = (xT x)−1xT y, that
fitted values are Hy (using the expanded x to get H), etc. The number of degrees of
freedom for the residuals will be n− (p + 1+(d − 1)).

Nor is there principled reason why every predictor variable can’t have its own
polynomial, each with (potentially) a different degree di . In that case, numbering the
βs sequentially gets tricky, and better notation would be something like

Y =β0+
p
∑

i=1

di
∑

j=1

βi , j X
j

i + ε

though then we’d have to remember to “stack” the βi , j s into a vector of length 1+
∑p

i=1 di for estimation.
Mathematically, we are treating Xi and X 2

i (and X 3
i , etc.) as distinct predictor

variables, but that’s fine, since they won’t be linearly dependent on each other1, or
linearly dependent on other predictors2. Again, we just expand the design matrix
with extra columns for all the desired powers of each predictor variable. The number
of degrees of freedom for the residuals will be n− (1+

∑

i di ).
There are a bunch of mathematical and statistical points to make about polyno-

mial regression, but let’s take a look at how we’d actually estimate one of these models
in R first.

1Well, hardly ever: if Xi was only ever, say, 0 or 1, then it would be equal to X 2
i . Such awkward cases

happen with probability 0 for continuous variables.
2Again, you can contrive awkward cases where this is not true, if you really want to. For instance, if X1

and X2 are horizontal and vertical coordinates of points laid out on a circle, they are linearly independent of
each other and of their own squares, but X 2

1 and X 2
2 are linearly dependent. (Why?) The linear dependence

would be broken if the points were laid out in an ellipse or oval, however. (Why?)
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14.2.1 R Practicalities

There are a couple of ways of doing polynomial regression in R.
The most basic is to manually add columns to the data frame with the desired

powers, and then include those extra columns in the regression formula:

df$x.sq <- df$x^2
lm(y ~ x + x.sq, data = df)

I do not recommend using this form, since it means that you need to do a lot of
repetitive, boring, error-prone work, and get it exactly right. (For example, to do
predictions with predict, you’d need to specify the values for all the powers of all
the predictors.)

A somewhat more elegant alternative is to tell R to use various powers in the
formula itself:

lm(y ~ x + I(x^2), data = df)

Here I() is the identity function, which tells R “leave this alone”. We use it here
because the usual symbol for raising to a power, ^, has a special meaning in linear-
model formulas, relating to interactions. (We’ll cover this in Chapter 17, or, if you’re
impatient, see help(formula.lm).) When you do this, lm will create the relevant
columns in the matrix it uses internally to calculate the estimates, but it leaves df
alone. When it comes time to make a prediction, however, R will take care of the
transformations on the new data.

Finally, since it can grow tedious to write out all the powers one wants, there
is the convenience function poly, which will create all the necessary columns for a
polynomial of a specified degree:

lm(y ~ poly(x, 2), data = df)

Here the second argument, degree, tells polywhat order of polynomial to use. R
remembers how this works when the estimated model is used in predict. My advice
is to use poly, but the other forms aren’t wrong.

Small demo Here is a small demo of polynomial regression, using the data from the
first data analysis project.

# Load the data
mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")
mob.quad <- lm(Mobility ~ Commute + poly(Latitude, 2) + Longitude, data = mobility)

This fits a quadratic in the Latitude variable, but linear terms for the other two
predictors. You will notice that summary does nothing strange here:
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summary(mob.quad)
##
## Call:
## lm(formula = Mobility ~ Commute + poly(Latitude, 2) + Longitude,
## data = mobility)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.12828 -0.02384 -0.00691 0.01722 0.32190
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0261223 0.0121233 -2.155 0.0315
## Commute 0.1898429 0.0137167 13.840 < 2e-16
## poly(Latitude, 2)1 0.1209235 0.0475524 2.543 0.0112
## poly(Latitude, 2)2 -0.2596006 0.0484131 -5.362 1.11e-07
## Longitude -0.0004245 0.0001394 -3.046 0.0024
##
## Residual standard error: 0.04148 on 724 degrees of freedom
## Multiple R-squared: 0.3828,Adjusted R-squared: 0.3794
## F-statistic: 112.3 on 4 and 724 DF, p-value: < 2.2e-16

and we can use predict as usual:

predict(mob.quad, newdata = data.frame(Commute = 0.298, Latitude = 40.57, Longitude = -79.58))
## 1
## 0.07079416

See also Figure 14.1 for an illustration that this really is giving us behavior which
is non-linear in the Latitude variable.

14.2.2 Properties, Issues, and Caveats

Diagnostic plots The appropriate diagnostic plot is of residuals against the predic-
tor. There is no need to make separate plots of residuals against each power of the
predictor.

Smoothness Polynomial functions vary continuously in all their arguments. In
fact, they are “smooth” in the sense in which mathematicians use that word, meaning
that all their derivatives exist and are continuous, too. This is desirable if you think the
real regression function you’re trying to model is smooth, but not if you think there
are sharp thresholds or jumps. Polynomials can approximate thresholds arbitrarily
closely, but you end up needing a very high order polynomial.

Interpretation In a linear model, we were able to offer simple interpretations of
the coefficients, in terms of slopes of the regression surface.
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hypothetical.pghs <- data.frame(Commute = 0.287, Latitude = seq(from = min(mobility$Latitude),
to = max(mobility$Latitude), length.out = 100), Longitude = -79.92)

plot(hypothetical.pghs$Latitude, predict(mob.quad, newdata = hypothetical.pghs),
xlab = "Latitude", ylab = "Expected mobility", type = "l")

FIGURE 14.1: Predicted rates of economic mobility for hypothetical communities at the same lon-
gitude as Pittsburgh, and with the same proportion of workers with short commutes, but different
latitudes.
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In the multiple linear regression model, we could say

βi =E
�

Y |Xi = xi + 1,X−i = x−i

�

−E
�

Y |Xi = xi ,X−i = x−i

�

(“βi is the difference in the expected response when Xi is increased by one unit, all
other predictor variables being equal”), or

βi =
E
�

Y |Xi = xi + h,X−i = x−i

�

−E
�

Y |Xi = xi ,X−i = x−i

�

h

(“βi is the slope of the expected response as Xi is varied, all other predictor variables
being equal”), or

βi =
∂ E [Y |X = x]

∂ xi

(“βi is the rate of change in the expected response as Xi varies”). None of these state-
ments is true any more in a polynomial regression.

Take them in reverse order. The rate of change in E [Y |X ] when we vary Xi is
now

∂ E [Y |X = x]
∂ xi

=
d
∑

j=1

jβi , j x j−1
i

This not only involves all the coefficients for all the powers of Xi , but also has a
different answer at different points xi . The linear coefficient on Xi ,βi ,1, is the rate of
change when Xi = 0, but not otherwise. There just is no one answer to “what’s the
rate of change?”.

Similarly, if we ask for the slope,

E
�

Y |Xi = xi + h,X−i = x−i

�

−E
�

Y |Xi = xi ,X−i = x−i

�

h

that isn’t given by one single number either; it depends on the starting value xi and
the size of the change h. If h is very close to very, the slope will be approximately
h
∑d

j=1 jβi , j x j−1
i , but not, generally, otherwise. If you really want to know, you

have to actually plug in to the polynomial.
Finally, the change associated with a one-unit change in Xi is just a special case

of the slope when h = 1, and so not equal to any of the coefficients either. It will
definitely change as the starting point xi changes.

Rather than trying to give one single rate of change (or slope or response-associated-
to-a-one-unit-change) when none exists, a more honest procedure is to make a plot,
either of the polynomial itself, or of the derivative. (See the example in the model
report for the first DAP.)

Interpreting the polynomial as a transformation of Xi If you really wanted to,
you could try to complete the square (cube, other polynomial) to re-write the poly-
nomial

β1X1+β2X 2
1 + . . .βd X d

1 = k +βd

d
∏

j=1

(X1− c j )
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You could then say that βd was the change in the response for a one-unit change in
∏d

j=1 (X1− c j ), etc., etc. The zeroes or roots of the polynomial, c j , will be functions
of the coefficients on the lower powers of X1, but their sampling distributions, unlike
those of the β j , would be very tricky, and so, consequently, would their confidence
sets. Moreover, it is not very common for the transformed predictor

∏d
j=1 (X1− c j )

to itself be a particularly interpretable variable, so this is often a considerable amount
of work for little gain.

“Testing for nonlinearity” It is not uncommon to see people claiming to test whether
the relationship between Y and Xi is linear by adding a quadratic term in Xi and test-
ing whether the coefficient on it significantly different from zero. This would work
fine if you knew that the only possible sort of nonlinearity was quadratic — that if
the relationship wasn’t a straight line, it was a parabola. Since it is perfectly possible
to have a very nonlinear relationship where the coefficient on X 2

i is zero, this is not a
very powerful test.

Over-fitting and wiggliness A polynomial of degree d can exactly fit any d points.
(Any two points lie on a line, any three on a parabola, etc.) Using a high-order polyno-
mial, or even summing a large number of low-order polynomials, can therefore lead
to curves which come very close to the data we used to estimate them, but predict
very badly. In particular, high-order polynomials can display very wild oscillations
in between the data points. Plotting the function in between the data points (using
predict) is a good way of noting this. We will also look at more formal checks when
we cover cross-validation later in the course.

Picking the polynomial order The best way to pick the polynomial order is on
the basis of some actual scientific theory which says that the relationship between Y
and Xi should, indeed, by a polynomial of order di . Failing that, carefully examining
the diagnostic plots is your next best bet. Finally, the methods we’ll talk about for
variable and model selection in forthcoming chapters can also be applied to picking
the order of a polynomial, though as we will see, you need to be very careful about
what those methods actually do, and whether that’s really what you want.

14.2.3 Orthogonal Polynomials
I have written out polynomial regression above in its most readily-comprehended
way, but that is not always the most best way to estimate it. We know, from our
previous examination of multiple linear regression, that we’ll get smaller standard er-
rors when our predictor variables are uncorrelated. While Xi and its higher powers
are linearly independent, they are generally (for most distributions) somewhat corre-
lated. An alternative to regressing on the powers of Xi is to regress on linear function
of Xi , a quadratic function of Xi , a cubic, etc., which are chosen so that they are un-
correlated on the data. These functions, being uncorrelated, are called orthogonal.
Any polynomial could also be expressed as a linear combination of these basis func-
tions, which are thus called orthogonal polynomials. The advantage, again, is that
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the estimates of coefficients on these basis functions have less variance than using the
powers of Xi .

In fact, this is what the poly function does by default; to force it to use the powers
of Xi , we need to set the raw option to TRUE.

To be concrete, let’s start with the linear function. We’ll arrange it so that it has
mean zero (and therefore doesn’t contribute to the intercept):

n
∑

i=1

αi10+αi11xi1 = 0

Here I am using αi j k to indicate the coefficient on X k
i in the j th order basis function

for Xi . This is one equation with two unknowns, so we need another equation to
be able to solve the system. What poly does is to impose a constraint on the sample
variance:

n
∑

i=1

(αi10+αi11xi1)
2 = 1

(Why is this a constraint on the variance?) The quadratic function is found by requir-
ing that it have mean zero,

n
∑

i=1

αi20+αi21xi1+αi22x2
i1 = 0 ,

that it be uncorrelated with the linear function,

n
∑

i=1

(αi10+αi11xi1)
�

αi20+αi21xi1+αi22x2
i1

�

= 0 ,

and that it have the same variance as the linear function:

n
∑

i=1

�

αi20+αi21xi1+αi22x2
i1

�2 = 1

To get the j th basis function, we need all the j −1 basis functions that came before it,
so we can make sure it has mean 0, that it’s uncorrelated with all of the others, and
that it has the same variance. All of the coefficients I’ve written α are encoded in the
attributes of the output of poly, though not always in an especially humanly-readable
way. (For details, see help(poly), and the references it cites.)

Notice that changing the sample values of Xi will change the basis functions; one
reason to use the powers of Xi instead would be to make it easier to compare coeffi-
cients across data sets. If the distribution of Xi is known, one can work out systems
of orthogonal polynomials in advance, for instance, the Legendre polynomials which
are orthogonal when the predictor variable has a uniform distribution3.

3See, for instance, Wikipedia, s.v. “Legendre polynomials”.
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14.2.4 Non-Polynomial Function Bases
There are basically three reasons to want to use polynomials. First, many scientific
theories claim that there are polynomial relationships between variables in the real
world. Second, they’re things we’ve all been familiar with since basic algebra, so we
understand them very well, we find them un-intimidating, and very little math is re-
quired to use them. Third, they have the nice property that any well-behaved function
can be approximated arbitrarily closely by a polynomial of sufficiently high degree4.

If we don’t have strong scientific reasons to want to use polynomials, and are will-
ing to go beyond basic algebra, there are many other systems of functions which also
have the universal approximation property. If we’re just doing curve fitting, it can
be just as good, and sometimes much better, to use one of these other function bases.
For instance, we might use sines and cosines at multiples of a basic frequencyω,

d
∑

j=1

γi1 j sin ( jωXi )+ γi2 j cos ( jωXi )

Such a basis would be especially appropriate for variables which are really angles, or
when there is a periodicity in the system. Exactly matching a sum of sines and cosines
like the above would require an infinite-order polynomial; conversely, matching a
linear function with a sum of sines and cosines would require letting d →∞.

As this suggests, there is a bit of an art to picking a suitable function basis; as it also
suggests, it’s an area where knowledge of more advanced mathematics (specifically,
functional analysis) can be really useful to actually doing statistics.

4See further reading, below, for details.
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14.3 Categorical Predictors

We often have variables which we think are related to Y which are not real num-
bers, but are qualitative rather than quantitative — answers to “what kind?” rather
than to “how much?”. For people, these might be things like sex, gender, race, caste,
religious affiliation, education attainment, occupation, whether they’ve had chicken
pox, whether they have previously defaulted on a loan, or their country of citizenship.
For geographic communities (as in the data analysis project), state was a categorical
variable, though not one we used because we didn’t know how.

Some of these are purely qualitative, coming in distinct types, but with no sort
of order or ranking implied; these are often specifically called “categorical”, and the
distinct values “categories”. (The values are also called “levels”, though that’s not a
good metaphor without an order.) Other have distinct levels which can be put in a
sensible order, but there is no real sense that the distance between one level and the
next is the same — they are ordinal but not metric. When it is necessary to distinguish
non-ordinal categorical variables, they are often called nominal, to indicate that their
values have names but no order.

In R, categorical variables are represented by a special data type called factor,
which has as a sub-type for ordinal variables the data type ordered.

In this section, we’ll see how to include both categorical and ordinal variables in
multiple linear regression models, by coding them as numerical variables, which we
know how to handle.

14.3.1 Binary Categories

The simplest case is that of a binary variable B , one which comes in two qualitatively
different types. To represent this in a format which fits with the regression model,
we pick one of the two levels or categories as the “reference” or “baseline” category.
We then add a column XB to the design matrix x which indicates, for each data point,
whether it belongs to the reference category (XB = 0) or to the other category (XB =
1). This is called an indicator variable or dummy variable. That is, we code the
qualitative categories as 0 and 1.

We then regress on the indicator variable, along with all of the others, getting the
model

Y =β0+βB Xb +β1X1+ . . .βp Xp + ε

The coefficientβb is the expected difference in Y between two units which are iden-
tical, except that one of them has Xb = 0 and the other has Xb = 1. That is, it’s the
expected difference in the response between members of the reference category and
members of the other category, all else being equal. For this reason,βB is often called
the contrast between the two classes.

Geometrically, if we plot the expected value of Y against X1, . . .Xp , we will now
get two regression surfaces: they will be parallel to each other, and offset by βB . We
thus have a model where each category gets its own intercept: β0 for the reference
class, β0+βB for the other class. You should, at this point, convince yourself that if
we had switched which class was the reference class, we’d get exactly the same slopes,
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only with the over-all intercept being β0+βB and the contrast being −βB (Exercise
1).

In R If a data frame has a column which is a two-valued factor already, and it’s in-
cluded in the right-hand side of the regression formula, lmhandles creating the column
of indicator variables internally.

Here, for instance, we use a classic data set to regress the weight of a cat’s heart
on its body weight and its sex. (If it worked, such a model would be useful in gauging
doses of veterinary heart medicines.)

library(MASS)
data(cats)
Hwt.lm <- lm(Hwt ~ Sex + Bwt, data = cats)
summary(Hwt.lm)
##
## Call:
## lm(formula = Hwt ~ Sex + Bwt, data = cats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -0.9700 -0.0948 1.0432 5.1016
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4149 0.7273 -0.571 0.569
## SexM -0.0821 0.3040 -0.270 0.788
## Bwt 4.0758 0.2948 13.826 <2e-16
##
## Residual standard error: 1.457 on 141 degrees of freedom
## Multiple R-squared: 0.6468,Adjusted R-squared: 0.6418
## F-statistic: 129.1 on 2 and 141 DF, p-value: < 2.2e-16

Sex is coded as F and M, and R’s output indicates that it chose F as the reference
category.

Diagnostics The mean of the residuals within each category is guaranteed to be
zero (Exercise 2), but they should also have the same variance and otherwise the same
distribution, so there is still some point in plotting residuals against XB . Sometimes
a little jitter on the horizontal axis helps, or making a box-plot.

Inference There is absolutely nothing special about the inferential statistics for the
estimated contrast β̂B . It works just like inference for any other regression coefficient.

Why not just split the data? If we want to give each class its own intercept, why
not just split the data and estimate two models, one for each class? The answer is that
sometimes we’ll do just this, especially if there’s a lot of data for each class. However,
if the regression surfaces for the two categories really are parallel to each other, by
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splitting the data we’re losing some precision in our estimate of the common slopes,
without gaining anything. In fact, if the two surfaces are nearly parallel, for moderate
sample sizes the small bias that comes from pretending the slopes are all equal can be
overwhelmed by the reduction in variance.

Why not two columns? It’s natural to wonder why we have to pick out one level
as the reference, and estimate a contrast. Why not add two columns to x, one indi-
cating each class? The problem is that then those two columns will be linearly de-
pendent (they’ll always add up to one), so the data would be collinear and the model
in-estimable.

Why not two slopes? The model we’ve specified has two parallel regression sur-
faces, with the same slopes but different intercepts. We could also have a model with
the same intercept across categories, but different slopes for each variable. Geomet-
rically, this would mean that the regression surfaces weren’t parallel, but would meet
at the origin (and elsewhere). We’ll see how to make that work when we deal with
interactions in Chapter 17. If we wanted different slopes and intercepts, we might as
well just split the data.

Contrasts need contrasts Just as we can’t estimate βi if Var [Xi ] = 0, we can’t
estimate any categorical contrasts if all the data points belong to the same category.

14.3.1.1 “Adjusted effect of a category”

As I said, βB is the expected difference in Y between two individuals which have the
same value for all of the variables except the category. This is generally not the same
as the difference in expectations between the two categories:

βB 6=E [Y |XB = 1]−E [Y |XB = 0]

One of the few situations where βB =E [Y |XB = 1]−E [Y |XB = 0] is when the dis-
tribution of all the other variables is the same between the categories. (Said another
way, the categories are statistically independent of the other predictors.) Another is
when there are no other predictors.

Because of this, it’s very natural to want to interpret βB as the difference in the
response between the two groups, adjusting for all of the other variables. It’s even
common to talk about βB as “the adjusted effect” of the category. As you might
imagine, such interpretations come up all the time in disputes about discrimination.

Even leaving aside the emotional charge of such arguments, it is wise to be cautious
about such interpretations, for several reasons.

1. The regression is only properly adjusting for all of the other variables if it’s well-
specified. If it’s not, the contrast between the categories will also pick up some
of the average difference in bias (due to getting the model wrong), which is not
relevant.
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2. As usual, finding that the contrast coefficient isn’t significant doesn’t necessarily
mean there is no contrast! It means that the contrast, if there is one, can’t be
reliably distinguished from 0, which could be because it’s very small or because
we can’t estimate it well. Again as usual, a confidence interval is called for.

3. It’s not clear that we always do want to adjust for other variables, even when we
can measure them. For instance, if economists in Lilliput found no effect on
income between those who broke their eggs at the big end and those at the little
end, after adjusting for education and occupational prestige (Swift, 1726), that
wouldn’t necessarily settle the question of whether big-endians were discrimi-
nated against. After all, it might be that they have less access to education and
high-paid jobs because they were big-endians. And this could be true even if Lil-
liputians were initially randomly assigned between big- and little- end-breaking.
The same goes for finding that there is an “adjusted effect”.

The last point brings us close to topics of causal inference, which we won’t get to
until 402. For now, a good rule of thumb is not to adjust for variables which might
themselves be effects of the variable we’re interested in.

14.3.2 Categorical Variables with More than Two Levels
Suppose our categorical variable C has more than two levels, say k of them. We can
handle it in almost exactly the same way as the binary case. We pick one level — it
really doesn’t matter which — as the reference level. We then introduce k−1 columns
into the design matrix x, which are indicators for the other categories. If, for instance,
k = 3 and the classes are North, South, West, we pick one level, say North, as the
reference, and then add a column XSouth which is 1 for data points in class South and
0 otherwise, and another column XWest which is 1 for data points in that class and 0
otherwise.

Having added these columns to the design matrix, we regress as usual, and get k−1
contrasts. The over-all β0 is really the intercept for the reference class; the contrasts
are added to β0 to get the intercept for each class. Geometrically, we now have k
parallel regression surfaces, one for each level of the variable.

Interpretation βC=c is the expected difference between two individuals who are
otherwise identical, except that one is in the reference category and the other is in
class c . The expected difference between two otherwise-identical individuals in two
different categories, say c and d , is therefore the difference in their contrasts,βC=d −
βC=c .

Diagnostics and inference Work just the same as in the binary case.

Why not k columns? Because, just like in the binary case, that would make all
those columns for that variable sum to 1, causing problems with collinearity.

Contrasts need contrast If we know there are k categories, but some of them don’t
appear in our data, we can’t estimate their contrasts.
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Category-specific slopes and splitting the data The same remarks apply as under
binary predictor variables.

14.3.3 Two, Three, Many Categorical Predictors
Nothing in what we did above requires that there be only one categorical predictor;
the other variables in the model could be indicator variables for other categorical pre-
dictors. Nor do all the categorical predictors have to have the same number of cat-
egories. The only wrinkle with having multiple categories is that β0, the over-all
intercept, is now the intercept for individuals where all categorical variables are in
their respective reference levels. Each combination of categories gets its own regres-
sion surface, still parallel to each other.

With multiple categories, it is natural to want to look at interactions — to let
their be an intercept for left-handed little-endian plumber, rather than just adding up
contrasts for being left-handed and being a little-endian and being a plumber. We’ll
look at that when we deal with interactions.

14.3.4 Analysis of Variance: Only Categorical Predictors
A model in which there are only categorical predictors is, for historical reasons, often
called an analysis of variance model. Estimating such a model presents absolutely
no special features beyond what we have already covered, but it’s worth a paragraph
or two on the interpretation and the origins of such models.

Suppose, for simplicity, that there are two categorical predictors, B and C , and the
reference level for each is written ;. The conditional expectation of Y will be pinned
down by giving a level for each, say b and c , respectively. Then

E [Y |B = b ,C = c] =β0+βbδb;+βcδc;

That is, we add the appropriate contrast for each categorical variable, and nothing
else. (This presumes no interactions, a limitation which we’ll lift next week.) Con-
versely, if we knew E [Y |B = b ,C = c] for every category, we could work out the
contrasts without having to ever (explicitly) compute (xT x)−1xT y, which was a very
real consideration before computation became so cheap5. Obviously, however, it is
not much of an issue now.

As for the name, it arises from the basic probability fact sometimes called the “law
of total variance”:

Var [Y ] =Var [E [Y |X ]]+E [Var [Y |X ]]

If X is our complete set of categorical variables, each of which defines a group, this says
“The total variance of the response is the variance in average responses across groups,
plus the average variance within a group”. Thus, after estimating the contrasts, we
have decomposed or analyzed the variance in Y into between-group and across-group

5To see how, notice that β̂0 can be estimated by the sample mean of all cases where B = ;, C = ;. Then
to get, say, βb , we average the difference in means between cases where B = b ,C = c and B = ;,C = c for
each level c of the other variable. (This averaging of differences eliminates the contribution from βc .)
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variance. This was extremely useful in the early days of agricultural and industrial
experimentation, but has frankly become a bit of a fossil, if not a fetish.

An “analysis of covariance” model is just a regression with both qualitative and
quantitative predictors.

14.3.5 Ordinal Variables

An ordinal variable, as I said, is one where the qualitatively-distinct levels can be put
in a sensible order, but there’s no implication that the distance from one level to the
next is constant. At our present level of sophistication, we have basically two ways to
handle them:

1. Ignoring the ordering and treat them like nominal categorical variables.

2. Ignoring the fact that they’re only ordinal and not metric, assign them numer-
ical codes (say 1, 2, 3, . . . ) and treat them like ordinary numerical variables.

The first procedure is unbiased, but can end up dealing with a lot of distinct coeffi-
cients. It also has the drawback that if the relationship between Y and the categorical
variable is monotone, that may not be respected by the coefficients we estimate. The
second procedure is very easy, but usually without any substantive or logical basis. It
implies that each step up in the ordinal variable will predict exactly the same differ-
ence in Y , and why should that be the case? If, after treating an ordinal variable like a
nominal one, we get contrasts which are all (approximately) equally spaced, we might
then try the second approach.

Other procedures for ordinal variables which are, perhaps, more conceptually sat-
isfying need much more math than we’re presuming here; see the further reading.

14.3.6 Detailed R Example
The data set for the first data analysis project included a categorical variable, State,
which we did not use. Let’s try adding it to the model.

First, let’s do some basic counting and examination:

# How many levels does State have?
nlevels(mobility$State)
## [1] 0
# What are they?
levels(mobility$State)
## NULL

There are 51 levels for State, as there should be, corresponding to the 50 states
and the District of Columbia. We see that these are given by the two-letter postal
codes, in alphabetical order.

Running a model with State and Commute as the predictors, we therefore expect
to get 52 coefficients (1 intercept, 1 slope, and 51-1 = 50 contrasts). R will calculate
contrasts from the first level, which here is AK, or Alaska.
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mob.state <- lm(Mobility ~ Commute + State, data = mobility)
signif(coefficients(mob.state), 3)
## (Intercept) Commute StateAL StateAR StateAZ StateCA
## 0.018400 0.126000 -0.005600 0.001840 0.007290 0.031500
## StateCO StateCT StateDC StateDE StateFL StateGA
## 0.044100 0.021500 0.071300 0.007460 0.004160 -0.022000
## StateHI StateIA StateID StateIL StateIN StateKS
## 0.029100 0.052200 0.029700 0.013200 0.010000 0.042400
## StateKY StateLA StateMA StateMD StateME StateMI
## 0.011900 0.021100 0.001230 0.018700 0.004710 0.005230
## StateMN StateMO StateMS StateMT StateNC StateND
## 0.055300 0.011900 -0.018700 0.045200 -0.011400 0.146000
## StateNE StateNH StateNJ StateNM StateNV StateNY
## 0.060400 0.032200 0.062700 0.006670 0.045400 0.022300
## StateOH StateOK StateOR StatePA StateRI StateSC
## -0.000559 0.036000 0.013800 0.035000 0.022400 -0.019300
## StateSD StateTN StateTX StateUT StateVA StateVT
## 0.042300 0.000761 0.032200 0.060500 0.014100 0.017300
## StateWA StateWI StateWV StateWY
## 0.025800 0.031700 0.057800 0.061200

In the interest of space, I won’t run summary on this, but you can. You will find
that quite a few of the contrasts are statistically significant. We’d expect about 50×
0.05 = 2.5 to be significant at the 5% level, even if all the true contrasts were zero,
but many more them are than this baseline. As usual, of course, it doesn’t mean the
model is right; it just means that if we were going to put in an intercept, a slope for
Commute, and a contrast for every other state, we should really put in contrasts for
those states as well.

One issue with the simple linear regression from the DAP was that its residuals
were very strongly correlated spatially. We might hope that adding all these state-by-
state contrasts has gotten rid of some of that correlation.

When we have a large number of categories, it’s often tempting to try compressing
them to a smaller number, by grouping together some of the levels. If we do this right,
we reduce the variance in our estimates of the coefficients, while introducing little (if
any) bias.

To illustrate this, let’s try boiling down the 51 states (and DC) into two categories:
the South versus the rest of the country. The South has long been quite distinct from
the rest of the country culturally, politically and economically, in ways which are,
plausibly, very relevant to economic mobility. More relevantly, when we looked at
the residuals in the DAP, there was a big cluster of negative residuals in the south-
eastern part of the map. To make this concrete, I’ll define the South as consisting of
those states which joined the Confederacy during the Civil War (Alabama, Arkansas,
Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee,
Texas and Virginia).

Let’s start by adding the relevant column to the data frame:
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# Set up a function to make maps 'Terrain' color levels set based on quantiles
# of the variable being plotted Inputs: vector to be mapped over the data
# frame; number of levels to use for colors; other plotting arguments Outputs:
# invisibly, list giving cut-points and the level each observation was assigned
mapper <- function(z, levels, ...) {

# Which quantiles do we need?
probs <- seq(from = 0, to = 1, length.out = (levels + 1))
# What are those quantiles?
z.quantiles <- quantile(z, probs)
# Assign each observation to its quantile
z.categories <- cut(z, z.quantiles, include.lowest = TRUE)
# Make up a color scale
shades <- terrain.colors(levels)
plot(x = mobility$Longitude, y = mobility$Latitude, col = shades[z.categories],

...)
invisible(list(quantiles = z.quantiles, categories = z.categories))

}

FIGURE 14.2: Function for making maps, from the model DAP 1.

# The states of the Confederacy
Confederacy <- c("AR", "AL", "FL", "GA", "LA", "MS", "NC", "SC", "TN", "TX", "VA")
mobility$Dixie <- mobility$State %in% Confederacy

The new Dixie column of mobility will contain the values TRUE, for each com-
munity located in one of those states, and FALSE, for the rest. R will in such circum-
stances treat FALSE as the reference category.

mob.dixie <- lm(Mobility ~ Commute + Dixie, data = mobility)
signif(coefficients(summary(mob.dixie)), 3)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0190 0.00607 3.13 1.84e-03
## Commute 0.1950 0.01180 16.50 2.94e-52
## DixieTRUE -0.0217 0.00354 -6.14 1.37e-09

The contrast for the old Confederacy versus the rest of the country is negative,
meaning those states have lower levels of economic mobility, and highly statistically
significant. Of course, the model could still be wrong. The residuals, while better
than a model with no geographic contrasts, don’t look as random as in the one with
contrasts for each state.
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FIGURE 14.3: Map of residuals from a basline linear regression of the rate of economic mobility on
the fraction of workers with short commutes.
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residuals.state.map <- mapper(residuals(mob.state), levels = 4, pch = 19, cex = 0.5,
xlab = "Longitude", ylab = "Latitude", main = "Mobility")

legend("topright", legend = levels(residuals.state.map$categories), pch = 19, col = terrain.colors(4),
cex = 0.8)

FIGURE 14.4: Map of the residuals for the model with state-level contrasts. (See Figure 14.2 for the
mapper function.)
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residuals.dixie.map <- mapper(residuals(mob.dixie), levels = 4, pch = 19, cex = 0.5,
xlab = "Longitude", ylab = "Latitude", main = "Mobility")

legend("topright", legend = levels(residuals.dixie.map$categories), pch = 19, col = terrain.colors(4),
cex = 0.8)

FIGURE 14.5: Map of the residuals from the model based on Commute, and a categorical contrast
between the old Confederacy and the rest of the country.
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14.4 Further Reading

Polynomial regression and categorical predictors are both ancient topics; I don’t know
who first introduced either.

The above discussion has assumed that when we use a polynomial, we use the
same polynomial for all values of Xi . An alternative is to use different, low-order
polynomials in different regions. If these piecewise polynomial functions are required
to be continuous, they are called splines, and regression with splines will occupy us
for much of 402, because it gives us ways to tackle lots of the issues with polynomials,
like over-fitting (Shalizi, forthcoming, chs. 8 and 9). Personally, I have found splines
to almost always be a better tool than polynomial regression, but they do demand a
bit more math.

The matter of “adjusted effects” and causal inference will occupy us for about the
last quarter of 36-402.

Tutz (2012) is a thorough and modern survey of regression with categorical re-
sponse variables. We will go over this in some detail in 402, but his book covers many
topics we won’t have time for.

Winship and Mare (1984) proposes some interesting techniques for dealing with
ordinal variables, under the (strong) assumption that they arise from taking continu-
ous variables and breaking them into discrete categories. This seems to require rather
strong assumptions about the measurement process. Another direction we could go
would be to estimate a separate contrast for each level of an ordinal variable (except the
lowest), but require these to be either all increasing or all decreasing, so the response
to the ordinal variable was monotone. This would mean solving a constrained least
squares (or maximum likelihood) problem to get the estimates, not an unconstrained
on. Worse, the constraints would be a somewhat awkward set of inequalities. Still,
it’s do-able in principle, though I don’t know of a straightforward R implementation.

Analysis of variance models were introduced by R. A. Fisher, probably the great-
est statistician who ever lived, in connection with problems in genetics and in design-
ing and interpreting experiments. They have given rise to a huge literature and an
elaborate system of notation and terminology, much of which boils down to short-
cuts for computing regression estimates when the design matrix x has very special
structure. As I said, there were many decades when such short-cuts were vital, but I
am frankly skeptical how much value these techniques retain in the present day. In
the interest of balance, see Gelman (2005) for a contrary view.

I mentioned that one reason to use polynomials is that any well-behaved function
can be approximated arbitrarily closely by polynomials of sufficiently high degree.
Obviously “well-behaved” needs a proper definition, as (perhaps less obviously) does
“approximated arbitrarily closely”. What I had in mind was the Stone-Weierstrass
theorem, which states that you can pick any continuous function f , interval [a, b ],
and tolerance ε > 0 you like, and I can find some polynomial which is within ε of f
everywhere on the interval,

max
a≤x≤b

�

�

�

�

�

�

f (x)−
d
∑

j=1

γ j x j

�

�

�

�

�

�

≤ ε
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provided there is no limit on the order d or the magnitude of the coefficients γ j . This
is a standard result of real analysis, which will be found in almost textbook on that
subject, or on functional analysis or approximation theory. There are parallel results
for other function bases.

14.5 Exercises
1. Consider regressing Y on a binary categorical variable B , plus some other pre-

dictors. Suppose we switch which level is the reference category and which
one is contrasted with it. Show that this produces the following changes to the
parameters, and leaves all the others unchanged:

β0 → β0+βB (14.1)
βB → −βB (14.2)

Hint: Show that the change to the indicator variable is XB → 1−XB .

2. Consider again regressing Y on a binary variable B , plus some other predic-
tors, and estimating all coefficients by least squares. Show that the average of
all residuals where XB = 1 must be exactly 0, as must the average of all resid-
uals where XB = 0. Hint: Use the estimating equations to show

∑

i ei = 0,
∑

i ei xBi = 0, and algebra to show
∑

i ei (1− xBi ) = 0.
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Chapter 15

Multicollinearity

15.1 Why Collinearity Is a Problem

Remember our formula for the estimated coefficients in a multiple linear regression:

bβ= (xT x)−1xT y

This is obviously going to lead to problems if xT x isn’t invertible. Similarly, the vari-
ance of the estimates,

Var
�

bβ
�

= σ2(xT x)−1

will blow up when xT x is singular. If that matrix isn’t exactly singular, but is close to
being non-invertible, the variances will become huge.

There are several equivalent conditions for any square matrix, say u, to be singular
or non-invertible:

• The determinant detu or |u| is 0.

• At least one eigenvalue1 of u is 0. (This is because the determinant of a matrix
is the product of its eigenvalues.)

• u is rank deficient, meaning that one or more of its columns (or rows) is equal
to a linear combination of the other rows2.

Since we’re not concerned with any old square matrix, but specifically with xT x, we
have an additional equivalent condition:

• x is column-rank deficient, meaning one or more of its columns is equal to a
linear combination of the others.

1You learned about eigenvalues and eigenvectors in linear algebra; if you are rusty, now is an excellent
time to refresh your memory.

2The equivalence of this condition to the others is not at all obvious, but, again, is proved in linear
algebra.
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The last explains why we call this problem collinearity: it looks like we have
p different predictor variables, but really some of them are linear combinations of
the others, so they don’t add any information. The real number of distinct variables
is q < p, the column rank of x. If the exact linear relationship holds among more
than two variables, we talk about multicollinearity; collinearity can refer either to
the general situation of a linear dependence among the predictors, or, by contrast to
multicollinearity, a linear relationship among just two of the predictors.

Again, if there isn’t an exact linear relationship among the predictors, but they’re
close to one, xT x will be invertible, but (xT x)−1 will be huge, and the variances of the
estimated coefficients will be enormous. This can make it very hard to say anything
at all precise about the coefficients, but that’s not necessarily a problem.

15.1.1 Dealing with Collinearity by Deleting Variables

Since not all of the p variables are actually contributing information, a natural way
of dealing with collinearity is to drop some variables from the model. If you want to
do this, you should think very carefully about which variable to delete. As a concrete
example: if we try to include all of a student’s grades as predictors, as well as their
over-all GPA, we’ll have a problem with collinearity (since GPA is a linear function
of the grades). But depending on what we want to predict, it might make more sense
to use just the GPA, dropping all the individual grades, or to include the individual
grades and drop the average3.

15.1.2 Diagnosing Collinearity Among Pairs of Variables

Linear relationships between pairs of variables are fairly easy to diagnose: we make
the pairs plot of all the variables, and we see if any of them fall on a straight line, or
close to one. Unless the number of variables is huge, this is by far the best method. If
the number of variables is huge, look at the correlation matrix, and worry about any
entry off the diagonal which is (nearly) ±1.

15.1.3 Why Multicollinearity Is Harder

A multicollinear relationship involving three or more variables might be totally in-
visible on a pairs plot. For instance, suppose X1 and X2 are independent Gaussians, of
equal variance σ2, and X3 is their average, X3 = (X1+X2)/2. The correlation between

3One could also drop just one of the individual class grades from the average, but it’s harder to think of
a scenario where that makes sense.
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X1 and X3 is

Cor(X1,X3) =
Cov [X1,X3]

p

Var [X1]Var [X3]
(15.1)

=
Cov [X1, (X1+X2)/2]

p

σ2σ2/2
(15.2)

=
σ2/2

σ2/
p

2
(15.3)

=
1
p

2
(15.4)

This is also the correlation between X2 and X3. A correlation of 1/
p

2 isn’t trivial,
but is hardly perfect, and doesn’t really distinguish itself on a pairs plot (Figure 15.1).
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## x1 x2 x3
## x1 1.00000000 -0.02227466 0.6783007
## x2 -0.02227466 1.00000000 0.7194932
## x3 0.67830074 0.71949317 1.0000000

# Simulation: two independent Gaussians
x1 <- rnorm(100, mean = 70, sd = 15)
x2 <- rnorm(100, mean = 70, sd = 15)
# Add in a linear combination of X1 and X2
x3 <- (x1 + x2)/2
pairs(cbind(x1, x2, x3))
cor(cbind(x1, x2, x3))

FIGURE 15.1: Illustration of a perfect multi-collinear relationship might not show up on a pairs
plot or in a correlation matrix.
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15.1.4 Geometric Perspective

The predictors X1, . . .Xp form a p-dimensional random vector X. Ordinarily, we ex-
pect this random vector to be scattered throughout p-dimensional space. When we
have collinearity (or multicollinearity), the vectors are actually confined to a lower-
dimensional subspace. The column rank of a matrix is the number of linearly in-
dependent columns it has. If x has column rank q < p, then the data vectors are
confined to a q -dimensional subspace. It looks like we’ve got p different variables,
but really by a change of coordinates we could get away with just q of them.

15.2 Variance Inflation Factors

If the predictors are correlated with each other, the standard errors of the coefficient
estimates will be bigger than if the predictors were uncorrelated.

If the predictors were uncorrelated, the variance of β̂i would be

Var
h

β̂i

i

=
σ2

ns2
Xi

(15.5)

just as it is in a simple linear regression. With correlated predictors, however, we have
to use our general formula for the least squares:

Var
h

β̂i

i

= σ2(xT x)−1
i+1,i+1 (15.6)

(Why are the subscripts on the matrix i+1 instead of i?) The ratio between Eqs. 15.6
and 15.5 is the variance inflation factor for the i th coefficient, V I Fi . The average of
the variance inflation factors across all predictors is often written V I F , or just V I F .

Folklore says that V I Fi > 10 indicates “serious” multicollinearity for the predic-
tor. I have been unable to discover who first proposed this threshold, or what the
justification for it is. It is also quite unclear what to do about this. Large variance
inflation factors do not, after all, violate any model assumptions.

15.2.1 Why V I Fi ≥ 1

Let’s take the case where p = 2, so xT x is a 3×3 matrix. As you saw in the homework,

1
n

xT x=







1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2






(15.7)
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After tedious but straightforward algebra4, we get for the inverse (deep breath)

�

1
n

xT x
�−1

(15.8)

=
1

ÓVar [X1]ÓVar [X2]−ÔCov [X1,X2]
2

(15.9)

×







ÓVar [X1]ÓVar [X2]−ÔCov [X1,X2]
2+ÓVar [x2X1− x1X2] x1

ÓVar [X2]−ÔCov [X1,X2] x2 x1
ÔCov [X1,X2]−ÓVar [X1] x2

x1
ÓVar [X2]−ÔCov [X1,X2] x2

ÓVar [X2] −ÔCov [X1,X2]
x1
ÔCov [X1,X2]−ÓVar [X1] x2 −ÔCov [X1,X2] ÓVar [X1]







where the hats on the variances and covariances indicate that they are sample, not
population, quantities.

Notice that the pre-factor to the matrix, which is the determinant of n−1xT x,
blows up when X1 and X2 are either perfectly correlated or perfectly anti-correlated
— which is as it should be, since then we’ll have exact collinearity.

The variances of the estimated slopes are, using this inverse,

Var
h

β̂1

i

=
σ2

n

ÓVar [X2]
ÓVar [X1]ÓVar [X2]−ÔCov [X1,X2]

2
=

σ2

n(ÓVar [X1]−ÔCov [X1,X2]
2 /ÓVar [X2])

and

Var
h

β̂2

i

=
σ2

n

ÓVar [X1]
ÓVar [X1]ÓVar [X2]−ÔCov [X1,X2]

2
=

σ2

n(ÓVar [X2]−ÔCov [X1,X2]
2 /ÓVar [X1])

Notice that if ÔCov [X1,X2] = 0, these reduce to

Var
h

β̂1

i

=
σ2

nÓVar [X1]
, Var

h

β̂2

i

=
σ2

nÓVar [X2]

exactly as we’d see in simple linear regressions. When covariance is present, however,
regardless of its sign, it increases the variance of the estimates.

With a great deal of even more tedious algebra, it can be shown that this isn’t
just a weird fact about the p = 2 case, but is true generically. The variance inflation
factor for Xi can be found by regressing Xi on all of the other X j , computing the R2

of this regression5, say R2
i , and setting V I Fi = 1/(1−R2

i ).
6 The consequence is that

V I Fi ≥ 1, with the variance inflation factor increasing as Xi becomes more correlated
with some linear combination of the other predictors.

4At least, if you remember how to calculate the determinant of a matrix, a matter on which I evidently
had a brain-fault this afternoon.

5I’d admit this was an exception to my claim that R2 is at best useless, except that we can get the exact
same number, without running all these regressions, just by inverting xT x.

6The trick to showing this involves relating the co-factors which appear when we’re inverting n−1xT x
to the coefficients in the regression of Xi on all the other X j , followed by a mess of book-keeping.
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15.3 Matrix-Geometric Perspective on Multicollinear-
ity

Multicollinearity means that there exists (at least) one set of constants a0,a1, . . .ap ,
a1, . . .ap not all zero, such that

a1X1+ a2X2+ . . .ap Xp =
p
∑

i=1

ai Xi = a0

To simplify this, let’s introduce the p×1 matrix a=







a1
...

ap






, so we can write multi-

collinearity as
aT X= a0

for a 6= 0.
If this equation holds, then

Var
�

aT X
�

=Var

� p
∑

i=1

ai Xi

�

=Var [a0] = 0

Conversely, if Var
�

aT X
�

= 0, then aT X must be equal to some constant, which we
can call a0. So multicollinearity is equivalent to the existence of a vector a 6= 0 where

Var
�

aT X
�

= 0

I make these observations because we are old hands now at the variances of weighted
sums.

Var
�

aT X
�

= Var

� p
∑

i=1

ai Xi

�

(15.10)

=
p
∑

i=1

p
∑

j=1

ai a jCov
�

Xi ,X j

�

(15.11)

= aT Var [X]a (15.12)

Multicollinearity therefore means the equation

aT Var [X]a= 0

has a solution a 6= 0.
Solving a quadratic equation in matrices probably does not sound like much fun,

but this is where we appeal to results in linear algebra7. Var [X] is a very special matrix:
it is square ( p × p), symmetric, and positive-definite, meaning that aT Var [X]a ≥ 0.
(Since, after all, that expression is the variance of the scalar

∑p
i=1 ai Xi , and variances

of scalars are ≥ 0.) We may therefore appeal to the spectral or eigendecomposition
theorem of linear algebra to assert the following:

7This is also a big part of why we make you take linear algebra.
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1. There are p different p × 1 vectors v1,v2, . . .vp , the eigenvectors of Var [X],
such that

Var [X]vi = λi vi

for scalar constants λ1,λ2, . . .λp , the eigenvalues of Var [X]. The ordering of
the eigenvalues and eigenvectors is arbitrary, but it is conventional to arrange
them so that λ1 ≥ λ2 ≥ . . .≥ λp .

2. The eigenvalues are all ≥ 0. (Some of them may be equal to each other; these
are called repeated, multiple or degenerate eigenvalues.)

3. The eigenvectors can be chosen so that they all have length 1, and are orthogonal
to each other, so vT

j vi = δi j .

4. Any vector can be re-written as a sum of eigenvectors:

a=
p
∑

i=1

(aT vi )vi

(Here I have used the parentheses to eliminate any ambiguity about the order
in which the matrices are to be multiplied; aT vi is always a scalar.)

5. Var [X] can be expressed as

Var [X] =VDVT

where V is the matrix whose i th column is vi , (and so VT is the matrix where vi
is the i th column), and D is the diagonal matrix whose entries are λ1,λ2, . . .λp .

Suppose that one or more of the eigenvalues are zero. Since we’ve put them in
order, this means that the positive eigenvalues are λ1, . . .λq (for some q < p), and
λq+1, . . .λp are all zero. It follows that vq+1, . . .vp all give us linear combinations of
the Xi which are multicollinear. So a sufficient condition for multicollinearity is that
Var [X] have zero eigenvalues.

Conversely, suppose aT Var [X]a = 0, and a 6= 0. Let’s re-express this using the
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eigendecomposition.

Var [X]a = Var [X]
p
∑

i=1

(aT vi )vi (15.13)

=
p
∑

i=1

(aT vi )Var [X]vi (15.14)

=
p
∑

i=1

(aT vi )λi vi (15.15)

aT Var [X]a =

 

p
∑

j=1

(aT v j )v j

!T p
∑

i=1

(aT vi )λi vi (15.16)

=
p
∑

i=1

p
∑

j=1

(aT vi )(a
T v j )v

T
j vi (15.17)

=
p
∑

i=1

(aT vi )
2λi (15.18)

Since (aT vi )
2 ≥ 0, the only way the whole sum can be zero is if (aT vi )

2 > 0 only when
λi = 0.

We have therefore established the following:

1. The predictors are multi-collinear if and only if Var [X] has zero eigenvalues.

2. Every multi-collinear combination of the predictors is either an eigenvector of
Var [X] with zero eigenvalue, or a linear combination of such eigenvectors.

15.3.1 The Geometric View
Every eigenvector of Var [X] points out a direction in the space of predictors. The
leading eigenvector v1, the one going along with the largest eigenvalue, points out
the direction of highest variance (and that variance is λ1). The next-to-leading eigen-
vector, v2, points out the direction orthogonal to v1 which has the highest variance,
and so forth down the line. The eigenvectors of Var [X] are also called the principal
components of the predictors, because of their role as the directions of maximum
variance.

The eigenvectors going along with zero eigenvalues point out directions in the
predictor space along which there is no variance, precisely because those directions
amount to weighted sums of the original variables which equal constants. The q non-
zero eigenvalues mark out the q -dimensional subspace in which all the data vectors
lie. If q < p, then the predictors are rank-deficient, and the rank of x is just q .

15.3.2 Finding the Eigendecomposition
Because finding eigenvalues and eigenvectors of matrices is so useful for so many sit-
uations, mathematicians and computer scientists have devoted incredible efforts over
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# Simulation: two independent Gaussians
x1 <- rnorm(100, mean = 70, sd = 15)
x2 <- rnorm(100, mean = 70, sd = 15)
# Add in a linear combination of X1 and X2
x3 <- (x1 + x2)/2
# X4 is somewhat correlated with X1 but not relevant to Y
x4 <- x1 + runif(100, min = -100, max = 100)
# Y is a linear combination of the X's plus noise
y <- 0.7 * x1 + 0.3 * x2 + rnorm(100, mean = 0, sd = sqrt(15))
df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, y = y)

FIGURE 15.2: Small simulation illustrating exact collinearity.

the last two hundred years to fact, precise algorithms for computing them. This is
not the place to go over how those algorithms work; it is the place to say that much
of the fruit of those centuries of effort is embodied in the linear algebra packages R
uses. Thus, when you call

eigen(A)

you get back a list, containing the eigenvalues of the matrix A (in a vector), and its
eigenvectors (in a matrix), and this is both a very fast and a very reliable calculation. If
your matrix has very special structure (e.g., it’s sparse, meaning almost all its entries
are zero), there are more specialized packages adapted to your needs, but we don’t
pursue this further here; for most data-analytic purposes, ordinary eigen will do.

15.3.3 Using the Eigendecomposition
1. Find the eigenvalues and eigenvectors.

2. If any eigenvalues are zero, the data is multicollinear; if any are very close to
zero, the data is nearly multicollinear.

3. Examine the corresponding eigenvectors. These indicate the linear combina-
tions of variables which equal constants (or are nearly constant if the eigenvalue
is only nearly zero). Ideally, these will be combinations of a reasonably small
number of variables (i.e., most of the entries in the eigenvector will be zero),
so you can ask whether there are substantive reasons to delete one or more of
those predictors.

15.3.3.1 Example

I’ll make up some data which displays exact multi-collinearity. Let’s say that X1 and
X2 are both Gaussian with mean 70 and standard deviation 15, and are uncorrelated;
that X3 = (X1+X2)/2; and that Y = 0.7X1+ 0.3X2+ ε, with ε∼N (0,15).
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## x1 x2 x3 x4 y
## x1 1.000000000 -0.008843601 0.6641534 0.2577387 0.8717515
## x2 -0.008843601 1.000000000 0.7416936 0.1177607 0.3946726
## x3 0.664153379 0.741693598 1.0000000 0.2609231 0.8798078
## x4 0.257738729 0.117760741 0.2609231 1.0000000 0.3036906
## y 0.871751501 0.394672569 0.8798078 0.3036906 1.0000000

pairs(df)
cor(df)

FIGURE 15.3: Pairs plot and correlation matrix for the example of Figure 15.2. Notice that neither
the pairs plot nor the correlation matrix reveals a problem, which is because it only arises when
considering X1,X2,X3 at once.
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# Create the variance matrix of the predictor variables
var.x <- var(df[, c("x1", "x2", "x3", "x4")])
# Find the eigenvalues and eigenvectors
var.x.eigen <- eigen(var.x)
# Which eigenvalues are (nearly) 0?
(zero.eigenvals <- which(var.x.eigen$values < 1e-12))
## [1] 4
# Display the corresponding vectors
(zero.eigenvectors <- var.x.eigen$vectors[, zero.eigenvals])
## [1] 4.082483e-01 4.082483e-01 -8.164966e-01 2.220446e-16

FIGURE 15.4: Example of using the eigenvectors of Var [X ] to find collinear combinations of the
predictor variables. Here, what this suggests is that −X1 −X2 + 2X3 = constant. This is correct,
since X3 = (X1+X2)/2, but the eigen-decomposition didn’t know this; it discovered it.
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15.3.4 Principal Components Regression
Let’s define some new variables:

W1 = vT
1 X (15.19)

Wi = vT
i X (15.20)

Wp = vT
p X (15.21)

(15.22)

W1 is the projection of the original data vector X onto the leading eigenvector, or
the principal component. It is called the score on the first principal component. It
has a higher (sample) variance than any other linear function of the original predictors.
W2 is the projection or score on the second principle component. It has more variance
than any other linear combination of the original predictors which is uncorrelated
with W1. In fact, ÔCov

�

Wi ,W j

�

= 0 if i 6= j .
In principle components regression, we pick some k ≤ p and use the model

Y = γ0+ γ1W1+ . . .γkWk + ε

where as usual we presume ε has expectation 0, constant variance, and no correlation
from one observation to another. (I use the Greek letter γ , instead of β, to empha-
size that these coefficients are not directly comparable to those of our original linear
model.) We are regressing not on our original variables, but on uncorrelated linear
combinations of those variables.

If k = p, then we get exactly the same predictions and fitted values as in the origi-
nal linear model, though the coefficients aren’t the same. This would amount to doing
a change of coordinates in the space of predictors, so that all of the new coordinates
were uncorrelated, but wouldn’t otherwise change anything.

If there are only q < p non-zero eigenvalues, we should not use k > q . Using
k = q uses all the linear combinations of the original predictors which aren’t collinear.
However, we might deliberately pick k < q so as to simplify our model. As I said
above, the principal components are the directions in the predictor space with the
highest variance, so by using a small k we confine ourselves to those directions, and
ignore all the other aspects of our original predictors. This may introduce bias, but
should reduce the variance in our predictions. (Remember that the variance in our
coefficient estimates, and so in our predictions, goes down with the variance of the
predictor variables.)

There are a number of things to be said about principal components regression.

1. We need some way to pick k. The in-sample MSE will decrease as k grows
(why?), but this might not be a good guide to out-of-sample predictions, or to
whether the modeling assumptions are fulfilled.

2. The PC regression can be hard to interpret.

The last point needs some elaboration. Each one of the principal components is
a linear combination of the original variables. Sometimes these are easy to interpret,
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other times their meaning (if they have any) is thoroughly obscure. Whether this
matters depends very much on how deeply committed you are to interpreting the
coefficients.

As for picking k, there are two (potentially) rival objectives. One is to pick the
number of components which will let us predict well. The in-sample mean squared
error has to decrease as k grows, so we would really like some measure of actual out-
of-sample or generalization error; the cross-validation method I will describe below
is applicable, but there are other potentially-applicable techniques. The other objec-
tive is to have a set of variables which satisfy the assumptions of the multiple linear
regression model. In my experience, it is not very common for principal components
regression to actually satisfy the modeling assumptions, but it can work surprisingly
well as a predictive tool anyway.

15.4 Ridge Regression

The real problem with collinearity is that when it happens, there isn’t a unique solu-
tion to the estimating equations. There are rather infinitely many solutions, which
all give the minimum mean squared error. It feels perverse, somehow, to get rid of
predictors because they give us too many models which fit too well. A better response
is to pick one of these solutions, by adding some other criterion we’d like to see in the
model.

There are many ways to do this, but one which works well in practice is the fol-
lowing: all else being equal, we prefer models with smaller slopes, ones closer to zero.
Specifically, let’s say that we prefer the length of the coefficient vector, ‖β‖, to be
small. Now, at least abstractly, we have a situation like that shown in Figure 15.5.
The black line marks out all of the β1,β2 combinations which give us exactly the
same mean squared error. They all give the same error because of a collinearity be-
tween X1 and X2. But there is a single point on the black line which comes closest to
the origin — it touches the solid grey circle. Other points on the line, while they have
equal MSEs, have larger ‖β‖ (they lie on one of the dashed grey circles), so we don’t
use them.

What if everything else isn’t equal? (Say, for instance, that the data are only nearly
collinear.) We’ll need some way to trade off having a smaller MSE against having a
smaller vector of coefficients. Since we’re looking at squared error, I hope it is some-
what plausible that we should also look at the squared length of the coefficient vector;
if you don’t buy that, you can at least take my word for it that it simplifies the math.

Specifically, let’s replace our old optimization problem

min
b

1
n
(y− xb)T (y− xb)

with a new, penalized optimization problem

min
b

1
n
(y− xb)T (y− xb)− λ

n
‖b‖2
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# Add a circle to an existing plot R, bizarrely, does not have any built-in
# function for this Inputs: x coordinate of center; y coordinate of center;
# radius; number of equiangular steps; additional graphical parameters Outputs:
# none Side-effects: a circle is added to the existing plot
circle <- function(x0, y0, r, n = 1000, ...) {

theta <- seq(from = 0, to = 2 * pi, length.out = n) # Angles
x <- x0 + r * cos(theta) # x coordinates
y <- y0 + r * sin(theta) # y coordinates
lines(x, y, ...) # Draw the lines connecting all the points, in order

}
plot(0, type = "n", xlab = expression(beta[1]), ylab = expression(beta[2]), xlim = c(-10,

10), ylim = c(-10, 10))
abline(a = 10, b = -2)
points(0, 0)
circle(0, 0, sqrt(20), col = "grey")
points(4, 2, col = "black", pch = 19)
circle(0, 0, 5, col = "grey", lty = "dashed")
circle(0, 0, 6, col = "grey", lty = "dashed")

−10 −5 0 5 10

−
10

−
5

0
5

10

β1

β 2

FIGURE 15.5: Geometry of ridge regression when the predictors are collinear. The black line shows
all the combinations of β1 and β2 which minimize the MSE. We chose the coefficient vector (the
black point) which comes closest to the origin (the dot). Equivalently, this is the parameter vector
with the smallest MSE among all the points at equal distance from the origin (solid grey circle).
Other coefficient vectors either have a worse MSE (they don’t lie on the black line), or are further
from the origin (they lie on one of the dashed grey circles).
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Here the penalty factor λ > 0 tells us the rate at which we’re willing to make a trade-
off between having a small mean squared error and having a short vector of coeffi-
cients8. We’d accept ‖b‖2 growing by 1 if it reduced the MSE by more than λ/n.
We’ll come back later to how to pick λ.

It’s easy to pose this optimization problem: can we actually solve it, and is the
solution good for anything? Solving is actually straightforward. We can re-write ‖b‖2

as, in matrix notation, bT b, so the gradient is

∇b

�

1
n
(y− xb)T (y− xb)+

λ

n
bT b

�

=
2
n

�

−xT y+ xT xb+λb
�

Set this to zero at the optimum, β̃λ,

xT y= (xT x+λI)β̃λ

and solve:
β̃λ = (x

T x+λI)−1xT y

Notice what we’ve done here: we’ve taken the old matrix xT x and we’ve added λ
to every one of its diagonal entries. (This is the “ridge” that gives ridge regression
its name.) If the predictor variables were centered, this would amount to estimating
the coefficients as though each of them as had a little bit more variance than they
really did, while leaving all the covariances alone. This would break any exact multi-
collinearity, so the inverse always exists, and there is always some solution.

What about the intercept? The intercept is different from the other coefficients;
it’s just a fudge factor we put in to make sure that the regression line goes through
the mean of the data. It doesn’t make as much sense to penalize its length, so ridge
regression is usually done after centering all the variables, both the predictors and the
response. This doesn’t change the slopes, but sets the intercept to zero. Then, after
we have β̃λ, we get the intercept by plugging it in to y = xβ̃λ.

There are two prices to doing this.

1. We need to pick λ (equivalently, c ) somehow.

2. Our estimates of the coefficients are no longer unbiased, but are “shrunk” to-
wards zero.

Point (2) is not as bad as it might appear. If λ is fixed, and we believe our modeling
assumptions, we can calculate the bias and variance of the ridge estimates:

E
�

β̃λ
�

=
�

xT x+λI
�−1

xTE [Y] (15.23)

=
�

xT x+λI
�−1

xT xβ (15.24)

8λ = 0 means we ignore the length of the coefficient vector and we’re back to ordinary least squares.
λ < 0 would mean we prefer larger coefficients, and would lead to some truly perverse consequences.
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Var
�

β̃λ
�

= Var
�

�

xT x+λI
�−1

xT Y
�

(15.25)

= Var
�

�

xT x+λI
�−1

xT ε
�

(15.26)

=
�

xT x+λI
�−1

xT σ2Ix
�

xT x+λI
�−1

(15.27)

= σ2�xT x+λI
�−1

xT x
�

xT x+λI
�−1

(15.28)

Notice how both of these expressions smoothly approach the corresponding formulas
ones for ordinary least squares as λ→ 0. Indeed, under the Gaussian noise assump-
tion, β̃λ actually has a Gaussian distribution with the given expectation and variance.

Of course, if λ is not fixed in advance, we’d have to worry about the randomness
in the distribution of λ. A common practice here is data splitting: randomly divide
the data into two parts, and use one to pick λ and the other to then actually estimate
the parameters, which will have the stated bias and standard errors. (Typically, but
not necessarily, the two parts of the data are equally big.)

As for point (1), picking λ, this is also a solvable problem. The usual approach is
cross-validation: trying a lot of different values of λ, estimate the model on all but
one data point, and then see how well different λ’s predict that held-out data point.
Since there’s nothing special about one data point rather than another, do this for each
data point, and average the out-of-sample squared errors. Pick the λ which does best
at predicting data it didn’t get to see. (There are lots of variants, some of which we’ll
cover later in the course.)

15.4.1 Some Words of Advice about Ridge Regression

Units and Standardization If the different predictor variables don’t have physically
comparable units9, it’s a good idea to standardize them first, so they all have mean 0
and variance 1. Otherwise, penalizingβTβ=

∑p
i=1β

2
i seems to be adding up apples,

oranges, and the occasional bout of regret. (Some people like to pre-standardize even
physically comparable predictors.)

Stabilization I’ve presented ridge regression as a way of dealing with multicollinear-
ity, which it is, but it’s also perfectly possible to use it when that isn’t an issue. The
goal there is to stabilize the estimates — to reduce their variance, at the cost of a bit
of bias. If the linear model is perfectly well-specified, there’s little point to doing this,
but it can often improve predictions a lot when the model is mis-specified.

15.4.2 Penalties vs. Constraints

I explained ridge regression above as applying a penalty to long coefficient vectors.
There is an alternative perspective which is mathematically equivalent, where instead
we constrain the length of the coefficient vector.

9E.g., if they’re all masses expressed in grams, they’re comparable; if some masses are in kilograms or
pounds, they’re not comparable but they could easily be made so; if some of them are lengths or prices,
they’re not physically comparable no matter what units you use.

21:34 Monday 6th May, 2024



269 15.4. RIDGE REGRESSION

To see how this works, let’s start by setting up the problem: pick some c > 0, and
then ask for

min
b : ‖b‖≤c

1
n
(y− xb)T (y− xb)

Since ‖b‖ ≤ c if and only if ‖b‖2 ≤ c2, we might as well say

min
b : ‖b‖2≤c2

1
n
(y− xb)T (y− xb)

At this point, we invoke the magic of Lagrange multipliers10: we can turn a con-
strained problem into an unconstrained problem with an additional term, and an
additional variable:

min
b,λ

1
n
(y− xb)T (y− xb)+λ(bT b− c2)

Minimizing over λ means that either λ = 0, or bT b = c2. The former situation will
apply when the unconstrained minimum is within the ball ‖b‖ ≤ c ; otherwise, the
constraint will “bite”, and λ will take a non-zero value to enforce it. As c grows, the
required constraint λ will become smaller11.

When we minimize over b, the precise value of c2 doesn’t matter; only λ does. If
we know λ, then we are effectively just solving the problem

min
b

1
n
(y− xb)T (y− xb)+λbT b

which is the penalized regression problem we solved before.

15.4.3 Ridge Regression in R
There are several R implementations of ridge regression; the MASS package contains
one, lm.ridge, which needs you to specify λ. The ridge package (Cule, 2014) has
linearRidge, which gives you the option to set λ, or to select it automatically via
cross-validation. (See the next section for a demo of this in action.) There are probably
others I’m not aware of.

15.4.4 Other Penalties/Constraints
Ridge regression penalizes the mean squared error with ‖b‖2, the squared length of
the coefficient vector. This suggests the idea of using some other measure of how big
the vector is, some other norm. A mathematically popular family of norms are the
`q norms12, defined as

‖b‖q =
� p
∑

i=1

|bi |
q

�1/q

10See further reading, if you have forgotten about Lagrange multipliers.
11In economic terms, λ is the internal or “shadow” price we’d pay, in units of MSE, to loosen the con-

straint.
12Actually, people usually call them the `p norms, but we’re using p for the number of predictor vari-

ables.
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The usual Euclidean length is `2, while `1 is

‖b‖1 =
p
∑

i=1

|bi |

and (by continuity ‖b‖0 is just the number of non-zero entries in b . When q 6=
2, penalizing the ‖b‖q does not, usually, have a nice closed-form solution like ridge
regression does. Finding the minimum of the mean squared error under an `1 penalty
is called lasso regression or the lasso estimator, or just the lasso13. This has the
nice property that it tends to give sparse solutions — it sets coefficients to be exactly
zero (unlike ridge). There are no closed forms for the lasso, but there are efficient
numerical algorithms. Penalizing `0, the number of non-zero coefficients, sounds like
a good idea, but there are, provably, no algorithms which work substantially faster
than trying all possible combinations of variables.

15.5 High-Dimensional Regression

One situation where we know that we will always have multicollinearity is when n <
p. After all, n points always define a linear subspace of (at most) n−1 dimensions14.
When the number of predictors we measure for each data point is bigger than the
number of data points, the predictors have to be collinear, indeed multicollinear. We
are then said to be in a high-dimensional regime.

This is an increasingly common situation in data analysis. A very large genetic
study might sequence the genes of, say, 500 people — but measure 500,000 genetic
markers in each person15. If we want to predict some characteristic of the people
from the genes (say their height, or blood pressure, or how quickly they would reject
a transplanted organ), there is simply no way to estimate a model by ordinary least
squares. Any approach to high-dimensional regression must involve either reducing
the number of dimensions, until it’s < n (as in principle components regression), or
penalizing the estimates to make them stable and regular (as in ridge regression), or
both.

There is a bit of a myth in recent years that “big data” will solve all our problems,
by letting us make automatic predictions about everything without any need for deep
understanding. The truth is almost precisely the opposite: when we can measure
everything about everyone, p/n blows up, and we are in desperate need of ways of
filtering the data and/or penalizing our models. Blindly relying on generic methods of
dimension reduction or penalization is going to impose all sorts of bizarre biases, and
will work much worse than intelligent dimension reduction and appropriate penalties,
based on actual understanding.

13Officially, “lasso” here is an acronym for “least angle selection and shrinkage operator”. If you believe
that phrase came before the acronym, I would like your help in getting some money out of Afghanistan.

14Two points define a line, unless the points coincide; three points define a plane, unless the points fall
on a line; etc.

15I take these numbers, after rounding, from an actual study done in the CMU statistics department a
few years ago.
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15.5.1 Demo
Let’s apply ridge regression to the simulated data already created, where one predictor
variable (X3) is just the average of two others (X1 and X2).

library(ridge)
# Fit a ridge regression lambda='automatic' is actually the default setting
demo.ridge <- linearRidge(y ~ x1 + x2 + x3 + x4, data = df, lambda = "automatic")
coefficients(demo.ridge)
## (Intercept) x1 x2 x3 x4
## 0.629993053 0.463013563 0.052073523 0.474855858 0.006854626
demo.ridge$lambda
## [1] 0.005977451 0.007744569 0.004531840

We may compare the predictions we get from this to the predictions we’d from
dropping, say, X2 (Figure 15.6). One substantial advantage of ridge regression is that
we don’t have to make any decisions about which variables to remove, but can match
(to extremely high accuracy) what we’d get after dropping variables.

15.6 Further Reading
Ridge regression, by that name, goes back to Hoerl and Kennard (1970). Essentially
the same idea was introduced some years earlier by the great Soviet mathematician
A. N. Tikhonov in a series of papers about “regularizing ill-posed optimization prob-
lems”, i.e., adding penalties to optimization problems to make a solution unique, or
to make the solution more stable. For this reason, ridge regression is sometimes also
called “Tikhonov regularization” of linear least squares16.

The use of principal components as a technique of dimension reduction goes back
at least to Hotelling in the 1930s, or arguably to Karl Pearson around 1900. I have not
been able to trace who first suggested regressing a response variable on the principal
components of the predictors. Dhillon et al. (2013) establishes a surprising connection
between regression on the principal components and ridge regression.

On the use of Lagrange multipliers to enforce constraints on optimization prob-
lems, and the general equivalence between penalized and constrained optimization,
see Klein (2001), or Shalizi (forthcoming, §E.3).

For high-dimensional regression in general, the opening chapters of Bühlmann
and van de Geer (2011) are very good. Bühlmann (2014); Wainwright (2014) may be
more accessible review articles on basically the same topics.

For a representative example of the idea that big data “makes theory obsolete”, see
Anderson (2008); for a reply from someone who actually knows what they’re talking
about, see http://earningmyturns.blogspot.com/2008/06/end-of-theory-data-deluge-makes.
html.

16There are a large number of variant transliterations of “Tikhonov”.
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FIGURE 15.6: Comparison of fitted values from an ordinary least squares regression where we
drop X2 from our running example (vertical axis) against fitted values from a ridge regression on
all variables (horizontal axis); the two sets of numbers are not exactly equal, though they are close.
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Chapter 16

Tests and Confidence Sets for
Multiple Coefficients,
Assuming Gaussian Noise

16.1 Assumptions, and Summary of Previous Results

Throughout this chapter, we’ll assume that the Gaussian-noise multiple linear regres-
sion model

Y =β0+β1X1+ . . .+βp Xp + ε (16.1)

with ε ∼ N (0,σ2) independent of the Xi s and independent across observations, is
completely correct. We will also use the least squares or maximum likelihood esti-
mates of the slopes,

bβ= (xT x)−1xT y (16.2)

Under these assumptions, the estimator has a multivariate Gaussian distribution,

bβ∼MV N (β,σ2(xT x)−1) (16.3)

The maximum likelihood estimate of σ2, σ̂2, is

σ̂2 =
1
n
(y− x bβ)T (y− x bβ) (16.4)

This is slightly negatively biased, E
�

σ̂2
�

= n−p−1
n σ2, and has the sampling distribu-

tion
nσ̂2

σ2
∼ χ 2

n−p−1 (16.5)

σ̂2 n
n−p−1 is an unbiased estimator of σ2.
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16.2 z− and t− Tests for Single Coefficients

Let’s write the true standard error of the estimator β̂i as se
h

β̂i

i

. From the general

theory about the variance of bβ,

se
h

β̂i

i

=
Ç

σ2(xT x)−1
i+1,i+1 (16.6)

(Why i + 1?) Further, from the Gaussian distribution of bβ,

β̂i −βi

se
h

β̂i

i ∼N (0,1) (16.7)

If we know σ2, so that we can compute se
h

β̂i

i

, we can use this to either test hypothe-

ses about the exact value of βi , or to form confidence intervals. Specifically, a 1− α
CI would be

β̂i ± z(α/2)se
h

β̂i

i

(16.8)

with zp being the p th quantile of the standard Gaussian distribution.
If we use instead the unbiased estimate of σ2, σ̂2 n

n−p−1 , to obtain an estimate

bse
h

β̂i

i

, we find rather

β̂i −βi

bse
h

β̂i

i ∼ tn−p−1 (16.9)

The reasoning for this is exactly parallel to why we got tn−2 distributions for simple
linear regression, so I won’t rehearse it here. It follows that

β̂i ± tn−p−1(α/2)bse
h

β̂i

i

(16.10)

is a 1− α confidence interval for βi . This is implemented in the confint function,
when applied to the output of lm.

As n→∞, this becomes

β̂i ± z(α/2)σ̂
Ç

(xT x)−1
i+1,i+1 (16.11)

which is often a quite practical alternative to the t -based interval.

16.2.1 What, Exactly, Is summary Testing?
When you run summary on the output of lm, part of what it delivers is a table contain-
ing estimated coefficients and standard errors, along with a t -statistic and a p-value
for each one. It is important to be very clear about what is being tested here. There
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is in fact a different null hypothesis for each row of the table. The null hypothesis for
βi is that

Y =β0+β1X1+ . . .βi−1Xi−+ 0Xi +βi+1Xi + . . .+βp Xp + ε (16.12)

with ε being mean-zero, constant-variance independent Gaussian noise. The alterna-
tive hypothesis is that

Y =β0+β1X1+ . . .βi−1Xi−+βi Xi +βi+1Xi + . . .+βp Xp + ε (16.13)

with βi 6= 0, and the same assumptions about ε. This matters because whether the
null hypothesis is true or not depends on what other variables are included in the model.
The optimal coefficient on Xi might be zero with one set of covariates and non-zero
with another. The t test is, by its nature, incapable of saying whether Xi should be
included in the model or not.

(This is in addition to the usual cautions about whether testing βi = 0 is really
informative, about not mistaking “detectably different from zero” for “important”,
and about how any βi 6= 0 will eventually have a p-value arbitrarily close to 0.)

16.2.2 No, Really, Whether Coefficients Are Zero Changes with
the Covariates

Here is the simplest situation I know of which illustrates that the true (optimal or
population-level) coefficient of a given predictor variable changes with the other vari-
ables included in the model. Suppose that the true model is

Y =β0+β1X1+β2X2+ ε (16.14)

with all the usual assumptions being met. Without knowing this, we instead estimate
the model

Y = γ0+ γ1X1+η (16.15)

We know, from our study of the simple linear model, that the (optimal or population)
value of γ1 is

γ1 =
Cov [X1,Y ]

Var [X1]
(16.16)

Substituting in for Y ,

γ1 =
Cov [X1,β0+β1X1+β2X2+ ε]

Var [X1]
(16.17)

=
Cov [X1,β0]+Cov [X1,β1X1]+Cov [X1,β2X2]+Cov [X1,ε]

Var [X1]
(16.18)

=
0+β1Cov [X1,X1]+β2Cov [X1,X2]+ 0

Var [X1]
(16.19)

= β1+β2
Cov [X1,X2]

Var [X1]
(16.20)

Thus, even if β1 = 0, we can easily have γ1 6= 0, and vice versa. (See also Exercise 1.)
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16.3 Variance Ratio (F ) Tests for Multiple Coefficients
Being Zero

If we want to test whether a group of multiple coefficients are all simultaneously zero,
the traditional approach is a variance ratio or F test. To lay everything out, the null
hypothesis is that

Y =β0+β1X1+ . . .+βq Xq + 0Xq+1+ . . .+ 0Xp + ε (16.21)

while the alternative is

Y =β0+β1X1+ . . .+βq Xq +βq+1Xq+1+ . . .+βp Xp + ε (16.22)

with at least one of the coefficientsβq+1, . . .βp 6= 0. The null hypothesis, then, is that
in a linear model which includes all the predictors X1, . . .Xp , the optimal coefficients
for the last p − q variables are all zero.

For both models, we get an estimate of σ2, say σ̂2
nu l l for the null model (with

coefficients fixed at zero) and σ̂2
f u l l for the full model. Because the null model is a

special case of the full model, and we estimate parameters in each case by minimizing
the MSE, σ̂2

nu l l ≥ σ̂
2
f u l l .

Following reasoning exactly parallel to the way we got the F test for the simple
linear regression model (Chapter 10),

nσ̂2
f u l l

σ2
∼ χ 2

n−p−1 (16.23)

while, under the null hypothesis,

n(σ̂2
nu l l − σ̂

2
f u l l )

σ2
∼ χ 2

p−q (16.24)

and so (again under the null hypothesis)

(σ̂2
nu l l − σ̂

2
f u l l )/(p − q)

σ̂2
f u l l/(n− p − 1)

∼ Fp−q ,n−p−1 (16.25)

We therefore reject the null hypothesis when the test statistic

F =
(σ̂2

nu l l − σ̂
2
f u l l )/(p − q)

σ̂2
f u l l/(n− p − 1)

(16.26)

is too large compared to the Fp−q ,n−p−1 distribution. This is why this is called an F
test for this set of regression coefficients. If we’re not testing all the coefficients at
once, this is a partial F test.
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The proper interpretation of this test is “Does letting the slopes for Xq+1, . . .Xp

be non-zero reduce the MSE more than we would expect just by noise?” As n grows,
increasingly small improvements will become clearly detectable as not-noise, so in-
creasingly small but non-zero sets of coefficients will be detected as significant by the
F test.

Cautions The variance ratio test does not test any of the following:

• Whether some variable not among X1, . . .Xp ought to be included in the model.

• Whether the relationship between Y and the Xi is linear.

• Whether the Gaussian noise assumption holds.

• Whether any of the other modeling assumptions hold.

16.3.1 All Slopes at Once

An obvious special case is the hypothesis that all the coefficients are zero. That is, the
null hypothesis is

Y =β0+ 0X1+ . . .+ 0Xp + ε (16.27)

with the alternative being the full model

Y =β0+β1X1+ . . .+βp Xp + ε (16.28)

The estimate of σ2 under the null is the sample variance of Y , s2
Y , so the test statistic

becomes
(s2

Y − σ̂
2
f u l l )/p

σ̂2
f u l l/(n− p − 1)

(16.29)

whose distribution under the null is Fp,n−p−1.
This full F test is often called a test of the significance of the whole regression.

This is true, but has to be understood in a very specific sense. We are testing whether,
if Y is linearly regressed on X1, . . .Xp and only on those variables, the reduction in
the MSE from actually estimating slopes over just using a flat regression surface is
bigger than we’d expect from pure noise. Once again, the test has no power to detect
violations of any of the modeling assumptions. (See the discussion of the F test for
simple linear regression in Chapter 10.)

16.3.2 Variance Ratio Tests in R
This is most easily done through the anova function. We fit the null model and the
full model, both with lm, and then pass them to the anova function:
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mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")
mob.null <- lm(Mobility ~ Commute, data = mobility)
mob.full <- lm(Mobility ~ Commute + Latitude + Longitude, data = mobility)
anova(mob.null, mob.full)
## Analysis of Variance Table
##
## Model 1: Mobility ~ Commute
## Model 2: Mobility ~ Commute + Latitude + Longitude
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 727 1.3143
## 2 725 1.2952 2 0.019111 5.3491 0.004942

The second row tells us that the full model has two more parameters than the
null, that n(σ̂2

nu l l−σ̂
2
f u l l ) = 0.0191114, and then what the variance ratio or F statistic

and the corresponding p-value are. Here, we learn that the decrease in the root-MSE
which comes from adding latitude and longitude as predictors, while very small (0.51
percentage points) is large enough that it is unlikely to have arisen by capitalizing on
noise1.

16.3.3 Variable Deletion via F Tests

It’s not uncommon to use F tests for variable deletion: pick your least favorite set of
predictors, test whether all of theirβs are zero, and, if so, delete them from the model
(and re-estimate). Presuming that we can trust the modeling assumptions, there are
still a few points about this procedure which are slightly dubious, or at least call for
much more caution than is often exercised.

Statistical power The test controls the probability of rejecting when the null is
true — it guarantees that if βq = 0, we have a low probability of rejecting that null
hypothesis. For deletion to be reliable, however, we’d want a low probability of miss-
ing variables with non-zero coefficients, i.e., a low probability of retaining the null
hypothesis when it’s wrong, or high power to detect departures from the null. Power
cannot be read off from the p-value, and grows with the magnitude of the departure
from the null. One way to get at this is, as usual, to complement the hypothesis test
with a confidence set for the coefficients in question. Ignoring variables whose coef-
ficients are precisely estimated to be close to zero is much more sensible than ignoring
variables because their coefficients can only be estimated very loosely.

Non-transivitiy The variance ratio test checks whether the MSE of the smaller
model is significantly or detectably worse than the MSE of the full model. One draw-
back to this is that a series of insignificant, undetectably-small steps can add up to a
significant, detectably-big change. In mathematical jargon: “is equal to” is a transitive

1Once again, this presumes that the only two possibilities in the world are a completely-correct linear-
Gaussian model with just commuting time as a predictor, and a completely-correct linear-Gaussian model
with commuting time, latitude and longitude as predictors.
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relation, so that if A= B and B = C , A= C . But “insignificantly different from” is
not a transitive relation, so if A≈ B and B ≈C , we can’t conclude A≈C .

Concretely: a group of variables might show up as significant in a partial F test,
even though none of them was individually significant on a t test in the full model2.
Also, if we delete variables in stages, we can have a situation where at each stage the
increase in MSE is insignificant, but the difference between the full model and the
final model is highly significant.

16.3.4 Likelihood Ratio Tests
As with the F test for simple linear models, there is an alternative based on the likeli-
hood ratio. As with the simple model (Chapter 10), the log-likelihood of the model,
at the maximum likelihood estimate, is

− n
2
(1+ log2π)− n

2
log σ̂2 (16.30)

Hence the difference in log-likelihoods between the full model, with all p slopes es-
timated, and the null model, with only q slopes estimated and the other p − q fixed,
is

Λ=−n
2

log σ̂2
f u l l +

n
2

log σ̂2
nu l l =

n
2

log
σ̂2

nu l l

σ̂2
f u l l

(16.31)

This is the log of the ratio of likelihoods (not the ratio of log likelihoods!) Under the
null hypothesis3,

2Λ∼ χ 2
p−q (16.32)

The same cautions apply to the likelihood ratio test as to the F test: it does not check
modeling assumptions.

One advantage of likelihood ratio tests is that exactly the same procedure can be
used to test the hypothesis that βq = 0 and to test βq =β

∗
q , for any other particular

vector of parameters. For that matter, it can be used to test cβ = r, where c is any
non-random q × (p + 1) matrix, and r is any non-random q × 1 vector. Thus, for
example, it can be used to test the hypothesis that two slopes are equal, or that all
slopes are equal, etc.

Likelihood Ratio vs. F Tests For linear-Gaussian models, both the likelihood ratio
and the F statistic are functions of the ratio σ̂2

nu l l/σ̂
2
f u l l (Exercise 2). For fixed p and

q , as n→∞, the two tests deliver the same p-values when σ̂2
nu l l/σ̂

2
f u l l is the same. At

finite n, they are somewhat different, with the F test usually giving a somewhat higher
p value than the χ 2 test, particularly if p is close to n. Which test is more accurate
is another question. The likelihood ratio test can actually work for large n when the

2This is yet another reason not to pay much attention to the p-values reported by summary.
3Strictly speaking, this only becomes exact as n→∞. This issue is that deriving the χ 2 distribution for

Λ presumes every parameter’s maximum likelihood estimate has a Gaussian distribution around its true
value (see Chapter 10), and while this is true for the β̂i s, it is only approximately true for σ̂2. See Exercise
4.
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model is mis-specified, in the sense of telling us which wrong model is closer to the
truth (Vuong, 1989), while the F test’s refinements over the χ 2 very much depend on
all the modeling assumptions being right.
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FIGURE 16.1: Difference in p-values obtained from using a likelihood ratio test (black) and an F
test (blue) on the same data, with p = 10, q = 9, and n either 15 (solid) or 60 (dotted). In general,
the difference between the two tests goes to zero as n− p grows. (See next page for code.)
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n <- 15
p <- 10
q <- 9
curve(pchisq(n * log(x), df = p - q, lower.tail = FALSE), from = 1, to = 2,

xlab = expression(hat(sigma)[null]^2/hat(sigma)[full]^2), ylab = "p-value")
curve(pf((x - 1) * (n - p - 1)/(p - q), p - q, n - p - 1, lower.tail = FALSE),

add = TRUE, col = "blue")
n2 <- 60
curve(pchisq(n2 * log(x), df = p - q, lower.tail = FALSE), add = TRUE, lty = "dashed")
curve(pf((x - 1) * (n2 - p - 1)/(p - q), p - q, n2 - p - 1, lower.tail = FALSE),

add = TRUE, col = "blue", lty = "dashed")
legend("topright", ncol = 2, legend = c("LRT, n=15", "F, n=15", "LRT, n=60",

"F, n=60"), col = c("black", "blue", "black", "blue"), lty = c("solid",
"solid", "dashed", "dashed"))

FIGURE 16.2: Code for generating Figure 16.1.
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16.4 Confidence Sets for Multiple Coefficients
Suppose we want to do inference on two coefficients, say βi and β j , at once. That
means we need to come up with a two-dimensional confidence region C (α), where
we can say that P

�

(βi ,β j ) ∈C (α)
�

= 1− α. This would involve the same sort of
trilemma as confidence intervals for single coefficients. That is, one of three things
must be true:

1. Both βi and β j are in C (α); or

2. We got data which was very (≤ α) improbable under all possible values of the
parameters; or

3. Our model is wrong.

If we trust our model, then, we can indeed be confident that both βi and β j are
simultaneously in C (α).

Clearly, nothing depends on wanting to do inference on just two coefficients at
once; we could consider any subset of them we like, up to all p + 1 of them.

With one parameter, intervals are the most natural confidence sets to work with.
With more than one parameter, we have choices to make about the shape of the con-
fidence set. The two easiest ones to work with are rectangular boxes, and ellipsoids.

16.4.1 Confidence Boxes or Rectangles

The natural thing to want to do is to take a confidence interval for each coefficient
and put them together into a confidence box or rectangle. For instance, using the
t -distribution CI for βi and β j , the box would be

(β̂i ± tn−p−1(α/2)bse
h

β̂i

i

)× (β̂ j ± tn−p−1(α/2)bse
h

β̂ j

i

) (16.33)

(And similarly for three or more parameters.) This is, however, not quite right as I’ve
written it. The problem is that while each interval covers its true coefficient with high
probability, both intervals simultaneously cover the pair of parameters is a different
story. Let me abbreviate the interval for βi as Ci (α), likewise the interval for β j is
C j (α). We have

P (βi ∈Ci (α)) = 1−α , P
�

β j ∈C j (α)
�

= 1−α (16.34)

but from this it does not follow that

P
�

βi ∈Ci (α),β j ∈C j (α)
�

= 1−α (16.35)

To see this, let’s consider the complementary event: it’s

βi 6∈Ci (α)∨β j 6∈C j (α) (16.36)
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writing ∨ for logical-or4 By basic probability,

P
�

βi 6∈Ci (α)∨β j 6∈C j (α)
�

= P (βi 6∈Ci (α))+P
�

β j 6∈C j (α)
�

−P
�

βi 6∈Ci (α),β j 6∈C j (α)
�

(16.37)
Since Ci and C j are 1−α-confidence sets,

P
�

βi 6∈Ci (α)∨β j 6∈C j (α)
�

= 2α−P
�

βi 6∈Ci (α),β j 6∈C j (α)
�

≤ 2α (16.38)

So Ci (α)×C j (α) isn’t itself a 1−α confidence set; its real confidence level could be as
little as 1− 2α. If we had been looking at q coefficients at once, the confidence level
might have been as low as 1− qα.

This suggests, however, a very simple, if sometimes over-cautious, way of building
a confidence box. If we want the final box to have a 1−α confidence level, and we’re
dealing with q coefficients at once, we calculate 1− α/q confidence levels for each
coefficient, say Ci (α/q), and then set

C (α) =C1(α/q)×C2(α/q)× . . .×Cq (α/q) (16.39)

By our reasoning above, this final C (α)will cover all q parameters at once with prob-
ability at least 1−α.

This trick of building a 1− α confidence box for q parameters at once from q
1−α/q confidence intervals is completely generic; it doesn’t just work on regression
coefficients, but for any parameters of any statistical model at all. For more on it, see
§16.5 below.

4That is, A∨B means in ordinary English “A is true or B is true or both are true”.
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●
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β1

β 2

FIGURE 16.3: Grey lines: 95% confidence intervals for two coefficients, based on inverting t tests,
and so centered at the point estimate (dot). Black box: a 95% confidence rectangle for both coefficients
simultaneously. Notice that the grey lines do not touch the sides of the rectangle; the latter correspond
to 97.5% CIs for each coefficient. If we did draw the rectangle corresponding to the grey lines, its
actual confidence level could be as low as 90%. (See source file for code.)
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16.4.2 Confidence Balls or Ellipsoids
An alternative to confidence boxes is to try to make confidence balls. To see how this
could work, suppose first that β̂i and β̂ j were uncorrelated. Since

β̂i −βi

se
h

β̂i

i ∼N (0,1) (16.40)

(and likewise for β j ), we would have5







β̂i −βi

se
h

β̂i

i







2

+







β̂ j −β j

se
h

β̂ j

i







2

∼ χ 2
2 (16.41)

Therefore, a simultaneous 1− α confidence region for (βi ,β j ) would be the region
where







β̂i −βi

se
h

β̂i

i







2

+







β̂ j −β j

se
h

β̂ j

i







2

≤ χ 2
2 (1−α) (16.42)

Some geometry shows that this region is an ellipse, its axes parallel to the coordinate

axis with the length from end to end along one axis being 2se
h

β̂i

i

χ 2
2 (1−α), and its

length along the other axis being 2se
h

β̂ j

i

χ 2
2 (1−α).

If we had q different uncorrelated coefficients, the confidence region would be the
set (β1,β2, . . .βq ) where

q
∑

i=1







β̂i −βi

se
h

β̂i

i







2

≤ χ 2
q (1−α) (16.43)

When q > 2, we call this region an “ellipsoid” rather than an “ellipse”, but it’s the
same idea.

Usually, of course, the different coefficient estimates are correlated with each
other, so we need to do something a bit different. If we write βq for the vector of
coefficients we’re interested in, and Σq for its variance-covariance matrix, then the
confidence region is the set of all βq where

( bβq −βq )
TΣ−1

q ( bβq −βq )≤ χ
2
q (1−α) (16.44)

This, too, is an ellipsoid, only now the axes point in the directions given by the eigen-
vectors of Σq , and the length along each axis is proportional to the square root of the
corresponding eigenvalue. (See §16.4.2.2 for a derivation.)

5Because when Z1, . . .Zd are independent N (0,1) variables,
∑

i Z2
i ∼ χ

2
d .
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Since Σq is a q × q sub-matrix of σ2(xT x)−1, we can’t actually use this. We can,
however, use the appropriate sub-matrix of σ̂2(xT x)−1 as an approximation, which
becomes exact as n→∞. Similarly, if we use the unbiased estimate of σ2, we replace
χ 2

q (1−α) with qFq ,n−p−1(1−α).

16.4.2.1 Confidence Ellipsoids in R

The package ellipse (Murdoch and Chow, 2013) contains functions for plotting 2D
confidence ellipses. The main function is also called ellipse, which happens to have
a specialized method for lm models. The usage is

my.model <- lm(y ~ x1 + x2 + x3)
plot(ellipse(my.model, which = c(1, 2), level = 0.95))

Here which is the vector of coefficient indices (it can only be of length 2) and
level is the confidence level. Notice that what ellipse actually returns is a two-
column array of coordinates, which can be plotted, or passed along to other graphics
functions (like points or lines). See Figure 16.4.

Three-dimensional confidence ellipsoids can be made with the rgl library (Adler
et al., 2014). While confidence ellipsoids exist in any number of dimensions, they
can’t really be visualized when q > 3.
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library(ellipse)
par(mfrow = c(3, 2))
plot(ellipse(mob.full, which = c(1, 2), level = 1 - ((1 - 0.95)/6)), type = "l")
plot(ellipse(mob.full, which = c(1, 3), level = 1 - ((1 - 0.95)/6)), type = "l")
plot(ellipse(mob.full, which = c(1, 4), level = 1 - ((1 - 0.95)/6)), type = "l")
plot(ellipse(mob.full, which = c(2, 3), level = 1 - ((1 - 0.95)/6)), type = "l")
plot(ellipse(mob.full, which = c(2, 4), level = 1 - ((1 - 0.95)/6)), type = "l")
plot(ellipse(mob.full, which = c(3, 4), level = 1 - ((1 - 0.95)/6)), type = "l")

FIGURE 16.4: Confidence ellipses for every pair of coefficients in the model where economic mobil-
ity is regressed on the prevalence of short commutes, latitude and longitude. (Remember the intercept
is the first coefficient.) Why do I use this odd-looking confidence level?
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16.4.2.2 Where the χ 2
q Comes From

To see why this should be so, we need to do some linear algebra, to turn a Gaussian
random vector with correlations and unequal variances into a Gaussian random vector
where the coordinates are all ∼ N (0,1) and independent of each other. The starting
point is the fact that Σq is a square, symmetric, positive-definite matrix. Therefore it
can be written as follows:

Σq =VUVT (16.45)

where U is the diagonal matrix of eigenvalues, and V is the matrix whose columns are
the eigenvectors; VT is its transpose, and VT V= I. If we define Σ1/2

q =VU1/2, where
U1/2 is the diagonal matrix with the square roots of the eigenvalues, then

Var
�

Σ−1/2
q ( bβq −βq )

�

= Σ−1/2
q Var

�

bβq −βq )
�

(Σ−1/2
q )T (16.46)

= U−1/2V−1VUVT VU−1/2 (16.47)
= U−1/2UU−1/2 (16.48)
= I (16.49)

where the last step works because U and U−1/2 are both diagonal matrices. In other
words, while the coordinates of bβq −βq have unequal variances and are correlated

with each other, Σ−1/2
q ( bβq −βq ) is a random vector where each coordinate has vari-

ance 1 and is uncorrelated with the others. Since the initial vector was Gaussian, this
too is Gaussian, hence

Σ−1/2
q ( bβq −βq )∼MV N (0, I) (16.50)

Therefore
�

Σ−1/2
q ( bβq −βq )

�T
Σ−1/2

q ( bβq −βq )∼ χ
2
q (16.51)

since it’s a sum of q squared, independent N (0,1) variables.
On the other hand,

�

Σ−1/2
q ( bβq −βq )

�T �
Σ−1/2

q ( bβq −βq )
�

(16.52)

= ( bβq −βq )
T
�

Σ−1/2
q

�T
Σ−1/2

q ( bβq −βq )

= ( bβq −βq )
T VU−1/2U−1/2V−1( bβq −βq ) (16.53)

= ( bβq −βq )
T VU−1V−1( bβq −βq ) (16.54)

= ( bβq −βq )
TΣ−1

q ( bβq −βq ) (16.55)

Combining Eqs. 16.51 and 16.55,

( bβq −βq )
TΣ−1

q ( bβq −βq )∼ χ
2
q (16.56)

as was to be shown.
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16.5 Further Reading
Variance and likelihood ratio tests go back to the period of the 1910s–1930s; see refer-
ences in Chapter 10. Further exposition can be found in any textbook on regression,
or general mathematical statistics.

The trick in §16.4.1, of getting an over-all confidence level of 1− α for q param-
eters simultaneously, by demanding the higher confidence level of 1− α/q for each
one separately, is one use of an important tool called Bonferroni correction or Bon-
ferroni adjustment6. For an account of the role of this general idea in probability
theory, see Galambos and Simonelli (1996). Bonferroni correction is also often used
for hypothesis testing: if we test q distinct hypotheses, and we want to have the prob-
ability of making no false rejections be α, we can achieve that by having each test be
of size α/q . Indeed, we could give each test whatever size we like, so long as the sum
of the tests is α.

One sometimes encounters the mis-understanding that Bonferroni correction re-
quires the test statistics or confidence intervals to be statistically independent (e.g.,
Ashby 2011); as you can see from the argument above, this is just wrong. What is
true is that Bonferroni correction is very cautious, and that one can sometimes come
up with less conservative ways of doing multiple inference if one either uses more de-
tailed information about how the statistics relate to each other (as in §16.4.2), or one
is willing to tolerate a certain number of false positives. The latter idea leads to im-
portant work on multiple testing and “false discovery control”, which is outside the
scope of this course, but see Benjamini and Hochberg (1995); Genovese and Wasser-
man (2004), and, for an unforgettable demonstration of how ignoring multiple testing
issues leads to nonsense, Bennett et al. (2010).

16.6 Exercises
1. In the scenario of §16.2.2, is it possible for both ε and η to obey the Gaussian

noise assumption? That is, it is possible to have ε ∼ N (0,σ2
ε ), independent of

X1 and X2, and to have η∼N (0,σ2
η), independent of X1? Hint: Suppose X1 and

X2 are jointly Gaussian, and, for simplicity, that both have mean 0.

2. (a) Show that the variance ratio test statistic (Eq. 16.26) depends on the data
only through the ratio σ̂2

nu l l/σ̂
2
f u l l .

(b) Show that as σ̂2
nu l l → σ̂2

f u l l ,

log
σ̂2

nu l l

σ̂2
f u l l

→
σ̂2

nu l l − σ̂
2
f u l l

σ̂2
f u l l

(16.57)

3. Chapter 7 argued that every confidence set comes from inverting a hypothe-
sis test. What is the hypothesis test corresponding to the confidence boxes of

6Computer scientists, and some mathematicians, call it a “union bound” — can you explain why?
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§16.4.1? That is, find an explicit form of the test statistic and of the rejection
region.

4. Let Xn ∼ χ 2
n−p , with fixed p.

(a) Show that Xn/n approaches a constant a, and find a.

(b) Show that (Xn − a)/
p

n approaches a Gaussian distribution, and find the
expectation and variance. Hint: show that the moment generating func-
tions converge.

(c) Combine the previous results to write the limiting distribution of Xn/n
as a Gaussian, whose parameters (may) change with n.
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Chapter 17

Interactions

17.1 Interactions, What Are They?
When we say that there are no interactions between Xi and X j , we mean that

∂ E [Y |X = x]
∂ d xi

(17.1)

is not a function of xi . Said another way, there are no interactions if and only if

E [Y |X = x] = α+
p
∑

i=1

fi (xi ) (17.2)

so that each coordinate of X makes its own separate, additive contribution to Y . The
standard multiple linear regression model of course includes no interactions between
any of the predictor variables.

General considerations of probability theory, mathematical modeling, statistical
theory, etc., give us no reason whatsoever to anticipate that interactions are rare, or
that when they exist they are small. You might be so lucky as to not have any to deal
with, but you should not presume you will be lucky.

Diagnosing the presence of interactions See Chapter 13 for some ideas about how
to do this. One trick not mentioned there is to plot the residuals from an interaction-
free model against the product of two predictors, e.g., against X1X2. This, however,
presumes a particular form for the interaction, gone over in the next section.

17.2 The Conventional Form of Interactions in Linear
Models

The usual way of including interactions in a linear model is to add a product term, as,
e.g.,

Y =β0+β1X1+β2X2+β3X1X2+ ε (17.3)
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Once we add such a term, we estimate β3 in exactly the same way we’d estimate any
other coefficient.

Interpretation In the model of Eq. 17.3, it is no longer correct to interpret β1 as
E [Y |X1 = x1+ 1,X2 = x2]−E [Y |X1 = x1,X2 = x2]. That difference is, rather β1+
β3X2. Similarly,β2 is no longer the expected difference in Y between two otherwise-
identical cases where X2 differs by 1. The fact that we can’t give one answer to “how
much does the response change when we change this variable?”, that the correct an-
swer to that question always involves the other variable, is what interaction means.

What we can say is thatβ1 is the slope with regard to X1 when X2 = 0, and likewise
β2 is how much we expect Y to change for a one-unit change in X2 when X1 = 0. β3
is the rate at which the slope on X1 changes as X2 changes, and likewise the rate at
which the slope on X2 changes with X1 (see Exercise 1 for why it’s both).

Diagnostics and inference Diagnostics for a product term goes just like it would for
any other: the residuals should have the same distribution no matter what the value
of Xi X j happens to be; all the usual plots can be made using Xi X j as the predictor
variable. Inference, too, works exactly the same way.

Terminology The coefficients which go with the linear terms, β1 and β2 above,
are often called the “main effects”, whileβ3 would be an “interaction effect”. I think
this terminology is misleading in at least two ways. First, by talking about “effects”
at all, it carries causal implications which are not usually warranted by a regression.
Second, it implies that the linear terms, being “main”, are bigger or more important
than the interactions, and again there’s usually no reason to think that. Why we don’t
use names like “linear coefficients” and “product coefficients”, I couldn’t say.

Products without linear terms considered dubious It is very rare to find models
where there is a product term Xi X j without both the linear terms Xi and X j . If, say,
the Xi term was missing, it would mean that Y was completely insensitive to Xi when
X j = 0, but only then. This is weird, and indeed flies in the face of one of the best
justifications for using product interactions (§17.2.1). There’s no intrinsic reason it
couldn’t happen, but you should expect models like that to receive additional scrutiny.

17.2.1 Why Product Interactions?

Most texts on linear regression do not even attempt to justify using interaction terms
that look like X1X2, as opposed to X1X2

1+|X1X2|
, or X1H (X2− c), etc., etc. Here is the best H is the Heaviside step func-

tion, H (x) =
§

1 x ≥ 0
0 x < 0 .justification I can find.

Suppose that the real regression function E [Y |X = x] = µ(x) is a smooth func-
tion of all the coordinates of x. Because it is smooth, we should be able to do a Taylor
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expansion around any particular point, say x∗:

µ(x)≈µ(x∗)+
p
∑

i=1

(xi − x∗i )
∂ µ

∂ xi

�

�

�

�

�

x=x∗
+

1
2

p
∑

i=1

p
∑

j=1

(xi − x∗i )(x j − x∗j )
∂ 2µ

∂ xi x j

�

�

�

�

�

x=x∗

(17.4)
The first term, µ(x∗), is a constant. The next sum will give us linear terms in all
the xi (plus more constants). The double sum after that will give us terms for each
product xi x j , plus all the squares x2

i , plus more constants. Thus, if the true regression
function is smooth, and we only see a small range of values for each predictor variable,
using product terms is reasonable — provided we also include quadratic terms for each
variable. (See Chapter 14 on polynomial regression for how to do that.)

Non-product interactions If have a particular sort of non-product interaction term
in mind, say X1X2

1+|X1X2|
, there is no particular difficulty in estimating it; just form a new

column of predictors with the appropriate values, and estimate a coefficient on it
like any other. Interpretation may, however, become even more tricky, and there is
also the issue of deciding on what sort of interaction. Shalizi (forthcoming) describes
ways of discovering reasonable interaction terms automatically, by two-dimensional
smoothing.

17.3 Interaction of Categorical and Numerical Vari-
ables

If we multiply the indicator variable for a binary category, say XB , with an ordinary
numerical variable, say X1, we get a different slope on Xi for each category:

Y =β0+β1X1+β1B XB X1+ ε (17.5)

When XB = 0, the slope on X1 is β1, but when XB = 1, the slope on X1 is β1+β1B ;
the coefficient for the interaction is the difference in slopes between the two categories.
This is just like the way the coefficients on categorical variables back in Chapter 14
(“adjusted effects”) were differences between the intercepts for the categories.

In fact, look closely at Eq. 17.5. It says that the categories share a common inter-
cept, but their regression lines are not parallel (unless β1B = 0). We could expand the
model by letting each category have its own slope and its own intercept:

Y =β0+βB XB +β1X1+β1B XB X1+ ε (17.6)

This model, where “everything is interacted with the category”, is very close to just
running two separate regressions, one per category. It does, however, insist on having
a single noise variance σ2 (which separate regressions wouldn’t accomplish). It also let
you form confidence intervals for βB and β1B ; if one or the other of these is tightly
focused around 0, you might consider dropping that term and re-estimating1. Also,

1You could get the same effect with two separate regressions, by getting a confidence interval for the
difference in the two estimates of the slope or the two estimates of the intercept, but the answer would
come to the same as what you’d get from the joint regression with full interactions.
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if there were additional predictors in the model which were not interacted with the
category, e.g.,

Y =β0+βB XB +β1X1+β1B XB X1+β2X2+ ε (17.7)

then this would definitely not be the same as running two separate regressions.
As with linear terms for categorical variables (“adjusted effects”), everything works

much the same for variables with more than two levels: we add one indicator variable
for all but one (reference or baseline) level of the category, we interact the indicators
with the other predictor or predictors of interest, and the coefficients are differences
to the slopes.

17.3.1 Interactions of Categorical Variables with Each Other
Nothing stops the variable you interact a categorical with from being another cate-
gorical. When that happens, you get terms which only apply to individuals which
belong to both categories, e.g., to plumbers in Ohio.

Categorical interactions vs. group or conditional means Suppose we have two
binary categorical variables, with corresponding indicator variables XB and XC . If we
fit a model of the form

Y =β0+β1XB +β2XC +β3XB XC + ε (17.8)

then we can make the following identifications:

E [Y |XB = 0,XC = 0] = β0 (17.9)
E [Y |XB = 1,XC = 0] = β0+β1 (17.10)
E [Y |XB = 0,XC = 1] = β0+β2 (17.11)
E [Y |XB = 1,XC = 1] = β0+β1+β2+β3 (17.12)

Conversely, these give us four equations in four unknowns, so if we know the group
or conditional means on the left-hand sides, we could solve these equations for theβs
(Exercise 2).

Notice that if our only predictor variables were these two categorical variables,
we’d have one parameter for each distinct value of X — the model is saturated — and
we’d have very little ability to tell that the model was wrong, regardless of how big n
might be. One way we might check it would be to look at the distribution of residuals
for each distinct group — by assumption they should all be the same. Of course if we
have additional predictor variables, we can check the residuals against them.

17.4 Higher-Order Interactions
Nothing stops us from considering interactions among three or more variables, rather
than just two. Again, the conventional form for this is a product, Xi X j Xk . Again,
the best justification for this I’ve ever seen is a higher-order Taylor expansion, which
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suggests using terms like X 2
i X j and X 3

i as well. Again, there is nothing special about
diagnostics or inference for higher-order interaction terms. Trying to describe their
interpretation in words gets extra tricky, however.

17.5 Product Interactions in R
The lm function is set up to comprehend multiplicative or product interactions in
model formulas. Pure product interactions are denoted by :, so the formula

lm(y ~ x1:x2)

corresponds to the model Y =β0+βX1X2+ε. (Intercepts are included by default
in R.) Since it is relatively rare to include just a product term without linear terms, it’s
more common to use the symbol *, which expands out to both sets of terms. That is,

lm(y ~ x1 * x2)

is equivalent to

lm(y ~ x1 + x2 + x1:x2)

and both estimate the model Y =β0+β1X1+β2X2+β3X1X2+ ε. This special
sense of * in formulas over-rides its ordinary sense of multiplication; if you wanted
to specify a regression on, say 1000X2, you’d have to write I(1000*x2) rather than
1000*x2. Also notice that R thinks, not unreasonably, that x1:x1 is just the same as
x1; if you want higher powers of a variable, use I(x1^2) or poly(x1,2).

The : will apply to combinations of variables. Thus

(x1 + x2):(x3 + x4)

is equivalent to

x1:x3 + x1:x4 + x2:x3 + x2:x4

Similarly for *. This

(x1 + x2) * (x3 + x4)

expands out to this:

x1 + x2 + x3 + x4 + x1:x3 + x1:x4 + x2:x3 + x2:x4

The reason you can’t just write x1^2 in your model formula is that the power
operator also has a special meaning in formulas, of repeatedly *-ing its argument with
itself. That is, this
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(x1 + x2 + x3)^2

is equivalent to

(x1 + x2 + x3) * (x1 + x2 + x3)

which in turn is equivalent to

x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3

(Remember that x1:x1 is just x1.)
I find these operators in formulas most useful when I want to interact lots of vari-

ables with a category:

lm(y ~ (x1 + x2 + x3 + x5) * xcat + x4)

is a lot more compact than writing everything out, as

lm(y ~ xcat + x1 + x2 + x3 + x5 + x1:xcat + x2:xcat + x3:xcat + x5:xcat + x4)

and it’s also something I’m a lot less likely to get wrong. Even writing out the
whole formula term by term would be a lot less work, and lead to many fewer errors,
than creating all the interacted columns by hand.

poly and interactions If you want to use poly to do polynomial regression, as in
Chapter 14, and we want interactions, we can do it:

lm(y ~ poly(x1, x2, degree = 2))

This creates linear terms for both variables (which it gives names ending 1.0 and
0.1), quadratic terms for both variables (names ending in 2.0 and 0.2), and their
product term (whose name ends in 1.1). We have to explicitly name the degree
argument; otherwise, poly doesn’t know when we’ve stopped giving it columns we
want to interact. If we set degree higher than 2, we’ll get interactions between powers
of the variables, and if we gave it k > 2 variables, we’d get all possible 2,3, . . . k-way
interactions.

17.5.1 Economic Mobility vs. Commuting, Again
Let’s continue with the data from the first DAP.

mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")

As in Chapter 14, on categorical variables, we’ll introduce a new binary category,
indicating whether each state was or was not a part of the Confederacy in the Civil
War. (See that chapter for detailed comments.)
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# The states of the Confederacy
Confederacy <- c("AR", "AL", "FL", "GA", "LA", "MS", "NC", "SC", "TN", "TX",

"VA")
mobility$Dixie <- mobility$State %in% Confederacy

In that chapter, we allowed this new indicator variable to change the intercept; you
will recall that that term was negative and highly significant. Here, we’ll let being in
the South affect the slope on Commute as well, that is, we introduce an interaction
between Commute and Dixie:

mob.dixie <- lm(Mobility ~ Commute * Dixie, data = mobility)
signif(coefficients(summary(mob.dixie)), 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01880 0.00683 2.7600 5.95e-03
## Commute 0.19500 0.01340 14.5000 2.93e-42
## DixieTRUE -0.02120 0.01190 -1.7700 7.64e-02
## Commute:DixieTRUE -0.00131 0.02830 -0.0461 9.63e-01

(See also Exercise 3.)
The coefficient for the interaction is negative, suggesting that increasing the frac-

tion of workers with short commutes predicts a smaller difference in rates of mobility
in the South than it does in the rest of the country. This coefficient is not significantly
different from zero, but, more importantly, we can be confident it is small, compared
to the base-line value of the slope on Commute:

signif(confint(mob.dixie), 3)

## 2.5 % 97.5 %
## (Intercept) 0.00543 0.03220
## Commute 0.16900 0.22200
## DixieTRUE -0.04470 0.00225
## Commute:DixieTRUE -0.05680 0.05420

Thus, even if the South does have a different slope than the rest of the country, it
is not a very different slope.

The difference in the intercept, however, is more substantial. It, too, is not sig-
nificant at the 5% level, but that is because (as we see from the confidence interval)
it might be quite large and negative (−2 percentage points, when the mean is about
10% and the largest value is 47%), or perhaps just barely positive — it’s not so pre-
cisely measured, but it’s either lowering the expected rate of mobility or adding to it
trivially.

Of course, we should really do all our diagnostics here before paying much atten-
tion to these inferential statistics, but I offer this by way of illustration of the func-
tions. As a further illustraiton, see Exercise 4.
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17.6 Exercises
1. Consider an apparently different, and perhaps more-interpretable, model than

Eq. 17.3, namely

Y = α0+(α1+α2X2)X1+(α3+α4X1)X2+ ε (17.13)

Show that this can always be re-written in the same form as Eq. 17.3, and express
the latter’sβ0,β1,β2 in terms of the αs of this model. Can models of the form
of Eq. 17.3 always be re-written in this form? If so, express the α parameters in
terms of the βs; if not, give a counter-example.

2. Solve Eqs. 17.9–17.12 for the βs.

3. Check that we get the same set of terms, with the same coefficients, as in §17.5.1,
if we fit our model with

lm(Mobility ~ Commute + Dixie + Commute:Dixie, data = mobility)

Why does this happen?

4. Using the mobility data, regress Mobility on

(a) Latitude and longitude (only);

(b) Latitude, longitude, and their product (only);

(c) Latitude, longitude, their product, and their squares (only).

For each model, make maps2 of the fitted values and the residuals. Describe the
resulting geographic patterns, and compare them (qualitatively) to a map of the
actual values of Mobility. Can you explain why the maps of fitted values look
like they do, based on the terms included in the model?

2See the hint on the DAP 1 assignment for help with making such maps.
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Chapter 18

Outliers and Influential Points

An outlier is a data point which is very far, somehow, from the rest of the data.
They are often worrisome, but not always a problem. When we are doing regression
modeling, in fact, we don’t really care about whether some data point is far from the
rest of the data, but whether it breaks a pattern the rest of the data seems to follow.
Here, we’ll first try to build some intuition for when outliers cause trouble in linear
regression models. Then we’ll look at some ways of quantifying how much influence
particular data points have on the model; consider the strategy of pretending that
inconvenient data doesn’t exist; and take a brief look at the robust regression strategy,
of replacing least squares estimates with others which are less easily influenced.

18.1 Outliers Are Data Points Which Break a Pattern
Consider Figure 18.1. The points marked in red and blue are clearly not like the main
cloud of the data points, even though their x and y coordinates are quite typical of the
data as a whole: the x coordinates of those points aren’t related to the y coordinates
in the right way, they break a pattern. On the other hand, the point marked in green,
while its coordinates are very weird on both axes, does not break that pattern — it
was positioned to fall right on the regression line.
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FIGURE 18.1: Points marked with a red × and a blue triangle are outliers for the regression line
through the main cloud of points, even though their x and y coordinates are quite typical of the
marginal distributions (see rug plots along axes). The point marked by the green square, while an
outlier along both axes, falls right along the regression line. (See the source file online for the figure-
making code.)
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(Intercept) x
black only 0.0837 1.84
black+blue 0.0666 1.76
black+red 0.1850 1.67
black+green 0.0399 1.98
all points 0.0535 1.94

TABLE 18.1: Estimates of the simple regression line from the black points in Figure 18.1, plus re-
estimates adding in various outliers.

What affect do these different outliers have on a simple linear model here? Table
18.1 shows the estimates we get from using just the black points, from adding only
one of the three outlying points to the black points, and from using all the points. As
promised, adding the red or blue points shifts the line, while adding the green point
changes hardly anything at all.

If we are worried that outliers might be messing up our model, we would like to
quantify how much the estimates change if we add or remove individual data points.
Fortunately, we can quantify this using only quantities we estimated on the complete
data, especially the hat matrix.
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18.1.1 Examples with Simple Linear Regression

To further build intuition, let’s think about what happens with simple linear regres-
sion for a moment; that is, our model is

Y =β0+β1X + ε (18.1)

with a single real-valued predictor variable X . When we estimate the coefficients by
least squares, we know that

β̂0 = y − β̂1x (18.2)

Let us turn this around. The fitted value at X = x is

β̂0+ β̂1x = y (18.3)

Suppose we had a data point, say the i th point, where X = x. Then the actual value
of yi almost wouldn’t matter for the fitted value there — the regression line has to go
through y at x, never mind whether yi there is close to y or far away. If xi = x, we
say that yi has little leverage over m̂i , or little influence on m̂i . It has some influence,
because yi is part of what we average to get y, but that’s not a lot of influence.

Again, with simple linear regression, we know that

β̂1 =
cX Y

s2
X

(18.4)

the ratio between the sample covariance of X and Y and the sample variance of X .
How does yi show up in this? It’s

β̂1 =
n−1∑n

i=1 (xi − x)(yi − y)
s2
X

(18.5)

Notice that when xi = x, yi doesn’t actually matter at all to the slope. If xi is far
from x, then yi − y will contribute to the slope, and its contribution will get bigger
(whether positive or negative) as xi − x grows. yi will also make a big contribution
to the slope when yi − y is big (unless, again, xi = x).

Let’s write a general formula for the predicted value, at an arbitrary point X = x.

m̂(x) = β̂0+ β̂1x (18.6)

= y − β̂1x + β̂1x (18.7)

= y + β̂1(x − x) (18.8)

= y +
1
n

∑n
i=1 (xi − x)(yi − y)

s2
X

(x − x) (18.9)

So, in words:

• The predicted value is always a weighted average of all the yi .
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• As xi moves away from x, yi gets more weight (possibly a large negative weight).
When xi = x, yi only matters because it contributes to the global mean y.

• The weights on all data points increase in magnitude when the point x where
we’re trying to predict is far from x. If x = x, only y matters.

All of this is still true of the fitted values at the original data points:

• If xi is at x, yi only matters for the fit because it contributes to y.

• As xi moves away from x, in either direction, it makes a bigger contribution to
all the fitted values.

Why is this happening? We get the coefficient estimates by minimizing the mean
squared error, and the MSE treats all data points equally:

1
n

n
∑

i=1

(yi − m̂(xi ))
2 (18.10)

But we’re not just using any old function m̂(x); we’re using a linear function. This
has only two parameters, so we can’t change the predicted value to match each data
point — altering the parameters to bring m̂(xi ) closer to yi might actually increase the
error elsewhere. By minimizing the over-all MSE with a linear function, we get two
constraints,

y = β̂0+ β̂1x (18.11)

and
∑

i

ei (xi − x) = 0 (18.12)

The first of these makes the regression line insensitive to yi values when xi is close to
x. The second makes the regression line very sensitive to residuals when xi − x is big
— when xi − x is large, a big residual (ei far from 0) is harder to balance out than if
xi − x were smaller.

So, let’s sum this up.

• Least squares estimation tries to bring all the predicted values closer to yi , but
it can’t match each data point at once, because the fitted values are all functions
of the same coefficients.

• If xi is close to x, yi makes little difference to the coefficients or fitted values —
they’re pinned down by needing to go through the mean of the data.

• As xi moves away from x, yi − y makes a bigger and bigger impact on both the
coefficients and on the fitted values.

If we worry that some point isn’t falling on the same regression line as the others,
we’re really worrying that including it will throw off our estimate of the line. This is
going to be a concern when xi is far from x, or when the combination of xi − x and
yi − y makes that point have a disproportionate impact on the estimates. We should
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also be worried if the residual values are too big, but when asking what’s “too big”,
we need to take into account the fact that the model will try harder to fit some points
than others. A big residual at a point of high leverage is more of a red flag than an
equal-sized residual at point with little influence.

All of this will carry over to multiple regression models, but with more algebra
to keep track of the different dimensions.

18.2 Influence of Individual Data Points on Estimates

Recall that our least-squares coefficient estimator is

bβ= (xT x)−1xT y (18.13)

from which we get our fitted values as

Òm= x bβ= x(xT x)−1xT y=Hy (18.14)

with the hat matrix H≡ x(xT x)−1xT . This leads to a very natural sense in which one
observation might be more or less influential than another:

∂ β̂k

∂ yi
=
�

(xT x)−1xT �

ki (18.15)

and
∂ m̂k

∂ yi
=Hki (18.16)

If yi were different, it would change the estimates for all the coefficients and for all
the fitted values. The rate at which the k th coefficient or fitted value changes is given
by the ki th entry in these matrices — matrices which, notice, are completely defined
by the design matrix x.

18.2.1 Leverage

Hi i is the influence of yi on its own fitted value; it tells us how much of m̂i is just yi .
This turns out to be a key quantity in looking for outliers, so we’ll give it a special
name, the leverage. It is sometimes also written hi . Once again, the leverage of the
i th data point doesn’t depend on yi , only on the design matrix.

Because the general linear regression model doesn’t assume anything about the
distribution of the predictors, other than that they’re not collinear, we can’t say def-
initely that some values of the leverage break model assumptions, or even are very
unlikely under the model assumptions. But we can say some things about the lever-
age.
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Average leverages Exercise 6 in Chapter 12 showed that the trace of the hat matrix
equals the number of coefficients we estimate:

trH= p + 1 (18.17)

But the trace of any matrix is the sum of its diagonal entries,

trH=
n
∑

i=1

Hi i (18.18)

so the trace of the hat matrix is the sum of each point’s leverage. The average leverage
is therefore p+1

n . We don’t expect every point to have exactly the same leverage, but
if some points have much more than others, the regression function is going to be
pulled towards fitting the high-leverage points, and the function will tend to ignore
the low-leverage points.

Leverage vs. geometry Let’s center all the predictor variables, i.e., subtract off the
mean of each predictor variable. Call this new vector of predictor variables Z , with
the n× p matrix z. This will not change any of the slopes, and will fix the intercept
to be y. The fitted values then come from

m̂i = y +
1
n
(xi − x)Var [X ]−1 zT y (18.19)

This tells us that yi will have a lot of leverage if (xi − x)Var [X ]−1 (xi − x)T is big1.
If the data point falls exactly at the mean of the predictors, yi matters only because
it contributes to the over-all mean y. If the data point moves away from the mean of
the predictors, not all directions count equally. Remember the eigen-decomposition
of Var [X ]:

Var [X ] =VUVT (18.20)

where V is the matrix whose columns are the eigenvectors of Var [X ], VT = V−1,
and U is the diagonal matrix of the eigenvalues of Var [X ]. Each eigenvalue gives the
variance of the predictors along the direction of the corresponding eigenvector. It
follows that

Var [X ]−1 =VU−1V (18.21)

So if the data point is far from the center of the predictors along a high-variance direc-
tion, that doesn’t count as much as being equally far along a low-variance direction2.
Figure 18.2 shows a distribution for two predictor variables we’re very familiar with,
together with the two eigenvectors from the variance matrix, and the corresponding
surface of leverages.

You may convince yourself that with one predictor variable, all of this collapses
down to just 1/n+(xi− x)2/ns2

X (Exercise 1). This leads to plots which may be easier
to grasp (Figure 18.3).

1This sort of thing — take the difference between two vectors, multiply by an inverse variance matrix,
and multiply by the difference vector again — is called a Mahalanobis distance. As we will see in a moment,
it gives more attention to differences along coordinates where the variance is small, and less attention to
differences along coordinates where the variance is high.

2I have an unfortunate feeling that I said this backwards throughout the afternoon.
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FIGURE 18.2: Left: The geographic coordinates of the communities from the mobility data, along
with their mean, and arrows marking the eigenvectors of the variance-covariance matrix (lengths
scaled by the eigenvalues). Right: leverages for each point when regressing rates of economic mobility
(or anything else) on latitude and longitude. See online for the code.
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H.mob.lm <- hatvalues(lm(Mobility ~ Commute, data = mobility))
plot(mobility$Commute, H.mob.lm, ylim = c(0, max(H.mob.lm)), xlab = "Fraction of workers with short commute",

ylab = expression(H[ii]))
abline(h = 2/nrow(mobility), col = "grey")
rug(mobility$Commute, side = 1)

FIGURE 18.3: Leverages (Hi i ) for a simple regression of economic mobility (or anything else) against
the fraction of workers with short commutes. The grey line marks the average we’d see if every point
was exactly equally influential. Note how leverage increases automatically as Commute moves away
from its mean in either direction. (See below for the hatvalues function.
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One curious feature of the leverage is, and of the hat matrix in general, is that it
doesn’t care what we are regressing on the predictor variables; it could be economic
mobility or sightings of Bigfoot, and the same design matrix will give us the same hat
matrix and leverages.

To sum up: The leverage of a data point just depends on the value of the predic-
tors there; it increases as the point moves away from the mean of the predictors. It
increases more if the difference is along low-variance coordinates, and less for differ-
ences along high-variance coordinates.

18.3 Studentized Residuals

We return once more to the hat matrix, the source of all knowledge.

Òm=Hy (18.22)

The residuals, too, depend only on the hat matrix:

e= y−Òm= (I−H)y (18.23)

We know that the residuals vary randomly with the noise, so let’s re-write this in
terms of the noise (Exercise 2).

e= (I−H)ε (18.24)

Since E [ε] = 0 and Var [ε] = σ2I, we have

E [e] = 0 (18.25)

and
Var [e] = σ2(I−H)(I−H)T = σ2(I−H) (18.26)

If we also assume that the noise is Gaussian, the residuals are Gaussian, with the stated
mean and variance.

What does this imply for the residual at the i th data point? It has expectation 0,

E [ei ] = 0 (18.27)

and it has a variance which depends on i through the hat matrix:

Var [ei ] = σ
2(I−H)i i = σ

2(1−Hi i ) (18.28)

In words: the bigger the leverage of i , the smaller the variance of the residual there.
This is yet another sense in which points with high leverage are points which the
model tries very hard to fit.

Previously, when we looked at the residuals, we expected them to all be of roughly
the same magnitude. This rests on the leverages Hi i being all about the same size. If
there are substantial variations in leverage across the data points, it’s better to scale
the residuals by their expected size.
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The usual way to do this is through the standardized or studentized residuals

ri ≡
ei

σ̂
p

1−Hi i

(18.29)

Why “studentized”? Because we’re dividing by an estimate of the standard error, just
like in “Student’s” t -test for differences in means3

All of the residual plots we’ve done before can also be done with the studentized
residuals. In particular, the studentized residuals should look flat, with constant vari-
ance, when plotted against the fitted values or the predictors.

18.4 Leave-One-Out

Suppose we left out the i th data point altogether. How much would that change the
model?

18.4.1 Fitted Values and Cross-Validated Residuals

Let’s take the fitted values first. The hat matrix, H, is an n× n matrix. If we deleted
the i th observation when estimating the model, but still asked for a prediction at xi ,
we’d get a different, n× (n− 1) matrix, say H(−i). This in turn would lead to a new
fitted value:

m̂(−i)(xi ) =
(Hy)i −Hi i yi

1−Hi i
(18.30)

Basically, this is saying we can take the old fitted value, and then subtract off the part
of it which came from having included the observation y j in the first place. Because
each row of the hat matrix has to add up to 1 (Exercise 3), we need to include the
denominator (Exercise 4).

The leave-one-out residual is the difference between this and yi :

e (−i)
i ≡ yi − m̂(−i)(xi ) (18.31)

That is, this is how far off the model’s prediction of yi would be if it didn’t actually
get to see yi during the estimation, but had to honestly predict it.

Leaving out the data point i would give us an MSE of σ̂2
(−i), and a little work says

that

ti ≡
e (−i)

i

σ̂(−i)

Ç

1+ xT
i (x

T
(−i)x(−i))−1xi

tn−p−2 (18.32)

3The distribution here is however not quite a t -distribution, because, while ei has a Gaussian distribu-
tion and σ̂ is the square root of a χ 2-distributed variable, ei is actually used in computing σ̂ , hence they’re
not statistically independent. Rather, r 2

i /(n− p−1) has aβ( 1
2 , 1

2 (n− p−2)) distribution (Seber and Lee,
2003, p. 267). This gives us studentized residuals which all have the same distribution, and that distribution
does approach a Gaussian as n→∞ with p fixed.
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(The−2 here is because these predictions are based on only n−1 data points.) These
are called the cross-validated, or jackknife, or externally studentized, residuals.
(Some people use the name “studentized residuals” only for these, calling the oth-
ers the “standardized residuals”.) Fortunately, we can compute this without having
to actually re-run the regression:

ti =
e (−i)

i

σ̂(−i)

Ç

1+ xT
i (x

T
(−i)x(−i))−1xi

(18.33)

=
ei

σ̂(−i)
p

1−Hi i

(18.34)

= ri

√

√

√

n− p − 2
n− p − 1− r 2

i

(18.35)

18.4.2 Cook’s Distance
Omitting point i will generally change all of the fitted values, not just the fitted value
at that point. We go from the vector of predictions Òm to Òm(−i). How big a change is
this? It’s natural (by this point!) to use the squared length of the difference vector,

‖Òm−Òm(−i)‖2 = (Òm−Òm(−i))T (Òm−Òm(−i)) (18.36)

To make this more comparable across data sets, it’s conventional to divide this by
(p + 1)σ̂2, since there are really only p + 1 independent coordinates here, each of
which might contribute something on the order of σ̂2. This is called the Cook’s
distance or Cook’s statistic for point i :

Di =
(Òm−Òm(−i))T (Òm−Òm(−i))

(p + 1)σ̂2
(18.37)

As usual, there is a simplified formula, which evades having to re-fit the regression:

Di =
1

p + 1
e2

i
Hi i

(1−Hi i )2
(18.38)

Notice that Hi i/(1−Hi i )
2 is a growing function of Hi i (Figure 18.4). So this says that

the total influence of a point over all the fitted values grows with both its leverage
(Hi i ) and the size of its residual when it is included (e2

i ).

18.4.3 Coefficients
The leave-one-out idea can also be applied to the coefficients. Writing bβ(−i) for the
vector of coefficients we get when we drop the i th data point. One can show (Seber
and Lee, 2003, p. 268) that

bβ(−i) = bβ−
(xT x)−1xT

i ei

1−Hi i
(18.39)
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curve(x/(1 - x)^2, from = 0, to = 1, xlab = "Leverage H", ylab = expression(H/(1 -
H)^2), log = "y")

FIGURE 18.4: Illustration of the function H/(1− H )2 relating leverage H to Cook’s distance.
Notice that leverage must be ≥ 0 and ≤ 1, so this is the whole relevant range of the curve.
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Cook’s distance can actually be computed from this, since the change in the vector
of fitted values is x( bβ(−i)− bβ), so

Di =
(( bβ(−i)− bβ)T xT x( bβ(−i)− bβ)

(p + 1)σ̂2
(18.40)

18.4.4 Leave-More-Than-One-Out

Sometimes, whole clusters of nearby points might be potential outliers. In such cases,
removing just one of them might change the model very little, while removing them
all might change it a great deal. Unfortunately there are

�n
k

�

= O(nk ) groups of k
points you could consider deleting at once, so while looking at all leave-one-out results
is feasible, looking at all leave-two- or leave-ten- out results is not. Instead, you have
to think.

18.5 Practically, and with R

We have three ways of looking at whether points are outliers:

1. We can look at their leverage, which depends only on the value of the predictors.

2. We can look at their studentized residuals, either ordinary or cross-validated,
which depend on how far they are from the regression line.

3. We can look at their Cook’s statistics, which say how much removing each
point shifts all the fitted values; it depends on the product of leverage and resid-
uals.

The model assumptions don’t put any limit on how big the leverage can get (just
that it’s ≤ 1 at each point) or on how its distributed across the points (just that it’s
got to add up to p + 1). Having most of the leverage in a few super-inferential points
doesn’t break the model, exactly, but it should make us worry.

The model assumptions do say how the studentized residuals should be distributed.
In particular, the cross-validated studentized residuals should follow a t distribution.
This is something we can test, either for specific points which we’re worried about
(say because they showed up on our diagnostic plots), or across all the points4.

Because Cook’s distance is related to how much the parameters change, the theory
of confidence ellipsoids (Chapter 16) can be used to get some idea of how big a Di is
worrying5. Cook’s original rule-of-thumb translates into worrying when (p+1)Di is

4Be careful about testing all the points. If you use a size α test and everything is fine, you’d see about
αn rejections. A good, if not necessarily optimal, way to deal with this is to lower the threshold to α/n for
each test — another example of the Bonferroni correction from Chapter 16.

5Remember we saw that for large n, ( bβ−β)TΣ−1( bβ−β) ∼ χ 2
p+1, where Σ is the variance matrix of

the coefficient estimates. But that’s σ2(xT x)−1, so we get σ−2( bβ−β)T xT x( bβ−β)∼ χ 2
p+1. Now compare

with Eq. 18.40.
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bigger than about χ 2
p+1(0.1), though the 0.1 is arbitrary6. However, this is not really

a hypothesis test.

18.5.1 In R
Almost everything we’ve talked — leverages, studentized residuals, Cook’s statistics
— can be calculated using the influence function. However, there are more user-
friendly functions which call that in turn, and are probably better to use.

Leverages come from the ‘hatvalues‘ function, or from the ‘hat‘ component of
what ‘influence‘ returns:

mob.lm <- lm(Mobility ~ Commute, data = mobility)
hatvalues(mob.lm)
influence(mob.lm)$hat # Same as previous line

The standardized, or internally-studentized, residuals ri are available with rstandard:

rstandard(mob.lm)
residuals(mob.lm)/sqrt(1 - hatvalues(mob.lm)) # Same as previous line

The cross-validated or externally-studentized residuals ti are available with rstudent:

rstudent(mob.lm) # Too tedious to calculate from rstandard though you could

Cook’s statistic is calculated with cooks.distance:

cooks.distance(mob.lm)

Often the most useful thing to do with these is to plot them, and look at the most
extreme points. (One might also rank them, and plot them against ranks.) Figure
18.5 does so. The standardized and studentized residuals can also be put into our
usual diagnostic plots, since they should average to zero and have constant variance
when plotted against the fitted values or the predictors. (I omit that here because in
this case, 1/

p

1−Hi i is sufficiently close to 1 that it makes no visual difference.)
We can now look at exactly which points have the extreme values, say the 10 most

extreme residuals, or largest Cook’s statistics:

mobility[rank(-abs(rstudent(mob.lm)), ) <= 10, ]
## X Name Mobility State Commute Longitude Latitude
## 374 375 Linton 0.29891303 ND 0.646 -100.16075 46.31258
## 376 378 Carrington 0.33333334 ND 0.656 -98.86684 47.59698
## 382 384 Bowman 0.46969697 ND 0.648 -103.42526 46.33993
## 383 385 Lemmon 0.35714287 ND 0.704 -102.42011 45.96558

6More exactly, he used an F distribution to take account of small-n uncertainties in σ̂2, and suggested
worrying when Di was bigger than Fp+1,n−p−1(0.1). This will come to the same thing for large n.
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par(mfrow = c(2, 2))
mob.lm <- lm(Mobility ~ Commute, data = mobility)
plot(hatvalues(mob.lm), ylab = "Leverage")
abline(h = 2/nrow(mobility), col = "grey")
plot(rstandard(mob.lm), ylab = "Standardized residuals")
plot(rstudent(mob.lm), ylab = "Cross-validated studentized residuals")
abline(h = qt(0.025, df = nrow(mobility) - 2), col = "red")
abline(h = qt(1 - 0.025, df = nrow(mobility) - 2), col = "red")
plot(cooks.distance(mob.lm), ylab = "Cook's statistic")
abline(h = qchisq(0.1, 2)/2, col = "grey")

FIGURE 18.5: Leverages, two sorts of standardized residuals, and Cook’s distance statistic for each
point in a basic linear model of economic mobility as a function of the fraction of workers with
short commutes. The horizontal line in the plot of leverages shows the average leverage. The lines
in studentized residual plot shows a 95% t -distribution sampling interval. (What is the grey line in
the plot of Cook’s distances?) Note the clustering of extreme residuals and leverage around row 600,
and another cluster of points with extreme residuals around row 400.
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## 385 388 Plentywood 0.31818181 MT 0.681 -104.65381 48.64743
## 388 391 Dickinson 0.32920793 ND 0.659 -102.61354 47.32696
## 390 393 Williston 0.33830845 ND 0.702 -103.33987 48.25441
## 418 422 Miller 0.31506848 SD 0.697 -99.27758 44.53313
## 420 424 Gettysburg 0.32653061 SD 0.729 -100.19547 45.05100
## 608 618 Nome 0.04678363 AK 0.928 -162.03012 64.47514
mobility[rank(-abs(cooks.distance(mob.lm))) <= 10, ]
## X Name Mobility State Commute Longitude Latitude
## 376 378 Carrington 0.33333334 ND 0.656 -98.86684 47.59698
## 382 384 Bowman 0.46969697 ND 0.648 -103.42526 46.33993
## 383 385 Lemmon 0.35714287 ND 0.704 -102.42011 45.96558
## 388 391 Dickinson 0.32920793 ND 0.659 -102.61354 47.32696
## 390 393 Williston 0.33830845 ND 0.702 -103.33987 48.25441
## 418 422 Miller 0.31506848 SD 0.697 -99.27758 44.53313
## 420 424 Gettysburg 0.32653061 SD 0.729 -100.19547 45.05100
## 607 617 Kotzebue 0.06451613 AK 0.864 -159.43781 67.02818
## 608 618 Nome 0.04678363 AK 0.928 -162.03012 64.47514
## 614 624 Bethel 0.05186386 AK 0.909 -158.38213 61.37712

18.5.2 plot

We have not used the plot function on an lm object yet. This is because most of what
it gives us is in fact related to residuals (Figure 18.6). The first plot is of residuals versus
fitted values, plus a smoothing line, with extreme residuals marked by row number.
The second is a Q-Q plot of the standardized residuals, again with extremes marked
by row number. The third shows the square root of the absolute standardized resid-
uals against fitted values (ideally, flat); the fourth plots standardized residuals against
leverage, with contour lines showing equal values of Cook’s distance. There are many
options, described in help(plot.lm).
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par(mfrow = c(2, 2))
plot(mob.lm)
par(mfrow = c(1, 1))

FIGURE 18.6: The basic plot function applied to our running example model.
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18.6 Responses to Outliers

There are essentially three things to do when we’re convinced there are outliers: delete
them; change the model; or change how we estimate.

18.6.1 Deletion

Deleting data points should never be done lightly, but it is sometimes the right thing
to do.

The best case for removing a data point is when you have good reasons to think
it’s just wrong (and you have no way to fix it). Medical records which give a patient’s
blood pressure as 0, or their temperature as 200 degrees, are just impossible and have
to be errors7. Those points aren’t giving you useful information about the process
you’re studying8, so getting rid of them makes sense.

The next best case is if you have good reasons to think that the data point isn’t
wrong, exactly, but belongs to a different phenomenon or population from the one
you’re studying. (You’re trying to see if a new drug helps cancer patients, but you
discover the hospital has included some burn patients and influenza cases as well.) Or
the data point does belong to the right population, but also somehow to another one
which isn’t what you’re interested in right now. (All of the data is on cancer patients,
but some of them were also sick with the flu.) You should be careful about that last,
though. (After all, some proportion of future cancer patients are also going to have
the flu.)

The next best scenario after that is that there’s nothing quite so definitely wrong
about the data point, but it just looks really weird compared to all the others. Here
you are really making a judgment call that either the data really are mistaken, or not
from the right population, but you can’t put your finger on a concrete reason why.
The rules-of-thumb used to identify outliers, like “Cook’s distance shouldn’t be too
big”, or “Tukey’s rule”9, are at best of this sort. It is always more satisfying, and more
reliable, if investigating how the data were gathered lets you turn cases of this sort
into one of the two previous kinds.

The least good case for getting rid of data points which isn’t just bogus is that
you’ve got a model which almost works, and would work a lot better if you just get
rid of a few stubborn points. This is really a sub-case of the previous one, with added
special pleading on behalf of your favorite model. You are here basically trusting your
model more than your data, so it had better be either a really good model or really
bad data.

Beyond this, we get into what can only be called ignoring inconvenient facts so
that you get the answer you want.

7This is true whether the temperature is in degrees Fahrenheit, degrees centigrade, or kelvins.
8Unless it’s the very process of making errors of measurement and recording.
9Which flags any point more than 1.5 times the inter-quartile range above the third quartile, or below

the first quartile, on any dimension.
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18.6.2 Changing the Model
Outliers are points that break a pattern. This can be because the points are bad, or
because we made a bad guess about the pattern. Figure 18.7 shows data where the
cloud of points on the right are definite outliers for any linear model. But I drew
those points following a quadratic model, and they fall perfectly along it (as they
should). Deleting them, in order to make a linear model work better, would have
been short-sighted at best.

The moral of Figure 18.7 is that data points can look like outliers because we’re
looking for the wrong pattern. If when we find apparent outliers and we can’t con-
vince ourselves that data is erroneous or irrelevant, we should consider changing our
model, before, or as well as, deleting them.

18.6.3 Robust Linear Regression
A final alternative is to change how we estimate our model. Everything we’ve done
has been based on ordinary least-squares (OLS) estimation. Because the squared er-
ror grows very rapidly with the error, OLS can be very strongly influenced by a few
large “vertical” errors10. We might, therefore, consider using not a different statistical
model, but a different method of estimating its parameters. Estimation techniques
which are less influenced by outliers in the residuals than OLS are called robust esti-
mators, or (for regression models) robust regression.

Usually (though not always), robust estimation, like OLS, tries to minimize11

some average of a function of the errors:

β̃= argmin
b

1
n

n
∑

i=1

ρ(yi − xi b) (18.41)

Different choices of ρ, the loss function, yield different estimators. ρ(u) = |u| is
least absolute deviation (LAD) estimation12. ρ(u) = u2 is OLS again. A popular
compromise is to use Huber’s loss function13

ρ(u) =
§

u2 |u| ≤ c
2c |u| − c2 |u| ≥ c (18.42)

Notice that Huber’s loss looks like squared error for small errors, but like absolute
error for large errors14. Huber’s loss is designed to be continuous at c , and have a
continuous first derivative there as well (which helps with optimization). We need
to pick the scale c at which it switches over from acting like squared error to acting

10Suppose there are 100 data points, and we start with parameter values where e1 > 10, while e2 through
e100 = 0. Changing to a new parameter value where ei = 1 for all i actually reduces the MSE, even though
it moves us away from perfectly fitting 99% of the data points.

11Hence the name “M -estimators”.
12For minimizing absolute error, the scenario suggested in the previous footnote seems like a horrible

idea, the average loss function goes from 0.1 to 1.0.
13Often writtenψ, since that’s the symbol Huber used when he introduced it. Also, some people define

it as 1/2 of the way I have here; this way, though, it’s identical to squared error for small u.
14If we set c = 1 in our little scenario, the average loss would go from 0.19 to 1.0, a definite worsening.
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FIGURE 18.7: The points in the upper-right are outliers for any linear model fit through the main
body of points, but dominate the line because of their very high leverage; they’d be identified as
outliers. But all points were generated from a quadratic model.
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like absolute error; this is usually done using a robust estimate of the noise standard
deviation σ .

Robust estimation with Huber’s loss can be conveniently done with the rlm func-
tion in the MASS package, which, as the name suggests, is designed to work very much
like lm.

library(MASS)
summary(rlm(Mobility ~ Commute, data = mobility))
##
## Call: rlm(formula = Mobility ~ Commute, data = mobility)
## Residuals:
## Min 1Q Median 3Q Max
## -0.148719 -0.019461 -0.002341 0.021093 0.332347
##
## Coefficients:
## Value Std. Error t value
## (Intercept) 0.0028 0.0043 0.6398
## Commute 0.2077 0.0091 22.7939
##
## Residual standard error: 0.0293 on 727 degrees of freedom

Robust linear regression is designed for the situation where it’s still true that
Y = Xβ+ ε, but the noise ε is not very close to Gaussian, and indeed is sometimes
“contaminated” by wildly larger values. It does nothing to deal with non-linearity, or
correlated noise, or even some points having excessive leverage because we’re insisting
on a linear model.

18.7 Exercises
1. Prove that in a simple linear regression

Hi i =
1
n

�

1+
(xi − x)2

s2
X

�

(18.43)

2. Show that (I−H)xc= 0 for any matrix c.

3. Every row of the hat matrix has entries that sum to 1.

(a) Show that if all of the yi are equal, say c , then β̂0 = c and all the estimated
slopes are 0.

(b) Using the previous part, show that 1, the n × 1 matrix of all 1s, must be
an eigenvector of the hat matrix with eigenvalue 1, H1= 1.

(c) Using the previous part, show that the sum of each row of H must be 1,
∑n

j=1 Hi j = 1 for all i .

4. Fitted values after deleting a point
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(a) (Easier) Presume that H(−i) can be found by setting H(−i)
j k = H j k/(1−

H j i ). Prove Eq. 18.30.

(b) (Challenging) Let x(−i) be x with its i th row removed. By construction,
H(−i), the n× (n−1)matrix which gives predictions at all of the original
data points, is

H(−i) = x((x(−i))T x(−i))
−1
(x(−i))T (18.44)

Show that this matrix has the form claimed in the previous problem.

5. (Challenging) Derive Eq. 18.38 for Cook’s statistic from the definition. Hint:
First, derive a formula for Òm(−i)

j in terms of the hat matrix. Next, substitute
in to the definition of Di . Finally, you will need to use properties of the hat
matrix to simplify.
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Chapter 19

Model Selection

19.1 Generalization and Optimism
We estimated our model by minimizing the mean squared error on our data:

bβ= argmin
b

1
n
(y− xb)T (y− xb) (19.1)

Different linear models amount to different choices of the design matrix x — we
add or drop variables, we add or drop interactions or polynomial terms, etc., and this
adds or removes columns from the design matrix. We might consider selecting among
models themselves by minimizing the MSE. This is a very bad idea, for a fundamental
reason:

Every model is too optimistic about how well it will actually predict.

Let’s be very clear about what it would mean to predict well. The most challeng-
ing case would be that we see a new random point, with predictor values X1, . . .Xp

and response Y , and our old bβ has a small expected squared error:

E





 

Y −

 

β̂0+
p
∑

j=1

X j β̂ j

!!2


 (19.2)

Here both Y and the X ’s are random (hence the capital letters), so we might be asking
the model for a prediction at a point it never saw before. (Of course if we have multiple
identically distributed (X ,Y ) pairs, the expected MSE over those points is just the
same as the expected squared error at one point.)

An easier task would be to ask the model for predictions at the same values of the
predictor variables as before, but with different random noises. That is, we fit the
model to

Y= xβ+ ε (19.3)
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and now Tyche1 reach into her urn and gives us

Y′ = xβ+ ε′ (19.4)

where ε and ε′ are independent but identically distributed. The design matrix is the
same, the true parameters β are the same, but the noise is different2. We now want
to see if the coefficients we estimated from (x,Y) can predict (x,Y′). Since the only
thing that’s changed is the noise, if the coefficients can’t predict well any more, that
means that they were really just memorizing the noise, and not actually doing any-
thing useful.

Our out-of-sample expected MSE, then, is

E
�

n−1(Y′− x bβ)T (Y′− x bβ)
�

(19.5)

It will be convenient to break this down into an average over data points, and
to abbreviate x bβ = Òm, the vector of fitted values. Notice that since the predictor
variables and the coefficients aren’t changing, our predictions are the same both in
and out of sample — at point i , we will predict Òmi .

In this notation, then, the expected out-of-sample MSE is

E
�

1
n

n
∑

i=1

(Y ′i − Òmi )
2

�

(19.6)

We’ll compare this to the expected in-sample MSE,

E
�

1
n

n
∑

i=1

(Yi − Òmi )
2

�

(19.7)

Notice that Òmi is a function of Yi (among other things), so those are dependent ran-
dom variables, while Òmi and Y ′i are completely statistically independent3.

Break this down term by term. What’s the expected value of the i th in-sample
squared error?

E
�

(Yi − m̂i )
2� (19.8)

= Var [Yi − m̂i ]+ (E [Yi − m̂i ])
2

= Var [Yi ]+Var [m̂i ]− 2Cov [Yi , m̂i ]+ (E [Yi ]−E [m̂i ])
2 (19.9)

The covariance term is not (usually) zero, because, as I just said, m̂i is a function of,
in part, Yi .

1Look her up.
2If we really are in an experimental setting, we really could get a realization of Y′ just by running the

experiment a second time. With surveys or with observational data, it would be harder to actually realize
Y′, but mathematically at least it’s unproblematic.

3That might sound weird, but remember we’re holding x fixed in this exercise, so what we mean is that
knowing Òmi doesn’t give us an extra information about Y ′i beyond what we’d get from knowing the values
of the X variables.

21:34 Monday 6th May, 2024



325 19.1. GENERALIZATION AND OPTIMISM

On the other hand, what’s the expected value of the i th squared error on new data?

E
�

(Y ′i − m̂i )
2� (19.10)

= Var [Yi ′ − m̂i ]+
�

E
�

Y ′i − m̂i

��2

= Var
�

Y ′i
�

+Var [m̂i ]− 2Cov
�

Y ′i , m̂i

�

+
�

E
�

Y ′i
�

−E [m̂i ]
�2 (19.11)

Y ′i is independent of Yi , but has the same distribution. This tells us that E
�

Y ′i
�

=
E [Yi ], Var

�

Y ′i
�

=Var [Yi ], but Cov
�

Y ′i , m̂i

�

= 0. So

E
�

(Y ′i − m̂i )
2� = Var [Yi ]+Var [m̂i ]+ (E [Yi ]−E [m̂i ])

2 (19.12)

= E
�

(Yi − m̂i )
2�+ 2Cov [Yi , m̂i ] (19.13)

Averaging over data points,

E
�

1
n

n
∑

i=1

(Y ′i − Òmi )
2

�

=E
�

1
n

n
∑

i=1

(Yi − Òmi )
2

�

+
2
n

n
∑

i=1

Cov [Yi , m̂i ] (19.14)

Clearly, we need to get a handle on that sum of covariances.
For a linear model, though, Cov [Yi , m̂i ] = σ

2Hi i (Exercise ??). So, for linear
models,

E
�

1
n

n
∑

i=1

(Y ′i − Òmi )
2

�

=E
�

1
n

n
∑

i=1

(Yi − Òmi )
2

�

+
2
n
σ2 trH (19.15)

and we know that with p predictors and one intercept, trH = p + 1 (Exercise 6 in
Chapter 12). Thus, for linear models,

E
�

1
n

n
∑

i=1

(Y ′i − Òmi )
2

�

=E
�

1
n

n
∑

i=1

(Yi − Òmi )
2

�

+
2
n
σ2(p + 1) (19.16)

Of course, we don’t actually know the expectation on the right-hand side, but
we do have a sample estimate of it, which is the in-sample MSE. If the law of large
numbers is still our friend,

E
�

1
n

n
∑

i=1

(Y ′i − Òmi )
2

�

≈ 1
n

n
∑

i=1

(Yi − Òmi )
2+

2
n
σ2(p + 1) (19.17)

The second term on the right, (2/n)σ2(p+1), is the optimism of the model — the
amount by which its in-sample MSE systematically under-estimates its true expected
squared error. Notice that this:

• Grows with σ2: more noise gives the model more opportunities to seem to fit
well by capitalizing on chance.

• Shrinks with n: at any fixed level of noise, more data makes it harder to pretend
the fit is better than it really is.
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• Grows with p: every extra parameter is another control which can be adjusted
to fit to the noise.

Minimizing the in-sample MSE completely ignores the bias from optimism, so it
is guaranteed to pick models which are too large and predict poorly out of sample. If
we could calculate the optimism term, we could at least use an unbiased estimate of
the true MSE on new data.

Of course, we do not actually know σ2.

19.2 Mallow’s Cp Statistic

The Mallows Cp statistic just substitutes in a feasible estimator of σ2, which is σ̂2

from the largest model we consider. This will be an unbiased estimator of σ2 if the
real model is smaller (contains a strict subset of the predictor variables), but not vice
versa4.

That is, for a linear model with p + 1 coefficients fit by OLS,

Cp ≡
1
n

n
∑

i=1

(Yi − Òmi )
2+

2
n
σ̂2(p + 1) (19.18)

The selection rule is to pick the model which minimizes Cp .
We can think of Cp as having two parts,

Cp =M SE +(penalty) (19.19)

From one point of view, the penalty is just an estimate of the bias. From another point
of view, it’s a cost we’re imposing on models for having extra parameters. Every new
parameter has got to pay that cost by reducing the MSE by at least a certain amount;
if it doesn’t, the extra parameter isn’t worth it.

(Before this, we’ve only been dealing with one model, so we’ve not had to distin-
guish carefully between the in-sample MSE and the maximum likelihood estimate of
σ2. With multiple models floating around, though, each can have its own MSE, but
there is only one true σ2, and we need an estimate of it.)

For comparing models, we really care about differences:

∆Cp =M SE1−M SE2+
2
n
σ̂2(p1− p2) (19.20)

(The extra term for the intercept, being common to both models, doesn’t contribute.)

Alternate form of Cp You will find many references which define Cp somewhat
differently:

nM SE
σ̂2

− n+ 2 p (19.21)

4This assumes the largest model must contain the truth!
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and say that the optimal value is close to p, not close to 0. To see that this selects
exactly the same models as the rule given above, take a difference between two models,
with MSE’s M SE1, M SE2 and p1, p2 predictors. We get

n(M SE1−M SE2)
σ̂2

+ 2(p1− p2) (19.22)

Dividing by n and multiplying by σ̂2 gives us back Eq. 19.20. There are reasons to
assert that Eq. 19.21 should indeed be close to p for the right model (if the Gaussian
noise assumption holds), but Eq. 19.18 is a good estimate of the out-of-sample error,
and a good model selection rule, much more broadly.

19.2.1 R2 and Adjusted R2

Recall that

R2 = 1− M SE
s2
Y

(19.23)

Picking a model by maximizing R2 is thus equivalent to picking a model by mini-
mizing MSE. It is therefore stupid for exactly the same reasons that minimizing MSE
across models is stupid.

Recall that the adjusted R2 is

R2
ad j = 1−

M SE n
n−p−1

s2
Y

(19.24)

That is, it’s R2 with the unbiased estimator of σ2. Maximizing adjusted R2 therefore
corresponds to minimizing that unbiased estimator. What does that translate to?

M SE
n

n− p − 1
= M SE

1
1− (p + 1)/n

(19.25)

≈ M SE
�

1+
p + 1

n

�

(19.26)

= M SE +M SE
p + 1

n
(19.27)

where the approximation becomes exact as n→∞ with p fixed5. Even for the com-
pletely right model, where M SE is a consistent estimator of σ̂2, the correction or
penalty is only half as big as we’ve seen it should be. Selecting models using adjusted
R2 is not completely stupid, as maximizing R2 is, but it is still not going to work very
well.

5Use the binomial theorem to expand 1/(1− u) as 1+ u+ u2+ . . ., and truncate the series at first order.
(If u is small, u2 is tiny, and the higher powers microscopic.)
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19.3 Akaike Information Criterion (AIC)
The great Japanese statistician Hirotugu Akaike proposed a famous model selection
rule which also has the form of “in-sample performance plus penalty”. What has come
to be called the Akaike information criterion (AIC) is

AI C (S)≡ LS − dim(S) (19.28)

where LS is the log likelihood of the model S, evaluated at the maximum likelihood
estimate, and dim(S) is the dimension of S, the number of adjustable parameters it
has. Akaike’s rule is to pick the model which maximizes AIC6.

The reason for this definition is that Akaike showed AI C/n is an unbiased esti-
mate of the expected log-probability the estimated parameters will give to a new data
point which it hasn’t seen before, if the model is right. This is the natural counterpart
of expected squared error for more general distributions than the Gaussian. If we do
specialize to linear-Gaussian models, then we’ve seen (Chapter 10) that

L=−n
2
(1+ log2π)− n

2
log M SE (19.29)

and the dimension of the model is p + 2 (because σ2 is also an adjustable parameter).
Notice that− n

2 (1+ log2π) doesn’t involve the parameters at all. If we compare AICs
for two models, with mean squared errors in-sample of M SE1 and M SE2, and one
with p1 predictors and the other with p2, the difference in AICs will be

∆AI C =−n
2

log M SE1+
n
2

log M SE2− (p1− p2) (19.30)

To relate this to Cp , let’s write M SE2 =M SE1+∆M SE . Then

∆AI C = −n
2

log M SE1+
n
2

log M SE1

�

1+
∆M SE
M SE1

�

− (p1− p2) (19.31)

= −n
2

log
�

1+
∆M SE
M SE1

�

− (p1− p2) (19.32)

Now let’s suppose that model 1 is actually the correct model, so M SE1 = σ̂
2, and that

∆M SE is small compared to σ̂2, so7

∆AI C ≈ −n
2
∆M SE
σ̂2

− (p1− p2) (19.33)

−2σ̂2

n
∆AI C ≈ ∆M SE +

2
n
σ̂2(p1− p2) =∆Cp (19.34)

So, if one of the models we’re looking at is actually the correct model, and the others
aren’t too different from it, picking by maximizing AIC will give the same answer as
picking by minimizing Cp .

6Actually, in his original paper (Akaike, 1973), he proposed using twice this, to simplify some calcula-
tions involving chi-squared distributions. Many subsequent authors have since kept the factor of 2, which
of course will not change which model is selected. Also, some authors define AIC as negative of this, and
then minimize it; again, clearly the same thing.

7Taylor expand log1+ u around 1 to get log1+ u ≈ u, for u close to 0.
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Other Uses of AIC AIC can be applied whenever we have a likelihood. It is there-
fore used for tasks like comparing models of probability distributions, or predictive
models where the whole distribution is important. Cp , by contrast, really only makes
sense if we’re trying to do regression and want to use squared error.

19.3.1 Why −dim(S)?
Akaike had a truly brilliant argument for subtracting a penalty equal to the number
of parameters from the log-likelihood, which is too pretty not to at least sketch here.8

Generically, say that the parameter vector is θ, and its true value is θ∗. (For linear
regression with Gaussian noise, θ consists of all p+1 coefficients plus σ2.) The length
of this vector, which is dim(S), is let’s say d . (For linear regression with Gaussian
noise, d = p+2.) The maximum likelihood estimate is θ̂. We know that the derivative
of the likelihood is zero at the MLE:

∇L(θ̂) = 0 (19.35)

Let’s do a Taylor series expansion of∇L(θ) around the true parameter value θ∗:

∇L(θ) =∇L(θ∗)+ (θ−θ∗)∇∇L(θ∗) (19.36)

Here∇∇L(θ∗) is the d × d matrix of second partial derivatives of L, evaluated at θ∗.
This is called the Hessian, and would traditionally be written H, but that would lead
to confusion with the hat matrix, so I’ll call it K. Therefore the Taylor expansion for
the gradient of the log-likelihood is

∇L(θ) =∇L(θ∗)+ (θ−θ∗)K (19.37)

Applied to the MLE,
0=∇L(θ∗)+ (θ̂−θ∗)K (19.38)

or
θ̂= θ∗−K−1∇L(θ∗) (19.39)

What is the expected log-likelihood, on new data, of θ̂? Call this expected log-
likelihood ` (using a lower-case letter to indicate that it is non-random). Doing an-
other Taylor series,

`(θ)≈ `(θ∗)+ (θ−θ∗)T∇`(θ∗)+ 1
2
(θ−θ∗)T∇∇`(θ∗)(θ−θ∗) (19.40)

However, it’s not hard to show that the expected log-likelihood is always9 maximized
by the true parameters, so∇`(θ∗) = 0. (The same argument also showsE [∇L(θ∗)] =
0.) Call the Hessian in this Taylor expansion k. (Again, notice the lower-case letter
for a non-random quantity.) We have

`(θ)≈ `(θ∗)+ 1
2
(θ−θ∗)T k(θ−θ∗) (19.41)

8Nonetheless, this subsection is optional.
9Except for quite weird models.
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Apply this to the MLE:

`(θ̂)≈ `(θ∗)+ 1
2
∇L(θ∗)K−1kK−1∇L(θ∗) (19.42)

Taking expectations,

E
h

`(θ̂)
i

≈ `(θ∗)+ 1
2

trK−1kK−1J (19.43)

where Var [∇L(θ∗)] = J. For large n, K converges on k, so this simplifies to

E
h

`(θ̂)
i

≈ `(θ∗)+ 1
2

trk−1J (19.44)

This still leaves things in terms of `(θ∗), which of course we don’t know, but now
we do another Taylor expansion, this time of L around θ̂:

L(θ∗)≈ L(θ̂)+
1
2
(θ∗− θ̂)T∇∇L(θ̂)(θ∗− θ̂) (19.45)

so
L(θ∗)≈ L(θ̂)+

1
2
(K−1∇L(θ∗))T∇∇L(θ̂)(K−1∇L(θ∗)) (19.46)

For large n,∇∇L(θ̂)→∇∇L(θ∗)→ k. So, again taking expectations,

`(θ∗)≈E
h

L(θ̂
i

+
1
2

trk−1J (19.47)

Putting these together,

E
h

`(θ̂)
i

≈E
h

L(θ̂
i

+ trk−1J (19.48)

An unbiased estimate is therefore

L(θ̂)+ trk−1J (19.49)

Finally, a fundamental result (the “Fisher identity”) says that for well-behaved
models, if the model is correct, then

Var [∇L(θ∗)] =−∇∇`(θ∗) (19.50)

or J=−k. Hence, if the model is correct, our unbiased estimate is just

L(θ̂)− tr I (19.51)

and of course tr I= d .
There, as you’ll notice, several steps where we’re making a bunch of approxima-

tions. Some of these approximations (especially those involving the Taylor expan-
sions) can be shown to be OK asymptotically (i.e., as n→∞) by more careful math.
The last steps, however, where we invoke the Fisher identity, are rather more dubious.
(After all, all of the models we’re working with can hardly contain the true distribu-
tion.) A somewhat more robust version of AIC is therefore to use as the criterion

L(θ̂)+ trKJ (19.52)
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19.4 Leave-one-out Cross-Validation (LOOCV)

When looking at influential points and outliers, we considered omitting one point
from the data set, estimating the model, and then trying to predict that one data point.
The leave-one-out fitted value for data point i is m̂(−i)

i , where the subscript (−i)
indicates that point i was left out in calculating this fit. The leave-one-out cross-
validation score of the model is

LOOCV =
1
n

n
∑

i=1

(Yi − m̂(−i)
i )2 (19.53)

(Many more old-fashioned regression textbooks look at nLOOCV , and call it PRESS,
“predictive residual sum of squares”.)

The story for cross-validation is pretty compelling: we want to know if our model
can generalize to new data, so see how well it generalizes to new data. Leaving out each
point in turn ensures that that the set of points on which we try to make predictions is
just as representative of the whole population as the original sample was. Fortunately,
this is one of those cases where a compelling story is actually true: LOOCV is an
unbiased estimate of the generalization error.

19.4.1 Short-cut Based on Leverage

Re-estimating the model n times would be seriously time-consuming, but there is
fortunately a short-cut:

LOOCV =
1
n

n
∑

i=1

�

Yi − m̂i

1−Hi i

�2

(19.54)

The numerator inside the square is just the residual of the model fit to the full data.
This gets divided by 1−Hi i , which is also something we can calculate with just one
fit to the model. (The denominator says that the residuals for high-leverage points
count more, and those for low-leverage points count less. If the model is going out
of its way to match Yi (high leverage Hi i ) and it still can’t fit it, that’s worse than the
same sized residual at a point the model doesn’t really care about (low leverage).)

The gap between LOOCV and the MSE can be thought of as a penalty, just like
with Cp or AIC. The penalty doesn’t have such a nice mathematical expression, but
it’s well-defined and easy for us to calculate.

It also converges to the penalty Cp applies as n grows. To help see this, first ob-
serve that the Hi i must be getting small. (We know that

∑

i Hi i = p + 1.) Then10

(1−Hi i )
−2 ≈ 1− 2Hi i , and

LOOCV ≈ 1
n

n
∑

i=1

(Yi − m̂i )
2(1− 2Hi i )≈M SE + 2σ2 trH (19.55)

10Use the binomial theorem again.
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Cross-validation with log-likelihood The leave-one-out idea can also be applied
for any model where we make a probabilistic prediction. Instead of measuring mean
squared error, we measure the negative log probability density the model assigns to
the actual left-out point. (Negative, so that a lower score is still better.) With Gaussian
noise, this comes to the same thing as the MSE, of course.

19.4.2 Summing Up Cp , AIC, LOOCV

Under a very broad range of circumstances, there are theorems which say, roughly,
the following:

As n→∞, the expected out-of-sample MSE of the model picked by
leave-one-out cross-validation is close to that of the best model consid-
ered.

The condition for these results do not require that any of the models considered be
true, or that the true model have Gaussian noise or even be linear.

As we’ve seen, for large n leave-one-out and Mallow’s Cp become extremely sim-
ilar, and will pick the same model, and so will AIC, if one of the models is right. So
they will also pick models which predict almost as well as the best of the models we’re
working with. Since Cp and AIC involve less calculation than leave-one-out, they have
advantages when n is large. Against this, there don’t seem to be any situations where
Cp or AIC pick models with good predictive performance but leave-one-out does not.
The best way to think about Cp and AIC is that they are fast approximations to the
more fundamental quantity, which is leave-one-out.

On the other hand, one can also prove the following:

As n→∞, if the true model is among those being compared, LOOCV,
Cp and AIC will all tend to pick a strictly larger model than the truth.

That is, all three criteria tend to prefer models which are bigger than the true model,
even when the true model is available to them. They are “not consistent for model
selection”.

The problem is that while these methods give unbiased estimates of the general-
ization error, that doesn’t say anything about the variance of the estimates. Models
with more parameters have higher variance, and the penalty applied by these methods
isn’t strong enough to overcome the chance of capitalizing on that variance.

19.5 Other Model Selection Criteria
While many, many other model selection criteria have been proposed, two are partic-
ularly important.

19.5.1 k-Fold Cross-Validation
In leave-one-out cross-validation, we omitted each data point in turn, and tried to
predict it. K -fold cross-validation is somewhat different, and goes as follows.
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• Randomly divide the data into k equally-sized parts, or “folds”.

• For each fold

– Temporarily hold back that fold, calling it the “testing set”.
– Call the other k − 1 folds, taken together, the “training set”.
– Estimate each model on the training set.
– Calculate the MSE of each model on the testing set.

• Average MSEs over folds.

We then pick the model with the lowest MSE, averaged across testing sets.
The point of this is just like the point of leave-one-out: the models are compared

only on data which they didn’t get to see during estimation. Indeed, leave-one-out is
the special case of k-fold cross-validation where k = n. The disadvantage of doing that
is that in leave-one-out, all of the training sets are very similar (they share n− 2 data
points), so averaging over folds does very little to reduce variance. For moderate k —
people typically use 5 or 10 — k-fold CV tends to produce very good model selection
results.

Like leave-one-out CV, k-fold cross-validation can be applied to any loss function,
such as the proportion of cases mis-classified, or negative log-likelihood.

19.5.2 BIC
A more AIC-like criterion is the “Bayesian11 information criterion” introduced by
Schwarz (1978). The name is quite misleading12, but irrelevant; it’s got the exact
same idea of penalizing the log-likelihood with the number of parameters, but using
a penalty which gets bigger with n:

BI C (S) = LS −
log n

2
dim(S) (19.56)

This is a stronger penalty than AIC applies, and this has consequences:

As n→∞, if the true model is among those BIC can select among,
BIC will tend to pick the true model.

Of course there are various conditions attached to this, some of them quite technical,
but it’s generally true for IID samples, for regression modeling, for many sorts of time
series model, etc. Unfortunately, the model selected by BIC will tend to predict less
well than the one selected by leave-one-out cross-validation or AIC.

11Bayesianism is the idea that we ought to have probabilities for parameter values and for models, and not
just for random variables (or, said another way, to treat parameters and models as also random variables),
and update those probabilities as we see more events using Bayes’s rule. It is a controversial position within
statistics and philosophy of science, with many able and learned supporters, and equally able and learned
opponents. (It is also the only position in statistics and philosophy of science I know of which has an
online cult dedicated to promoting it, alongside reading certain works of Harry Potter fanfic, and trying
not to think about the possibility a future superintelligent computer will simulate your being tortured.)

12The truly Bayesian position is not to select a model at all, but rather to maintain a probability distri-
bution over all models you think possible.
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19.6 Stepwise Model Selection
One way to automatically select a model is to begin with the largest model you can,
and then prune it, which can be done in several ways:

• Eliminate the least-significant coefficient.

• Pick your favorite model selection criterion, consider deleting each coefficient
in turn, and pick the sub-model with the best value of the criterion.

Having eliminated a variable, one then re-estimates the model, and repeats the pro-
cedure. Stop when either all the remaining coefficients are significant (under the first
option), or nothing can be eliminated without worsening the criterion.

(What I’ve described is backwards stepwise model selection. Forward stepwise
model selection starts with the intercept-only model and adds variables in the same
fashion. There are, naturally, forward-backward hybrids.)

Stepwise model selection is a greedy procedure: it takes the move which does the
most to immediately improve the criterion, without considering the consequences
down the line. There are very, very few situations where it is consistent for model
selection, or (in its significance-testing version) where it even does a particularly good
job of coming up with predictive models, but it’s surprisingly popular.

19.7 Inference after Selection
All of the inferential statistics we have done in earlier chapters presumed that our
choice of model was completely fixed, and not at all dependent on the data. If different
data sets would lead us to use different models, and our data are (partly) random, then
which model we’re using is also random. This leads to some extra uncertainty in, say,
our estimate of the slope on X1, which is not accounted for by our formulas for the
sampling distributions, hypothesis tests, confidence sets, etc.

A very common response to this problem, among practitioners, is to ignore it,
or at least hope it doesn’t matter. This can be OK, if the data-generating distribution
forces us to pick one model with very high probability, or if all of the models we
might pick are very similar to each other. Otherwise, ignoring it leads to nonsense.

Here, for instance, I simulate 200 data points where the Y variable is a standard
Gaussian, and there are 100 independent predictor variables, all also standard Gaus-
sians, independent of each other and of Y :
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Chapter 20

Review

Let us review1.

20.1 Basic Model Assumptions (without Gaussian Noise)
We model one continuous response variable, as a linear function of p numerical pre-
dictors, plus noise:

Y =β0+β1X1+ . . .βp Xp + ε (20.1)

Linearity is an assumption, which can be wrong.
Further assumptions take the form of restrictions on the noise:

E [ε|X ] = 0 (20.2)
Var [ε|X ] = σ2 (20.3)

(20.4)

Moreover, we assume ε is uncorrelated across observations.
We convert this to matrix form:

Y= xβ+ ε (20.5)

Y is an n × 1 matrix of random variables; x is an n × (p + 1) matrix, with an extra
column of all 1s; ε is an n× 1 matrix. Beyond linearity, the assumptions translate to

E [ε|x] = 0 (20.6)

and
Var [ε|x] = σ2I (20.7)

We don’t know β. If we guess it is b, we will make an n× 1 vector of predictions

xb (20.8)
1All of the theory for simple linear regression is a special case of what follows, with p = 1. The entire

first third of the course was just a warm-up period.
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and have an n× 1 vector of errors
y− xb (20.9)

The mean squared error, as a function of b, is then

M SE(b) =
1
n
(y− xb)T (y− xb) (20.10)

20.2 Least Squares Estimation and Its Properties
The least squares estimate of the coefficients is the one which minimizes the MSE:

bβ≡ argmin
b

M SE(b) (20.11)

To find this, we need the derivatives:

∇bM SE =
2
n
(xT y− xT xb) (20.12)

We set the derivative to zero at the optimum:

1
n

xT
�

y− x bβ
�

= 0 (20.13)

The term in parentheses is the vector of errors when we use the least-squares esti-
mate. This is the vector of residuals,

e≡ y− x bβ (20.14)

so the have the normal, estimating or score equations,

1
n

xT e= 0 (20.15)

We say “equations”, plural, because this is equivalent to the set of p + 1 equations

1
n

n
∑

i=1

ei = 0 (20.16)

1
n

n
∑

i=1

ei xi j = 0 (20.17)

(Many people omit the factor of 1/n.) This tells us that while e is an n-dimensional
vector, it is subject to p+ 1 linear constraints, so it is confined to a linear subspace of
dimension n− p−1. Thus n− p−1 is the number of residual degrees of freedom.

The solution to the estimating equations is

bβ= (xT x)−1xT y (20.18)
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This is one of the two most important equations in the whole subject. It says that
the coefficients are a linear function of the response vector y. Set all the responses to
0 and all the coefficients are zero; double all the responses and all the coefficients are
doubled.

Say that x′ is the n× p matrix of predictors, without the column of 1s, and β′ is
the p × 1 vector of slopes. Finally, let x be the 1× p vector of the mean values of the
predictors. Then

β̂0 = y − xcβ′ (20.19)

while
cβ′ =ÓVar [X ]−1

ÔCov [X ,Y ] (20.20)

just as in simple linear regression.
The least squares estimate is always a constant plus noise:

bβ = (xT x)−1xT Y (20.21)

= (xT x)−1xT (xβ+ ε) (20.22)

= (xT x)−1xT xβ+(xT x)−1xT ε (20.23)

= β+(xT x)−1xT ε (20.24)

The least squares estimate is always unbiased:

E
�

bβ
�

=β+(xT x)−1xTE [ε] =β (20.25)

Its variance always depends just on σ2 and xT x:

Var
�

bβ
�

= σ2(xT x)−1 (20.26)

Since the entries in xT x are usual proportional to n, it can be helpful to say

Var
�

bβ
�

=
σ2

n

�

1
n

xT x
�−1

(20.27)

The variance of any one coefficient estimator is

Var
h

β̂i

i

=
σ2

n

�

1
n

xT x
�−1

i+1,i+1
(20.28)

The vector of fitted means or conditional values is

Òm≡ x bβ (20.29)

This is more conveniently expressed in terms of the original matrices:

Òm= x(xT x)−1xT y=Hy (20.30)

The fitted values are thus linear in y: set the responses all to zero and all the fitted
values will be zero; double all the responses and all the fitted values will double.

The n × n hat matrix H ≡ x(xT x)−1xT , also called the influence, projection or
prediction matrix, controls the fitted values. It is a function of x alone, ignoring the
response variable totally. It is an n× n matrix with several important properties:
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• It is symmetric, HT =H.

• It is idempotent, H2 =H.

• Its trace trH=
∑

i Hi i = p+1, the number of degrees of freedom for the fitted
values.

The variance-covariance matrix of the fitted values is

Var [Òm] =Hσ2IHT = σ2H (20.31)

To make a prediction at a new point, not in the data used for estimation, we take
its predictor coordinates and group them into a 1×(p+1)matrix xne w (including the
1 for the intercept). The point prediction for Y is then xne w

bβ. The expected value is
xne wβ, and the variance is Var

�

xne w
bβ
�

= xne wVar
�

bβ
�

xT
ne w = σ

2xne w (x
T x)−1xT

ne w .
The residuals are also linear in the response:

e≡ y−Òm= (I−H)y (20.32)

The trace of I−H is n− p−1. The variance-covariance matrix of the residuals is thus

Var [e] = σ2(I−H) (20.33)

The mean squared error is

M SE =
1
n

n
∑

i=1

e2
i =

1
n

eT e (20.34)

Its expectation value is slightly below σ2:

E [M SE] = σ2 n− p − 1
n

(20.35)

(This may be proved using the trace of I−H.) An unbiased estimate of σ2, which I
will call σ̂2 throughout the rest of this, is

σ̂2 ≡M SE
n

n− p − 1
(20.36)

The leverage of data point i is Hi i . This has several interpretations:

1. Var [Òmi ] = σ
2Hi i ; the leverage controls how much variance there is in the fitted

value.

2. ∂ Òmi/∂ yi = Hi i ; the leverage says how much changing the response value for
point i changes the fitted value there.

3. Cov [Òmi ,Yi ] = σ
2Hi i ; the leverage says how much covariance there is between

the i th response and the i th fitted value.
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4. Var [ei ] = σ
2(1−Hi i ); the leverage controls how big the i th residual is.

The standardized residual is

ri =
ei

σ̂
p

1−Hi i

(20.37)

so all the standardized residuals have the same variance.
The only restriction we have to impose on the predictor variables Xi is that (xT x)−1

needs to exist. This is equivalent to

• x is not collinear: none of its columns is a linear combination of other columns;
which is also equivalent to

• The eigenvalues of xT x are all > 0. (If there are zero eigenvalues, the corre-
sponding eigenvectors indicate linearly-dependent combinations of predictor
variables.)

Nearly-collinear predictor variables tend to lead to large variances for coefficient es-
timates, with high levels of correlation among the estimates. Sometimes this uncer-
tainty can be reduced by finding new variables which contain most (or all) of the same
information, but are less correlated with each other.

It is perfectly OK for one column of x to be a function of another, provided it is a
nonlinear function. Thus in polynomial regression we add extra columns for powers
of one or more of the predictor variables. (Any other nonlinear function is however
also legitimate.) This complicates the interpretation of coefficients as slopes, just as
though we had done a transformation of a column; see the handout on transforma-
tions. Estimation and inference for the coefficients on these predictor variables goes
exactly like estimation and inference for any other coefficient.

One column of x could be a (nonlinear) function of two or more of the other
columns; this is how we represent interactions. Usually the interaction column is just
a product of two other columns, for a product or multiplicative interaction; this also
complicates the interpretation of coefficients as slopes. (See Ch. 17 on interactions.)
Estimation and inference for the coefficients on these predictor variables goes exactly
like estimation and inference for any other coefficient.

We can include qualitative predictor variables with k discrete categories or levels
by introducing binary indicator variables for k − 1 of the levels, and adding them
to x. The coefficients on these indicators tell us about amounts that are added (or
subtracted) to the response for every individual who is a member of that category or
level, compared to what would be predicted for an otherwise-identical individual in
the baseline category. Equivalently, every category gets its own intercept. Estima-
tion and inference for the coefficients on these predictor variables goes exactly like
estimation and inference for any other coefficient.

Interacting the indicator variables for categories with other variables gives coef-
ficients which say what amount is added to the slope used for each member of that
category (compared to the slope for members of the baseline level). Equivalently,
each category gets its own slope. Estimation and inference for the coefficients on
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these predictor variables goes exactly like estimation and inference for any other co-
efficient.

Model selection for prediction aims at picking a model which will predict well
on new data drawn from the same distribution as the data we’ve seen. One way to
estimate this out-of-sample performance is to look at what the expected squared error
would be on new data with the same x matrix, but a new, independent realization of
y. In Ch. 19 on model selection, we showed that

E
�

1
n
(Y′− Òm)T (Y′− Òm)

�

(20.38)

= E
�

1
n
(Y− Òm)T (Y− Òm)

�

+ 2
1
n

n
∑

i=1

Cov [Yi , m̂i ]

= E
�

1
n
(Y− Òm)T (Y− Òm)

�

+
2
n
σ2 tr H (20.39)

= E
�

1
n
(Y− Òm)T (Y− Òm)

�

+
2
n
σ2(p + 1) (20.40)

Mallow’s Cp estimates this by

M SE +
2
n
σ̂2(p + 1) (20.41)

using the σ̂2 from the largest, model being selected among (which includes all the
other models as special cases).

An alternative is leave-one-out cross-validation, which amounts to

1
n

n
∑

i=1

�

ei

1−Hi i

�2

(20.42)

CP and LOOCV converge for large n.

20.3 Gaussian Noise
The Gaussian noise assumption is added on to the other assumptions already made.
It is that εi ∼ N (0,σ2), independent of the predictor variables and all other ε j . Said
otherwise, ε has a multivariate Gaussian distribution,

ε∼MV N (0,σ2I) (20.43)

Under this assumption, it follows that, since bβ is a linear function of ε, it also has
a multivariate Gaussian distribution:

bβ∼MV N (β,σ2(xT x)−1) (20.44)

Also,
Òm∼MV N (xβ,σ2H) (20.45)
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It follows from this that

bβi ∼N (βi ,σ
2(xT x)−1

i+1,i+1 (20.46)

and
Òmi ∼N (xiβ,σ2Hi i ) (20.47)

The sampling distribution of the estimated conditional mean at a new point xne w
is N (xne wβ,σ2xne w (x

T x)−1xT
ne w ).

The mean squared error follows a χ 2-ish distribution:

nM SE
σ2

∼ χ 2
n−p−1 (20.48)

Moreover, the MSE is statistically independent of bβ. We may therefore define

bse
h

β̂i

i

= σ̂
Ç

(xT x)−1
i+1,i+1 (20.49)

and
bse [m̂i ] = σ̂

p

Hi i (20.50)

and get t distributions:
β̂i −βi

bse
h

β̂i

i ∼ tn−p−1 (20.51)

and
m̂i −mi

bse [m̂i ]
∼ tn−p−1 (20.52)

The Wald test for the hypothesis that βi =β
∗
i therefore forms the test statistic

β̂i −β∗i
bse
h

β̂i

i (20.53)

and rejects the hypothesis if it is too large (above or below zero) compared to the
quantiles of a tn−p−1 distribution. The summary function of R runs such a test of the
hypothesis that βi = 0. There is nothing magic or even especially important about
testing for a 0 coefficient, and the same test works for testing whether a slope = 42
(for example).

Important! The null hypothesis being test is

Y is a linear function of X1, . . .Xp , and of no other predictor variables,
with independent, constant-variance Gaussian noise, and the coefficient
βi = 0 exactly.

and the alternative hypothesis is
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Y is a linear function of X1, . . .Xp , and of no other predictor variables,
with independent, constant-variance Gaussian noise, and the coefficient
βi 6= 0.

The Wald test does not test any of the model assumptions (it presumes them all), and
it cannot say whether in an absolutely sense Xi matters for Y ; adding or removing
other predictors can change whether the true βi = 0.

Warning! Retaining the null hypothesisβi = 0 can happen if either the parameter
is precisely estimated, and confidently known to be close to zero, or if it is im-precisely
estimated, and might as well be zero or something huge on either side. Saying “We
can ignore this because we can be quite sure it’s small” can make sense; saying “We
can ignore this because we have no idea what it is” is preposterous.

To test whether several coefficients are all simultaneously zero, use an F test. The
null hypothesis is

Y is a linear function of X1, . . .Xp , and of no other predictor variables,
with independent, constant-variance Gaussian noise, and the coefficients
for all but q of the variables are exactly 0, βq+1 =βq+2 . . .βp = 0.

(You can always re-order the predictor variables so that you’re saying coefficients 1
through q are free, and q+1 through p are fixed to zero.) The alternative hypothesis
is

Y is a linear function of X1, . . .Xp , and of no other predictor variables,
with independent, constant-variance Gaussian noise, and the coefficient
βq+1,βq+2, . . .βq 6= 0.

The smaller, null model leads to an estimate of σ2, σ̂2
nu l l , and the larger, alternative

model gives us the estimate σ̂2
f u l l . The F statistic is

Fs t at =
(σ̂2

nu l l − σ̂
2
f u l l )/(p − q)

σ̂2
f u l l/(n− p − 1)

(20.54)

The numerator is basically about how much the MSE shrinks for each extra parameter
we throw at fitting the data; the denominator is an estimate of how big an improvement-
per-degree-of-freedom we should see under the null hypothesis. Under that null hy-
pothesis,

Fs t at ∼ Fp−q ,n−p−1 (20.55)

Note that the F test when q = p − 1 becomes identical to a t -test.
If 0 < q < p, we have a “partial” F test. A “full” F test sets q = 0, i.e., it tests

the null hypothesis of an intercept-only model (with independent, constant-variance
Gaussian noise) against the alternative of the linear model on X1, . . .Xp (and only
those variables, with independent, constant-variance Gaussian noise). This is only of
interest under very unusual circumstances.
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Once again, no F test is capable of checking any modeling assumptions. This is
because both the null hypothesis and the alternative hypothesis presume that the all
of the modeling assumptions are exactly correct.

Inverting the Wald test yields confidence intervals for each coefficient: a 1− α
confidence interval for βi is

β̂i ± bse [βi ] tn−p−1(α/2) (20.56)

Inverting the F test leads to ellipse-shaped (in more than two dimensions, “ellip-
soidal”) confidence regions. (See Chapter 16 for the detailed formula, which involves
matrix inversion.) These make a simultaneous guarantee: either all the parameters are
inside the confidence region, or we were very unlucky when we got our data. A sim-
pler way to get a simultaneous confidence region for all p parameters is to use 1−α/p
confidence intervals for each one (“Bonferroni correction”).

Turning to the fitted values, by entirely parallel reasoning, we may test any hy-
pothesis of the form mi = m∗i by a t -test. More practically, a 1−α confidence interval
for the fitted value (conditional expectation) is

m̂i ± bse [m̂i ] tn−p−1(α/2) (20.57)

The standardized residuals do not quite have a t distribution, because σ̂ is a func-
tion of all the ei s, hence the numerator in the definition of ri is not independent of
the denominator. But the cross-validated or studentized residuals are:

1. Temporarily hold out data point i

2. Re-estimate the coefficients to get bβ(−i) and σ̂ (−i)

3. Make a prediction for yi , m̂(−i)
i

4. Calculate

ti =
yi − m̂(−i)

i

σ̂ (−i)+ bse
�

m̂(−i)
i

� (20.58)

This can be done without recourse to actually re-fitting the model2:

ti = ri

√

√

√

n− p − 1
n− p − r 2

i

(20.59)

(Note that for large n, this is typically extremely close to ri .) Once we have it, there
is a sampling distribution3 for ti :

ti ∼ tn−p−2 (20.60)

2Like the definition of cross-validated or studentized residuals, this next formula does not need the
Gaussian noise assumption.

3Under the Gaussian noise assumption.

21:34 Monday 6th May, 2024



20.3. GAUSSIAN NOISE 344

(The −2 is because we’re using n− 1 data points to estimate p + 1 coefficients.)
Cook’s distance for point i is the sum of the (squared) changes to all the fitted

values if i was omitted; it is4

Di =
1

p + 1
e2

i
Hi i

(1−Hi i )2
(20.61)

There is a tradition of being worried if Di ≥ Fp,n−p−2(0.1), but no hard proofs behind
it.

Under the Gaussian assumption, one can calculate a likelihood for the data. The
log-likelihood is, up to constants independent of the parameters,

L=−n
2

log M SE (20.62)

since the MSE is the maximum likelihood estimate of σ2 (even though it is slightly
biased). The likelihood ratio test which can be used in place of the F test has as its
test statistic

Λ ≡ log
L f u l l

Lnu l l
(20.63)

= log L f u l l − log Lnu l l (20.64)

=
n
2

�

− log M SE f u l l + log M SEnu l l

�

(20.65)

=
n
2

log
M SEnu l l

M SE f u l l
(20.66)

Under the null hypothesis, 2Λ∼ χ 2
p−q for large n.

The log-likelihood can also be used to calculate a model selection criterion, the
Akaike information criterion (AIC):

AI C = L− (p + 1) (20.67)

Sometimes this is written with a factor of 2, or of -1 (so that smaller values of AIC are
preferred), or of -2 (ditto). As n→∞, the model selected by AIC becomes identical
to the model selected by Cp or LOOCV. (In fact, the AIC score of the true model
converges on its Cp or LOOCV score.) AIC is best thought of as a very fast (because
very simple) approximation to leave-one-out CV.

4Again, no Gaussian noise assumption is needed for the next formula.
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Chapter 21

Weighted and Generalized
Least Squares

21.1 Weighted Least Squares

When we use ordinary least squares to estimate linear regression, we (naturally) min-
imize the mean squared error:

M SE(b) =
1
n

n
∑

i=1

(yi − xi ·β)
2 (21.1)

The solution is of course
bβOLS = (x

T x)−1xT y (21.2)

We could instead minimize the weighted mean squared error,

W M SE(b, w1, . . . wn) =
1
n

n
∑

i=1

wi (yi − xi ·b)
2 (21.3)

This includes ordinary least squares as the special case where all the weights wi = 1.
We can solve it by the same kind of linear algebra we used to solve the ordinary linear
least squares problem. If we write w for the matrix with the wi on the diagonal and
zeroes everywhere else, then

W M SE = n−1(y− xb)T w(y− xb) (21.4)

=
1
n

�

yT wy− yT wxb−bT xT wy+bT xT wxb
�

(21.5)

Differentiating with respect to b, we get as the gradient

∇bW M SE =
2
n

�

−xT wy+ xT wxb
�
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Setting this to zero at the optimum and solving,

bβW LS = (x
T wx)−1xT wy (21.6)

But why would we want to minimize Eq. 21.3?

1. Focusing accuracy. We may care very strongly about predicting the response
for certain values of the input — ones we expect to see often again, ones where
mistakes are especially costly or embarrassing or painful, etc. — than others. If
we give the points near that region big weights, and points elsewhere smaller
weights, the regression will be pulled towards matching the data in that region.

2. Discounting imprecision. Ordinary least squares minimizes the squared error
when the variance of the noise terms ε is constant over all observations, so we’re
measuring the regression function with the same precision elsewhere. This sit-
uation, of constant noise variance, is called homoskedasticity. Often however
the magnitude of the noise is not constant, and the data are heteroskedastic.

When we have heteroskedasticity, ordinary least squares is no longer the opti-
mal estimate — we’ll see presently that other estimators can be unbiased and
have smaller variance. If however we know the noise variance σ2

i at each mea-
surement i , and set wi = 1/σ2

i , we get minimize the variance of estimation.

To say the same thing slightly differently, there’s just no way that we can es-
timate the regression function as accurately where the noise is large as we can
where the noise is small. Trying to give equal attention to all values of X is a
waste of time; we should be more concerned about fitting well where the noise
is small, and expect to fit poorly where the noise is big.

3. Sampling bias. In many situations, our data comes from a survey, and some
members of the population may be more likely to be included in the sample
than others. When this happens, the sample is a biased representation of the
population. If we want to draw inferences about the population, it can help to
give more weight to the kinds of data points which we’ve under-sampled, and
less to those which were over-sampled. In fact, typically the weight put on data
point i would be inversely proportional to the probability of i being included
in the sample (exercise 1). Strictly speaking, if we are willing to believe that
linear model is exactly correct, that there are no omitted variables, and that the
inclusion probabilities pi do not vary with yi , then this sort of survey weighting
is redundant (DuMouchel and Duncan, 1983). When those assumptions are not
met — when there’re non-linearities, omitted variables, or “selection on the
dependent variable” — survey weighting is advisable, if we know the inclusion
probabilities fairly well.

The same trick works under the same conditions when we deal with “covari-
ate shift”, a change in the distribution of X . If the old probability density
function was p(x) and the new one is q(x), the weight we’d want to use is
wi = q(xi )/p(xi ) (Quiñonero-Candela et al., 2009). This can involve estimating
both densities, or their ratio (topics we’ll cover in 402).
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FIGURE 21.1: Black line: Linear response function (y = 3− 2x). Grey curve: standard deviation
as a function of x (σ(x) = 1+ x2/2). (Code deliberately omitted; can you reproduce this figure?)

4. Doing something else. There are a number of other optimization problems
which can be transformed into, or approximated by, weighted least squares.
The most important of these arises from generalized linear models, where the
mean response is some nonlinear function of a linear predictor; we will look at
them in 402.

In the first case, we decide on the weights to reflect our priorities. In the third
case, the weights come from the optimization problem we’d really rather be solving.
What about the second case, of heteroskedasticity?

21.2 Heteroskedasticity
Suppose the noise variance is itself variable. For example, Figure 21.1 shows a simple
linear relationship between the predictors X and the response Y , but also a nonlinear
relationship between X and Var [Y ].

In this particular case, the ordinary least squares estimate of the regression line
is 2.59 − 3.18x, with R reporting standard errors in the coefficients of ±0.79 and
0.25, respectively. Those are however calculated under the assumption that the noise
is homoskedastic, which it isn’t. And in fact we can see, pretty much, that there is
heteroskedasticity — if looking at the scatter-plot didn’t convince us, we could always
plot the residuals against x, which we should do anyway.

To see whether that makes a difference, let’s re-do this many times with different
draws from the same model (Figure 21.4).

Running ols.heterosked.error.stats(100) produces 104 random samples which
all have the same x values as the first one, but different values of y, generated however
from the same model. It then uses those samples to get the standard error of the ordi-
nary least squares estimates. (Bias remains a non-issue.) What we find is the standard
error of the intercept is only a little inflated (simulation value of 0.69 versus official
value of 0.79), but the standard error of the slope is much larger than what R reports,
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# Plot the data
plot(x, y)
# Plot the true regression line
abline(a = 3, b = -2, col = "grey")
# Fit by ordinary least squares
fit.ols = lm(y ~ x)
# Plot that line
abline(fit.ols, lty = "dashed")

FIGURE 21.2: Scatter-plot of n = 150 data points from the above model. (Here X is Gaussian with
mean 0 and variance 9.) Grey: True regression line. Dashed: ordinary least squares regression line.

21:34 Monday 6th May, 2024



349 21.2. HETEROSKEDASTICITY

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●●
●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

−5 0 5

−
20

0
20

40
60

x

re
si

du
al

s(
fit

.o
ls

)

● ● ●●● ●● ●
● ●

●

●● ● ●● ●● ●

●

● ●●

●

●

●● ● ●●
●

●● ●●●● ● ●●●●

●

●● ● ● ●● ●● ●● ●● ●● ●●

●

●●
●● ●●●●●

●
● ●● ●● ●● ●●

●
●● ●

●

●●● ●

●

●

●

●●● ●●●

●

●● ●●●

●

●
●

●●
●●● ●●

●

● ●
●

●

● ●

● ●● ● ● ●●
●

●

●

●●●●
●

● ●●● ● ●● ●● ●●
●

●

● ●

−5 0 5

0
10

00
20

00
30

00
40

00

x

(r
es

id
ua

ls
(f

it.
ol

s)
)^

2

par(mfrow = c(1, 2))
plot(x, residuals(fit.ols))
plot(x, (residuals(fit.ols))^2)
par(mfrow = c(1, 1))

FIGURE 21.3: Residuals (left) and squared residuals (right) of the ordinary least squares regression
as a function of x. Note the much greater range of the residuals at large absolute values of x than
towards the center; this changing dispersion is a sign of heteroskedasticity.
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# Generate more random samples from the same model and the same x values,
# but different y values Inputs: number of samples to generate Presumes: x
# exists and is defined outside this function Outputs: errors in linear
# regression estimates
ols.heterosked.example = function(n) {

y = 3 - 2 * x + rnorm(n, 0, sapply(x, function(x) {
1 + 0.5 * x^2

}))
fit.ols = lm(y ~ x)
# Return the errors
return(fit.ols$coefficients - c(3, -2))

}

# Calculate average-case errors in linear regression estimates (SD of slope
# and intercept) Inputs: number of samples per replication, number of
# replications (defaults to 10,000) Calls: ols.heterosked.example Outputs:
# standard deviation of intercept and slope
ols.heterosked.error.stats = function(n, m = 10000) {

ols.errors.raw = t(replicate(m, ols.heterosked.example(n)))
# transpose gives us a matrix with named columns
intercept.sd = sd(ols.errors.raw[, "(Intercept)"])
slope.sd = sd(ols.errors.raw[, "x"])
return(list(intercept.sd = intercept.sd, slope.sd = slope.sd))

}

FIGURE 21.4: Functions to generate heteroskedastic data and fit OLS regression to it, and to collect
error statistics on the results.
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0.5 versus 0.25. Since the intercept is fixed by the need to make the regression line go
through the center of the data, the real issue here is that our estimate of the slope is
much less precise than ordinary least squares makes it out to be. Our estimate is still
consistent, but not as good as it was when things were homoskedastic. Can we get
back some of that efficiency?
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FIGURE 21.5: Statistician (right) consulting the Oracle of Regression (left) about the proper weights
to use to overcome heteroskedasticity. (Image from http://en.wikipedia.org/wiki/Image:Pythia1.jpg.)

21.2.1 Weighted Least Squares as a Solution to Heteroskedasticity

Suppose we visit the Oracle of Regression (Figure 21.5), who tells us that the noise
has a standard deviation that goes as 1+ x2/2. We can then use this to improve our
regression, by solving the weighted least squares problem rather than ordinary least
squares (Figure 21.6).

The estimated line is now 2.92−2.38x, with reported standard errors of 0.34 and
0.19. Does this check out with simulation? (Figure 21.7.)

Unsurprisingly, yes. The standard errors from the simulation are 0.34 for the
intercept and 0.19 for the slope, so R’s internal calculations are working very well.

Why does putting these weights into WLS improve things?
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# Plot the data
plot(x, y)
# Plot the true regression line
abline(a = 3, b = -2, col = "grey")
# Fit by ordinary least squares
fit.ols = lm(y ~ x)
# Plot that line
abline(fit.ols, lty = "dashed")
fit.wls = lm(y ~ x, weights = 1/(1 + 0.5 * x^2))
abline(fit.wls, lty = "dotted")

FIGURE 21.6: Figure 21.2, plus the weighted least squares regression line (dotted).
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### As previous two functions, but with weighted regression

# Generate random sample from model (with fixed x), fit by weighted least
# squares Inputs: number of samples Presumes: x fixed outside function
# Outputs: errors in parameter estimates
wls.heterosked.example = function(n) {

y = 3 - 2 * x + rnorm(n, 0, sapply(x, function(x) {
1 + 0.5 * x^2

}))
fit.wls = lm(y ~ x, weights = 1/(1 + 0.5 * x^2))
# Return the errors
return(fit.wls$coefficients - c(3, -2))

}

# Calculate standard errors in parameter estiamtes over many replications
# Inputs: number of samples per replication, number of replications
# (defaults to 10,000) Calls: wls.heterosked.example Outputs: standard
# deviation of estimated intercept and slope
wls.heterosked.error.stats = function(n, m = 10000) {

wls.errors.raw = t(replicate(m, wls.heterosked.example(n)))
# transpose gives us a matrix with named columns
intercept.sd = sd(wls.errors.raw[, "(Intercept)"])
slope.sd = sd(wls.errors.raw[, "x"])
return(list(intercept.sd = intercept.sd, slope.sd = slope.sd))

}

FIGURE 21.7: Linear regression of heteroskedastic data, using weighted least-squared regression.

21:34 Monday 6th May, 2024



355 21.2. HETEROSKEDASTICITY

21.2.2 Some Explanations for Weighted Least Squares
Qualitatively, the reason WLS with inverse variance weights works is the following.
OLS cares equally about the error at each data point.1 Weighted least squares, natu-
rally enough, tries harder to match observations where the weights are big, and less
hard to match them where the weights are small. But each yi contains not only the
true regression function m(xi ) but also some noise εi . The noise terms have large
magnitudes where the variance is large. So we should want to have small weights
where the noise variance is large, because there the data tends to be far from the true
regression. Conversely, we should put big weights where the noise variance is small,
and the data points are close to the true regression.

The qualitative reasoning in the last paragraph doesn’t explain why the weights
should be inversely proportional to the variances, wi ∝ 1/σ2

i — why not wi ∝ 1/σi ,
for instance? Look at the equation for the WLS estimates again:

bβW LS = (x
T wx)−1xT wy (21.7)

Imagine holding x constant, but repeating the experiment multiple times, so that we
get noisy values of y. In each experiment, Yi = xi ·β+ εi , where E [εi |x] = 0 and
Var [εi |x] = σ2

i . So

bβW LS = (xT wx)−1xT wxβ+(xT wx)−1xT wε (21.8)

= β+(xT wx)−1xT wε (21.9)

Since E [ε|x] = 0, the WLS estimator is unbiased:

E
�

bβW LS |x
�

=β (21.10)

In fact, for the j th coefficient,

bβ j = β j +[(x
T wx)−1xT wε] j (21.11)

= β j +
n
∑

i=1

k j i (w)εi (21.12)

where in the last line I have bundled up (xT wx)−1xT w as a matrix k(w), with the
argument to remind us that it depends on the weights. Since the WLS estimate is
unbiased, it’s natural to want it to also have a small variance, and

Var
�

bβ j

�

=
n
∑

i=1

k j i (w)σ
2
i (21.13)

It can be shown — the result is called the generalized Gauss-Markov theorem — that
picking weights to minimize the variance in the WLS estimate has the unique solution

1Less anthropomorphically, the objective function in Eq. 21.1 has the same derivative with respect to
the squared error at each point, ∂ M SE

∂ e2
i
= 1

n .
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wi = 1/σ2
i . It does not require us to assume the noise is Gaussian, but the proof does

need a few tricks (see §21.3).
A less general but easier-to-grasp result comes from adding the assumption that

the noise around the regression line is Gaussian — that

Y =β0+β1X1+ . . .+βp Xp + ε, ε∼N (0,σ2
x ) (21.14)

The log-likelihood is then (Exercise 2)

− n
2

ln2π− 1
2

n
∑

i=1

logσ2
i −

1
2

n
∑

i=1

(yi − xi ·b)
2

σ2
i

(21.15)

If we maximize this with respect to β, everything except the final sum is irrelevant,
and so we minimize

n
∑

i=1

(yi − xi ·b)
2

σ2
i

(21.16)

which is just weighted least squares with wi = 1/σ2
i . So, if the probabilistic assump-

tion holds, WLS is the efficient maximum likelihood estimator.

21.3 The Gauss-Markov Theorem

We’ve seen that when we do weighted least squares, our estimates of β are linear in
Y, and unbiased (Eq. 21.10):

×βW LS = (xT wx)−1xT wy (21.17)

E
h

×βW LS

i

= β (21.18)

What we’d like to show is that using the weights wi = 1/σ2
i is somehow optimal.

Like any optimality result, it is crucial to lay out carefully the range of possible alter-
natives, and the criterion by which those alternatives will be compared. The classical
optimality result for estimating linear models is the Gauss-Markov theorem, which
takes the range of possibilities to be linear, unbiased estimators of β, and the criterion
to be variance of the estimator. I will return to both these choices at the end of this
section.

Any linear estimator, say eβ, could be written as

eβ= qy

where q would be a (p+ 1)× n matrix, in general a function of x, weights, the phase
of the moon, etc. (For OLS, q= (xT x)−1xT .) For eβ to be an unbiased estimator, we
must have

E [qY|x] = qxβ=β
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Since this must hold for all β and all x, we have to have qx = I.2 (Sanity check: this
works for OLS.) The variance is then

Var [qY|x] = qVar [ε|x]qT = qΣq (21.19)

where I abbreviate the mouthful Var [ε|x] by Σ. We could then try to differentiate
this with respect to q, set the derivative to zero, and solve, but this gets rather messy,
since in addition to the complications of matrix calculus, we’d need to enforce the
unbiasedness constraint qx= I somehow.

Instead of the direct approach, we’ll use a classic piece of trickery. Set

k≡ (xTΣ−1x)−1xTΣ−1

which is the estimating matrix for weighted least squares. Now, whatever q might be,
we can always write

q= k+ r (21.20)

for some matrix r. The unbiasedness constraint on q translates into

rx= 0

because kx= I. Now we substitute Eq. 21.20 into Eq. 21.19:

Var
�

eβ
�

= (k+ r)Σ(k+ r)T (21.21)

= (k+ r)Σ−1(k+ r)T (21.22)

= kΣkT + rΣkT +kΣrT + rΣrT (21.23)
= (xTΣ−1x)−1xTΣ−1ΣΣ−1x(xTΣ−1x)−1 (21.24)

+rΣΣ−1x(xTΣ−1x)−1

+(xTΣ−1x)−1xTΣ−1ΣrT

+rΣrT

= (xTΣ−1x)−1xTΣ−1x(xTΣ−1x)−1 (21.25)

+rx(xTΣ−1x)−1+(xTΣ−1x)−1xT rT

+rΣrT

= (xTΣ−1x)−1+ rΣrT (21.26)

where the last step uses the fact that rx= 0 (and so xT rT = 0T ).
Since Σ is a covariance matrix, it’s positive definite, meaning that aΣaT ≥ 0 for

any vector a. This applies in particular to the vector ri ·, i.e., the i th row of r. But

Var
�

β̃i

�

= (xTΣ−1x)−1
i i + ri ·w0

−1rT
i ·

which must therefore be strictly larger than (xTΣ−1x)−1
i i , the variance we’d get from

using weighted least squares.
2This doesn’t mean that q= x−1; x doesn’t have an inverse!
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FIGURE 21.8: The Oracle may be out (left), or too creepy to go visit (right). What then? (Left,
the sacred oak of the Oracle of Dodona, copyright 2006 by Flickr user “essayen”, http://flickr.
com/photos/essayen/245236125/; right, the entrace to the cave of the Sibyl of Cumæ, copyright
2005 by Flickr user “pverdicchio”, http://flickr.com/photos/occhio/17923096/. Both used
under Creative Commons license.)

We conclude that WLS, with the weight matrix w equal to the inverse variance
matrix Σ−1, the least variance among all possible linear, unbiased estimators of the
regression coefficients.

Notes:

1. If all the noise variances are equal, then we’ve proved the optimality of OLS.

2. The theorem doesn’t rule out linear, biased estimators with smaller variance. As
an example, albeit a trivial one, 0y is linear and has variance 0, but is (generally)
very biased.

3. The theorem also doesn’t rule out non-linear unbiased estimators of smaller
variance. Or indeed non-linear biased estimators of even smaller variance.

4. The proof actually doesn’t require the variance matrix to be diagonal.

21.4 Finding the Variance and Weights
All of this was possible because the Oracle told us what the variance function was.
What do we do when the Oracle is not available (Figure 21.8)?

Sometimes we can work things out for ourselves, without needing an oracle.

• We know, empirically, the precision of our measurement of the response vari-
able — we know how precise our instruments are, or the response is really an
average of several measurements so we can use their standard deviations, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions we
find should be inversely proportional to the sample size. So we can make the
weights proportional to the sample size.
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Both of these outs rely on kinds of background knowledge which are easier to
get in the natural or even the social sciences than in many industrial applications.
However, there are approaches for other situations which try to use the observed
residuals to get estimates of the heteroskedasticity; this is the topic of the next section.

21.4.1 Variance Based on Probability Considerations

There are a number of situations where we can reasonably base judgments of variance,
or measurement variance, on elementary probability.

Multiple measurements The easiest case is when our measurements of the response
are actually averages over individual measurements, each with some variance σ2. If
some Yi are based on averaging more individual measurements than others, there will
be heteroskedasticity. The variance of the average of ni uncorrelated measurements
will be σ2/ni , so in this situation we could take wi ∝ ni .

Binomial counts Suppose our response variable is a count, derived from a binomial
distribution, i.e., Yi ∼ Binom(ni , pi ). We would usually model pi as a function of
the predictor variables — at this level of statistical knowledge, a linear function. This
would imply that Yi had expectation ni pi , and variance ni pi (1 − pi ). We would
be well-advised to use this formula for the variance, rather than pretending that all
observations had equal variance.

Proportions based on binomials If our response variable is a proportion based on
a binomial, we’d see an expectation value of pi and a variance of pi (1−pi )

ni
. Again, this

is not equal across different values of ni , or for that matter different values of pi .

Poisson counts Binomial counts have a hard upper limit, ni ; if the upper limit is
immense or even (theoretically) infinite, we may be better off using a Poisson distribu-
tion. In such situations, the mean of the Poisson λi will be a (possibly-linear) function
of the predictors, and the variance will also be equal to λi .

Other counts The binomial and Poisson distributions rest on independence across
“trials” (whatever those might be). There are a range of discrete probability models
which allow for correlation across trials (leadings to more or less variance). These
may, in particular situations, be more appropriate.

21.4.1.1 Example: The Economic Mobility Data

The data set on economic mobility we’ve used in a number of assignments and exam-
ples actually contains a bunch of other variables in addition to the covariates we’ve
looked at (short commuting times and latitude and longitude). While reserving the
full data set for later use, let’s look one of the additional covariates, namely popula-
tion.
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To see why this might be relevant, recall that our response variable is the fraction
of children who, in each community, were born into the lowest 20% of the income dis-
tribution during 1980–1982 and nonetheless make it into the top 20% by age 30; we’re
looking at a proportion. Different communities will have had different numbers of
children born in the relevant period, generally proportional to their total population.
Treating the observed fraction for New York City as being just as far from its expected
rate of mobility as that for Piffleburg, WI is asking for trouble.

Once we have population, there is a very notable pattern: the most extreme levels
of mobility are all for very small communities (Figure 21.9).

While we do not know the exact number of children for each community, it is
not unreasonable to take that as proportional to the total population. The binomial

standard error in the observed fraction will therefore be∝
Ç

pi (1−pi )
ni

.

mobility$MobSE <- with(mobility, sqrt(Mobility * (1 - Mobility)/Population))

Let us now plot the rate of economic mobility against the fraction of workers
with short commutes, and decorate it with error bars reflecting these standard errors
(Figure 21.10).

Now, there are reasons why this is not necessarily the last word on using weighted
least squares here. One is that if we actually believed our model, we should be using

the predicted mobility as the pi in
Ç

pi (1−pi )
ni

, rather than the observed mobility. An-
other is that the binomial model assumes independence across “trials” (here, children).
But, by definition, at most, and at least, 20% of the population ends up in the top 20%
of the income distribution3. It’s fairly clear, however, that simply ignoring differences
in the sizes of communities is unwise.

3Cf. Gore Vidal: “It is not enough to succeed; others must also fail.”
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mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/24--25/mobility2.csv")
plot(Mobility ~ Population, data = mobility, log = "x", ylim = c(0, 0.5))

FIGURE 21.9: Rate of economic mobility plotted against population, with a logarithmic scale on
the latter, horizontal axis. Notice decreasing spread at larger population.
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plot(Mobility ~ Commute, data = mobility, xlab = "Fraction of workers with short commutes",
ylab = "Rate of economic mobility", pch = 19, cex = 0.2)

with(mobility, segments(x0 = Commute, y0 = Mobility + 2 * MobSE, x1 = Commute,
y1 = Mobility - 2 * MobSE, col = "blue"))

mob.lm <- lm(Mobility ~ Commute, data = mobility)
mob.wlm <- lm(Mobility ~ Commute, data = mobility, weight = 1/MobSE^2)
abline(mob.lm)
abline(mob.wlm, col = "blue")

FIGURE 21.10: Mobility versus the fraction of workers with short commute, with ±2 standard
deviation error bars (vertical blue bars), and the OLS linear fit (black line) and weighted least squares
(blue line). Note that the error bars for some larger communities are smaller than the diameter of
the dots.
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21.5 Conditional Variance Function Estimation
Remember that there are two equivalent ways of defining the variance:

Var [X ] =E
�

X 2�− (E [X ])2 =E
�

(X −E [X ])2
�

(21.27)

The latter is more useful for us when it comes to estimating variance functions. We
have already figured out how to estimate means — that’s what all this previous work
on smoothing and regression is for — and the deviation of a random variable from its
mean shows up as a residual.

There are two generic ways to estimate conditional variances, which differ slightly
in how they use non-parametric smoothing. We can call these the squared residuals
method and the log squared residuals method. Here is how the first one goes.

1. Estimate m(x) with your favorite regression method, getting m̂(x).

2. Construct the squared residuals, ui = (yi − m̂(xi ))
2.

3. Use your favorite non-parametric method to estimate the conditional mean of
the ui , call it bq(x).

4. Predict the variance using bσ2
x = bq(x).

The log-squared residuals method goes very similarly.4

1. Estimate m(x) with your favorite regression method, getting m̂(x).

2. Construct the log squared residuals, zi = log (yi − m̂(xi ))
2.

3. Use your favorite non-parametric method to estimate the conditional mean of
the zi , call it ŝ(x).

4. Predict the variance using bσ2
x = expbs(x).

The quantity yi − m̂(xi ) is the i th residual. If Òm ≈ m, then the residuals should
have mean zero. Consequently the variance of the residuals (which is what we want)
should equal the expected squared residual. So squaring the residuals makes sense, and
the first method just smoothes these values to get at their expectations.

What about the second method — why the log? Basically, this is a convenience
— squares are necessarily non-negative numbers, but lots of regression methods don’t
easily include constraints like that, and we really don’t want to predict negative vari-
ances.5 Taking the log gives us an unbounded range for the regression.

Strictly speaking, we don’t need to use non-parametric smoothing for either method.
If we had a parametric model for σ2

x , we could just fit the parametric model to the
squared residuals (or their logs). But even if you think you know what the variance
function should look like it, why not check it?

4I learned it from Wasserman (2006, pp. 87–88).
5Occasionally people do things like claiming that gene differences explains more than 100% of the

variance in some psychological trait, and so environment and up-bringing contribute negative variance.
Some of them — like Alford et al. (2005) — even say this with a straight face.
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We came to estimating the variance function because of wanting to do weighted
least squares, but these methods can be used more generally. It’s often important to
understand variance in its own right, and this is a general method for estimating it.
Our estimate of the variance function depends on first having a good estimate of the
regression function

21.5.1 Iterative Refinement of Mean and Variance: An Example
The estimate bσ2

x depends on the initial estimate of the regression function m̂(x). But,
as we saw when we looked at weighted least squares, taking heteroskedasticity into
account can change our estimates of the regression function. This suggests an itera-
tive approach, where we alternate between estimating the regression function and the
variance function, using each to improve the other. That is, we take either method
above, and then, once we have estimated the variance function bσ2

x , we re-estimate m̂
using weighted least squares, with weights inversely proportional to our estimated
variance. Since this will generally change our estimated regression, it will change the
residuals as well. Once the residuals have changed, we should re-estimate the variance
function. We keep going around this cycle until the change in the regression function
becomes so small that we don’t care about further modifications. It’s hard to give a
strict guarantee, but usually this sort of iterative improvement will converge.

Let’s apply this idea to our example. Figure 21.3b already plotted the residuals
from OLS. Figure 21.11 shows those squared residuals again, along with the true vari-
ance function and the estimated variance function.

The OLS estimate of the regression line is not especially good ( bβ0 = 2.59 versus
β0 = 3, bβ1 = −3.18 versus β1 = −2), so the residuals are systematically off, but it’s
clear from the figure that spline smoothing of the squared residuals is picking up on the
heteroskedasticity, and getting a pretty reasonable picture of the variance function.

Now we use the estimated variance function to re-estimate the regression line,
with weighted least squares.

fit.wls1 <- lm(y ~ x, weights = 1/exp(var1$y))
coefficients(fit.wls1)
## (Intercept) x
## 2.211184 -2.978369
var2 <- smooth.spline(x = x, y = log(residuals(fit.wls1)^2), cv = TRUE)

The slope has changed substantially, and in the right direction (Figure 21.12a). The
residuals have also changed (Figure 21.12b), and the new variance function is closer to
the truth than the old one.

Since we have a new variance function, we can re-weight the data points and re-
estimate the regression:

fit.wls2 <- lm(y ~ x, weights = 1/exp(var2$y))
coefficients(fit.wls2)
## (Intercept) x
## 2.243152 -3.041736
var3 <- smooth.spline(x = x, y = log(residuals(fit.wls2)^2), cv = TRUE)
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plot(x, residuals(fit.ols)^2, ylab = "squared residuals")
curve((1 + x^2/2)^2, col = "grey", add = TRUE)
var1 <- smooth.spline(x = x, y = log(residuals(fit.ols)^2), cv = TRUE)
grid.x <- seq(from = min(x), to = max(x), length.out = 300)
lines(grid.x, exp(predict(var1, x = grid.x)$y))

FIGURE 21.11: Points: actual squared residuals from the OLS line. Grey curve: true variance
function, σ2

x = (1+ x2/2)2. Black curve: spline smoothing of the squared residuals.
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fit.wls1 <- lm(y ~ x, weights = 1/exp(var1$y))
par(mfrow = c(1, 2))
plot(x, y)
abline(a = 3, b = -2, col = "grey")
abline(fit.ols, lty = "dashed")
abline(fit.wls1, lty = "dotted")
plot(x, (residuals(fit.ols))^2, ylab = "squared residuals")
points(x, residuals(fit.wls1)^2, pch = 15)
lines(grid.x, exp(predict(var1, x = grid.x)$y))
var2 <- smooth.spline(x = x, y = log(residuals(fit.wls1)^2), cv = TRUE)
curve((1 + x^2/2)^2, col = "grey", add = TRUE)
lines(grid.x, exp(predict(var2, x = grid.x)$y), lty = "dotted")
par(mfrow = c(1, 1))

FIGURE 21.12: Left: As in Figure 21.2, but with the addition of the weighted least squares regression
line (dotted), using the estimated variance from Figure 21.11 for weights. Right: As in Figure 21.11,
but with the addition of the residuals from the WLS regression (black squares), and the new estimated
variance function (dotted curve).
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Since we know that the true coefficients are 3 and−2, we know that this is moving
in the right direction. If I hadn’t told you what they were, you could still observe that
the difference in coefficients between fit.wls1 and fit.wls2 is smaller than that
between fit.ols and fit.wls1, which is a sign that this is converging.

I will spare you the plot of the new regression and of the new residuals. When we
update a few more times:

fit.wls3 <- lm(y ~ x, weights = 1/exp(var3$y))
coefficients(fit.wls3)
## (Intercept) x
## 2.239878 -3.024477
var4 <- smooth.spline(x = x, y = log(residuals(fit.wls3)^2), cv = TRUE)
fit.wls4 <- lm(y ~ x, weights = 1/exp(var4$y))
coefficients(fit.wls4)
## (Intercept) x
## 2.240906 -3.027914

By now, the coefficients of the regression are changing relatively little, and we
only have 150 data points, so the imprecision from a limited sample surely swamps
the changes we’re making, and we might as well stop.
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Manually going back and forth between estimating the regression function and
estimating the variance function is tedious. We could automate it with a function,
which would look something like this:

iterative.wls <- function(x, y, tol = 0.01, max.iter = 100) {
iteration <- 1
old.coefs <- NA
regression <- lm(y ~ x)
coefs <- coefficients(regression)
while (is.na(old.coefs) || ((max(abs(coefs - old.coefs)) > tol) && (iteration <

max.iter))) {
variance <- smooth.spline(x = x, y = log(residuals(regression)^2), cv = TRUE)
old.coefs <- coefs
iteration <- iteration + 1
regression <- lm(y ~ x, weights = 1/exp(variance$y))
coefs <- coefficients(regression)

}
return(list(regression = regression, variance = variance, iterations = iteration))

}

This starts by doing an unweighted linear regression, and then alternates between
WLS for the getting the regression and spline smoothing for getting the variance.
It stops when no parameter of the regression changes by more than tol, or when
it’s gone around the cycle max.iter times.6 This code is a bit too inflexible to be
really “industrial strength” (what if we wanted to use a data frame, or a more complex
regression formula?), but shows the core idea.

21.6 Correlated Noise and Generalized Least Squares

Sometimes, we might believe the right model is (in matrix form)

Y = Xβ+ ε (21.28)
E [ε|X] = 0 (21.29)

Var [ε|X] = Σ (21.30)

where the matrix Σ is not diagonal. The off-diagonal entries represent covariance in
the noise terms, Cov

�

εi ,ε j

�

= Σi j . In fact, we should think this is the right model
more often than the “usual” linear regression model, which is the special case where
Σ= σ2I. There is, after all, no reason in general considerations of probability theory
or mathematical modeling to expect that fluctuations around a linear model will be
uncorrelated. How might we nonetheless estimate β?

One approach is to try to make the noise disappear, by transforming the variables.
Suppose we know Σ. (We’ll come back to where such knowledge might come from

6The condition in the while loop is a bit complicated, to ensure that the loop is executed at least once.
Some languages have an until control structure which would simplify this.
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later.) Because Σ is a variance matrix, we know it is square, symmetric, and positive-
definite. This is enough to guarantee7 that there is another square matrix, say s, where
ssT = Σ, as it were s =

p
Σ. I bring this fact up because we can use this to make the

correlations in the noise go away.
Go back to our model equation, and multiply everything from the left by s−1.

s−1Y= s−1Xβ+ s−1ε

This looks like a linear regression of s−1Y on s−1X, with the same coefficients β as
our original regression. However, we have improved the properties of the noise. The
noise is still zero in expectation,

E
�

s−1ε|X
�

= s−10= 0

but the covariance has gone away, and all the noise terms have equal variance:

Var
�

s−1ε|x
�

= s−1Var [ε|x] s−T (21.31)

= s−1Σs−T (21.32)
= s−1ssT s−T (21.33)
= I (21.34)

(This multiplication by s−1 is the equivalent, for random vectors, of dividing a random
variable by its standard deviation, to get something with variance 1.)

To sum up, if we know Σ, we can estimate β by doing an ordinary least squares
regression of s−1Y on s−1X. The estimate is

bβ = ((s−1x)T s−1x)−1(s−1x)T s−1y (21.35)

= (xT s−T s−1x)−1xT s−T s−1y (21.36)

= (xTΣ−1x)−1xTΣ−1y (21.37)

This looks just like our weighted least squares estimate, only with Σ−1 in place of
w.

21.6.1 Generalized Least Squares
This resemblance is no mere coincidence. We can write the WLS problem as that of
minimizing (y−xβ)T w(y−xβ), for a diagonal matrix w. Suppose we try instead to
minimize

(y− xβ)T w(y− xβ)

for a non-diagonal, but still symmetric and positive-definite, matrix w. This is called a
generalized least squares (GLS) problem. Every single step we went through before
is still valid, because none of it rested on w being diagonal, so

bβGLS = (x
T wx)−1xT wy (21.38)

7Here’s one way to do it: invoke the “spectral” or “eigendecomposition” theorem, to write Σ= vλvT ,
where v is the matrix whose columns are the eigenvectors of Σ, and λ is the diagonal matrix of the eigen-
values of Σ. Then if we set s= v

p
λ, we’d have Σ= ssT , as desired.
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What we have just seen is that if we set w = Σ−1, we also get this solution when
we transform the variables so as to de-correlate the noise, and then do ordinary least
squares. This should at least make it plausible that this is a good way to estimate β in
the face of correlated noise.

To go beyond plausibility, refer back to §21.3. At no point in our reasoning did
we actually rely on Var [ε|x] being diagonal. It follows that if we set w=Var [ε|x]−1,
we get the linear, unbiased estimator of minimum variance. If we believe that the
noise is Gaussian, then this is also the maximum likelihood estimator.

21.6.2 Where Do the Covariances Come From?

The soundest way to estimate a covariance would be to repeat the experiment many
times, under identical conditions. This corresponds to using repeated measurements
to estimate variances. It’s simple, it works when we can do it, and there is accordingly
little to say about it. Except: there are few situations where we can do it.

When we wanted to estimate the variance function, we could take all the squared
residuals for values of xi around a given x and use that as an estimate of σ2(x). This
option is not available to us when we are looking at covariances.

If our measurements are spread out over time or space, it’s natural to suppose that
there is more covariance between nearby observations than between remote ones. A
stronger but more delicate assumption is that of stationarity, that the covariance be-
tween an observation taken at time 0 and time h is the same as the covariance between
time t and time t + h, whatever t might be. (And similarly for spatial stationarity.)
Call the covariance in at this lag or separation γ (h). We can estimate it by taking pairs
of observations where the separation is approximately h, and averaging the products
of their residuals.

It is common (though perhaps not wise) to make even stronger assumptions, such
as that the covariance decays exponentially with distance, γ (h) = γ (0)ρh or γ (h) =
γ (0)e−h/τ . When we can believe such assumptions, they let us estimate the parameters
of the covariance function using the sample covariances across all lags. The estimated
covariance function, using all of that data, is much more stable than having many
separate sample covariances, one for each lag. Even if the assumptions are, strictly,
false, the stability that comes from forcing all the covariances to follow a common
model can be desirable, on bias-variance grounds.

21.7 WLS and GLS vs. Specification Errors

When you find that your residuals from an initial model have non-constant variance
or are correlated with each other, there are (at least) two possible explanations. One is
that the fluctuations around the regression line really are heteroskedastic and/or cor-
related. In that case, you should try to model that variance and those correlations, and
use WLS or GLS. The other explanation is that something is wrong with your model.
If there’s an important predictor variable which is just missing from your model, for
example, then its contribution to the response will be part of your residuals. If that
omitted variable is larger in some parts of the data than in others, or if the omitted
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variable has correlations, then that will make your residuals change in magnitude and
be correlated. More subtly, having the wrong functional form for a variable you do
include can produce those effects as well.

21.8 Exercises
1. Imagine we are trying to estimate the mean value of Y from a large population.

We observe n members of the population, with individual i being included in
our sample with a probability proportional to πi . Show that the sample mean
n−1∑n

i=1 yi is not a consistent estimator of E [Y ] unless all the πi are equal.
Show that

�
∑n

i=1 yi/πi

�

/
∑n

i ′=1 1/πi ′ is a consistent estimator of E [Y ].

2. Show that the model of Eq. 21.14 has the log-likelihood given by Eq. 21.15

3. Do the calculus to verify Eq. 21.6.

4. Is wi = 1 a necessary as well as a sufficient condition for Eq. 21.3 and Eq. 21.1
to have the same minimum?

5. §21.2.2 showed that WLS gives better parameter estimates than OLS when there
is heteroskedasticity, and we know and use the variance. Modify the code for
to see which one has better generalization error.
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Chapter 22

Variable Selection

22.1 What Variable Selection Is
“Variable selection” means selecting which variables to include in our model (rather
than some sort of selection which is itself variable). As such, it is a special case of
model selection. People tend to use the phrase “variable selection” when the compet-
ing models differ on which variables should be included, but agree on the mathemat-
ical form that will be used for each variable — e.g., temperature might or might not
be included as a predictor, but there is no question about whether, if it is, we’d use
temperature or temperature2 or log temperature.

Since variable selection is a special case of model selection, and we’ve talked ex-
tensively about model selection already (see especially Chapter 19), this chapter can
be briefer than usual.Note to self: so why not merge

this all into the model-selection
chapter?

22.2 Why Variable Selection Using p-Values Is a Bad
Idea

When we assume the linear, constant-variance, independent-Gaussian-noise model is
completely correct, it is easy to test the hypothesis that any particular coefficient is
zero. The (Wald) test statistic is

β̂i

bse
h

β̂i

i

and, under the null hypothesis that βi = 0, this has a tn−(p+1) distribution, therefore
tending to a z (standard-Gaussian) distribution as n→∞.

It is very, very tempting, and common, to use the p-values which come from this
test to select variables: significant variables get included, insignificant ones do not,
ones with smaller p-values (hence larger test statistics) are higher priorities to include
than ones with smaller test statistics. This pattern of reasoning shows up over and over
again among users of regression, including, I am ashamed to say, not a few statisticians.

372

http://www.stat.cmu.edu/~cshalizi/TALR/


373 22.2. WHY VARIABLE SELECTION USING P -VALUES IS A BAD IDEA

The reasons why this is a bad idea were already gone over in Chapter 13, so, again,
I will be brief. Let us think about what will tend to make the test statistic larger or
smaller, by being more explicit about the denominator:

β̂i
σ̂

q

nÓVar[Xi ]

p

V I Fi

where ÓVar [Xi ] is the sample variance of the i th predictor variable, and V I Fi is that
variables variance-inflation factor (see Chapter 15). What follows from this?

1. Larger coefficients will, all else being equal, have larger test statistics and be
more significant (β̂i in the numerator).

2. Reducing the noise around the regression line will increase all the test statistics,
and make every variable more significant (σ̂ in the denominator).

3. Increasing the sample size will increase all the test statistics, and make every
variable more significant (

p
n in the denominator).

4. More variance in a predictor variable will, all else being equal, increase the test
statistic and make the variable more significant (ÓVar [Xi ] in the denominator).

5. More correlation between Xi and the other predictors will, all else being equal,
decrease the test statistic and make the variable less significant (V I Fi in the
denominator).

The test statistic, and thus the p-value, runs together an estimate of the actual size
of the coefficient with how well we can measure that particular coefficient. This is
exactly the right thing to do if our question is “Can we reliably detect that this coeffi-
cient isn’t exactly zero?” That is a very, very different question from “Is this variable
truly relevant to the response?”, or even from “Does including this variable help us
predict the response?” Utterly trivial variables can show up as having highly signif-
icant coefficients, if the predictor has lots of variance and isn’t very correlated with
the other predictors. Very important (large-coefficient) variables can be insignificant,
when their coefficients can’t be measured precisely with our data. Every variable
whose coefficient isn’t exactly zero will eventually (as n → ∞) have an arbitrarily
large test statistic, and an arbitrarily small p-value1

None of this is even much help in answering the question “Which variables help
us predict the response?”, let alone “Which variables help us explain the response?”

None of this is fixed by using F -tests on groups of coefficients, rather than t -tests
on individual coefficients.

1“Oh my God, it’s full of stars.” — David Bowman, on increasing his sample size to 2001.
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22.3 Cross-Validation Instead

If we want to use our models to make predictions, then what we want to know is
how well the model will predict new data. The Cp statistic and AIC attempt to es-
timate this, using how well the model predicted the old data, plus adjustments based
on theory. Cross-validation estimates how well the model will predict new data by
predicting new data. This is, unsurprisingly, a very good way of estimating how well
the model will predict.

The two main forms of cross-validation are leave-one-out, which we have already
discussed in detail, and k-fold cross-validation, which we have spent less time on in
class but is described in Chapter 19. They each have their strengths and weaknesses
(which is why we have both).

• k-fold CV is fast (the model gets fit only k times, and typically k is 5 or 10);
it is also “consistent for variable selection”, meaning that if one of the models
presented to it contains all the relevant predictors, and only the relevant pre-
dictors, then the probability of picking that right model→ 1 as n →∞. On
the other hand, it tends to give somewhat worse predictions than leave-one-out,
especially when all the models are wrong.

• Leave-one-out can be slow (because the model must be fit n times), except for
linear regression where there is a short-cut formula. LOOCV is in-consistent
for variable selection: even with unlimited amounts of data, it tends to include
more variables than are necessary, though it will tend to include all the relevant
variables. The model it picks tends to have lower prediction errors on new data
than those picked by k-fold CV.

As discussed in Chapter 19, Cp and AIC are best seen as approximations to leave-
one-out, which avoid the step of re-fitting the model, or even of calculating the short-
cut formula (which still involves summing over every data point).

22.4 Stepwise Variable Selection

“Stepwise” or “stagewise” variable selection is a family of methods for adding or re-
moving variables from a model sequentially.

Forward stepwise regression starts with a small model (perhaps just an intercept),
considers all one-variable expansions of the model, and adds the variable which is
best according to some criterion. This criterion might be “lowest p-value”, “high-
est adjusted R2”, “lowest Mallow’s Cp”, “lowest AIC”, “lowest score under cross-
validation”, etc. This process is then repeated, always adding one variable at a time,
until the criterion stops improving. In backwards stepwise regression, we start on the
contrary with the largest model we’re willing ton contemplate, and keep eliminating
variables until we no longer improve. The obvious forward-backward or mixed step-
wise variable selection procedure will contemplating both adding and removing one
variable at each step, and take the best step.
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In a forward-backward algorithm we could easily add one variable, then add or
remove another, and then remove the first variable we’d added. This is because these
stepwise algorithms only look at models which are close (one variable away from)
the variable we started with2 In principle, we could just look at all possible linear
models based on a given set of variables, and compute our criterion (adjusted R2, Cp ,
AIC, LOOCV, etc.) for each one of them; this is called all-subsets variable selection,
because each model corresponds to a subset of the variables. With p variables there
are 2p possible models, so all-subsets regression becomes, literally, exponentially more
time-consuming with more variables; this is the only real justification for the stepwise
procedures.

22.4.1 Stepwise Selection in R

The simplest function for stepwise model selection is the step function, which is
built in to R. It can do forward or backward selection, or both, and you can specify
both the smallest model to consider (so those variables are always included), and the
largest. It can, however, only use AIC or BIC as the selection criteria.

Here’s an example of how it works3, for the real estate data set from homework
84.

real.estate <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/hw/08/real-estate.csv")
# Fit a 'kitchen sink' model But don't try to use the ID numbers as a
# predictor variable!
(realty.lm.all <- lm(Price ~ . - ID, data = real.estate))
##
## Call:
## lm(formula = Price ~ . - ID, data = real.estate)
##
## Coefficients:
## (Intercept) Sqft Bedroom Bathroom
## -2.390e+06 1.075e+02 -9.712e+03 -1.067e+02
## Airconditioning Garage Pool YearBuild
## -1.222e+04 1.732e+04 1.249e+04 1.279e+03
## Quality Lot AdjHighway
## -5.390e+04 1.422e+00 -2.717e+04
step(realty.lm.all, direction = "backward", trace = 0)
##
## Call:
## lm(formula = Price ~ Sqft + Bedroom + Garage + YearBuild + Quality +
## Lot, data = real.estate)
##
## Coefficients:

2As search algorithms, they are “greedy”.
3The trace argument controls how much step prints out as it tries various models. Larger values print

out more information; the default, trace=1, is already a lot. Setting it to zero suppresses this. I urge you
to re-run these examples with trace=1, but I doing so would substantially lengthen these notes.

4But without any attempt at cleaning the data by removing outliers, etc.; this is just to illustrate the
syntax, not as a full-scale data analysis.
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## (Intercept) Sqft Bedroom Garage YearBuild
## -2.233e+06 1.093e+02 -1.007e+04 1.665e+04 1.191e+03
## Quality Lot
## -5.223e+04 1.415e+00

By comparison to the kitchen sink model, this drops bathrooms, air-conditioning,
the pool, and adjacency to highways.

Of course, we could start with a very simple model and expand:

(realty.lm.minimal <- lm(Price ~ 1, data = real.estate))
##
## Call:
## lm(formula = Price ~ 1, data = real.estate)
##
## Coefficients:
## (Intercept)
## 277894
step(realty.lm.minimal, scope = list(upper = realty.lm.all, lower = realty.lm.minimal),

direction = "forward", trace = 0)
##
## Call:
## lm(formula = Price ~ Sqft + Quality + YearBuild + Lot + Garage +
## Bedroom, data = real.estate)
##
## Coefficients:
## (Intercept) Sqft Quality YearBuild Lot
## -2.233e+06 1.093e+02 -5.223e+04 1.191e+03 1.415e+00
## Garage Bedroom
## 1.665e+04 -1.007e+04

This begins with an intercept-only model, and then adds variables. Here giving
a lower limit to the scope is pretty much superfluous, we could just give it an upper
limit, but it doesn’t hurt.

Of course, we can also ask step to consider both adding and subtracting variables:

step(realty.lm.minimal, scope = list(upper = realty.lm.all, lower = realty.lm.minimal),
direction = "both", trace = 0)

##
## Call:
## lm(formula = Price ~ Sqft + Quality + YearBuild + Lot + Garage +
## Bedroom, data = real.estate)
##
## Coefficients:
## (Intercept) Sqft Quality YearBuild Lot
## -2.233e+06 1.093e+02 -5.223e+04 1.191e+03 1.415e+00
## Garage Bedroom
## 1.665e+04 -1.007e+04
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(This just so happens to reach the same answer as only doing forward selection.)
If we want to only consider models which include certain terms, we can do that

through changing the lower limit of the scope:

(realty.lm.comforts <- lm(Price ~ Pool + Airconditioning, data = real.estate))
##
## Call:
## lm(formula = Price ~ Pool + Airconditioning, data = real.estate)
##
## Coefficients:
## (Intercept) Pool Airconditioning
## 188852 64335 101760
step(realty.lm.comforts, scope = list(upper = realty.lm.all, lower = realty.lm.comforts),

direction = "both", trace = 0)
##
## Call:
## lm(formula = Price ~ Pool + Airconditioning + Sqft + Quality +
## YearBuild + Lot + Garage + Bedroom, data = real.estate)
##
## Coefficients:
## (Intercept) Pool Airconditioning Sqft
## -2.346e+06 1.279e+04 -1.176e+04 1.080e+02
## Quality YearBuild Lot Garage
## -5.388e+04 1.256e+03 1.389e+00 1.724e+04
## Bedroom
## -9.756e+03

The step function is a simplified version of the function stepAIC in the MASS
package, which works very similarly but is more flexible. The leaps package contains
an even more flexible function, subsetreg, which tries to determine the lowest-MSE
model at any given number of variables, and then lets you chose how to trade the
number of parameters against MSE.

22.5 Inference after Selection, Again

The standard inferential statistics (like the p-values on individual coefficients) are only
valid if the model is chosen independent of the data being used to calculate them. If
there is any sort of data-dependent model selection, whether stepwise variable selec-
tion or something else, they are no longer valid. This applies even to eliminating
variables because their coefficients are insignificant. If we do go ahead and use the
same data twice, once to pick a model and once to test hypotheses about that model,
we will get confidence intervals which are systematically too narrow, p-values which
are systematically too small, etc. (See Chapter 19 for more discussion, and an example
of how doing model selection on pure noise can lead to apparently highly-significant
results.)

The easy cure, as discussed in Chapter 19, is to split the data in half at random,
and use one part to do model selection and the other half to do inference for your
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selected model. Again, there is nothing about variable selection which makes this
any different.

22.6 Further Reading
In general, all the references for Chapter 19 are relevant again.

For a vivid example of just how badly misleading selecting variables based on sta-
tistical significance can be, see Ward et al. (2010).
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Chapter 23

Trees

This lecture was based entirely on the corresponding chapter of Shalizi (forthcoming).
I should either write a new chapter, or omit.
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Chapter 24

The Bootstrap I

24.1 Statistical Inference, Assuming Gaussian Noise
Consider our usual linear model

Y= xβ+ ε

For a lot of results, it’s enough to assume that

E [ε|x] = 0

and
Var [ε|x] = σ2I

These assumptions are enough to show the consistency of the least squares estimate

bβ= (xT x)−1xT y

The reason is that these assumptions let us write

bβ=β+(xT x)−1xT ε ,

i.e., they let us write the estimate as “true value plus weighted sum of the noise terms”.
Just as with simple linear regression, we can use this trick to get at a lot of properties
of bβ: we can show that it’s unbiased; that it has variance matrix σ2(xT x)−1; that,
from the previous two properties, bβ→β as n→∞. But these assumptions are not
enough to get useful hypothesis tests or confidence intervals.

For those, we have, so far, assumed that

ε∼N (0,σ2I)

independent of x. This Gaussian noise assumption is important, because it gives us
the distribution of bβ:

bβ∼N (β,σ2(xT x)−1)
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And the reason for that is that if ε is Gaussian, then (xT x)−1xT ε is a linear transfor-
mation of a Gaussian, which is also Gaussian. From knowing that bβ is a Gaussian,
everything we’ve done by way of statistical inference follows: the hypothesis tests,
the confidence intervals, the prediction intervals, the F tests for multiple coefficients,
etc. Without Gaussian noise, few of the formulas you memorized for the exam are,
strictly, correct.

Looking at Q−Q plots of our residuals is only important because we want them to
be Gaussian. The only justification for ever contemplating a Box-Cox transformation
is that we’d like the noise to be Gaussian. We really have little reason to ever expect
Gaussian noise; it’s just very useful when it happens.

24.1.1 Other Parametric Distributions of the Noise
Suppose we didn’t know think that ε was Gaussian, but still believed it was indepen-
dently and identically distributed (IID). We might, for instance, think it had a “double
exponential” (or “Laplacian”) distribution, with probability density function

f (ε)∝ e−|ε|/L ,

or was a scaled t distribution with a certain number ν of degrees of freedom,

f (ε)∝
�

1+
(x/s)2

ν

�−(ν+1)/2

Both of these have heavier tails than the Gaussian distribution, so they can be very
useful in practice.

If we think that the deterministic part of the model should still be linear, we still
use least squares to get the estimate bβ, and it’s still true that

bβ=β+(xT x)−1xT ε (24.1)

But a linear combination of double-exponential variables is just a mess, as is a linear
combination of t -distributions. A family of distributions where adding two random
variables gives another distribution in the same family is called stable. The Gaussian
distributions are stable, but most others aren’t, and hence trying to work out an exact
sampling theory for most other noise distributions, like the one we have for Gaussian
noise, is pretty hopeless.

24.1.2 Asymptotic Gaussianity
Still, let’s think about the noisy part of Eq. 24.1 some more. It’s

(xT x)−1xT ε

Let’s bundle up (xT x)−1xT as a matrix, call it k. Then

β̂i =βi +
n
∑

j=1

ki jε j (24.2)
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If all of the ki j were equal, we’d understand what was going on. After all, the central
limit theorem says that when ε j are IID with mean 0 and variance σ2, their average
tends towards a Gaussian distribution:

n
∑

j=1

1
n
ε j  N (0,σ2/n)

This is true whatever the distribution of the ε j might be, provided, to repeat, that
they’re IID and they have mean 0 and variance 0<σ2 <∞. If instead of multiplying
each ε j by 1/n we multiplied them by some other constant, we’d change the variance
but still tend towards a Gaussian:

n
∑

j=1

kε j  N (0,σ2k2n)

On this basis, we might hope that, as n→∞,

n
∑

j=1

ki jε j  N (0,σ2
∑

j

k2
i j )

The difficulty is that the terms in the sum, while still statistically independent, are no
longer identically distributed. There are central limit theorems which apply to inde-
pendent, non-identically distributed random variables, with the basic result being that
if none of the ki j is too big compared to the others, the sum is indeed asymptotically
Gaussian1.

If the matrix x doesn’t give too much influence to any particular observations,
then these central limit theorems usually apply, and we can say that

bβ N (β,σ2(xT x)−1) (24.3)

as n→∞, if ε is non-Gaussian but IID. From there, of course, all the usual formulas
would also come to hold as n→∞.

How close to infinity does n have to be? You may have been told a bit of folklore
which says that the central limit theorem dominates the behavior of a sample mean
once n > 30. This is badly wrong even for averages, let alone more complicated
functions like regression estimates. There is really no upper limit on how big n might
have to be before Eq. 24.3 becomes a good approximation.

24.1.3 Summing Up on Gaussian Noise

To sum up, we have two situations:

1. We can assume that the noise is exactly Gaussian and independent, and have a
nice body of theory for statistical inference, but we hardly ever see that happen.

1If you want to follow this up, this is the “Lindeberg” central limit theorem.
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24.2. THE SAMPLING DISTRIBUTION AS THE SOURCE OF ALL

KNOWLEDGE ABOUT UNCERTAINTY

2. We can assume that the noise is just independent, and recover the Gaussian
theory asymptotically as n → ∞, but we don’t know what to do when n is
finite, or even how big n has to get.

Clearly, this is an unsatisfying situation.

24.2 The Sampling Distribution as the Source of All
Knowledge about Uncertainty

Our data comes from some distribution, let’s say P . We would like to know some
property of this distribution, say θ. (We may think of this as a regression coefficient,
or the whole coefficient vector, or E [Y |X = x] for a particular x, etc.) Since we do
not know P , we can’t just calculate θ. What we can do, however, is draw a sample D
from P , and then we calculate some statistic or other, T (D). This serves as our esti-
mate of θ. (The same goes for hypothesis tests, etc.) Because the data D are random,
so is T . In fact, the distribution of T , the sampling distribution of our statistic, is set
by the distribution of D . If we knew the sampling distribution, we’d know basically
everything there is to know for statistical inference:

• The bias would be E [T ]−θ

• The standard error would
p

Var [T ]

• Hypothesis tests would come from quantiles of T

• Confidence intervals would come from inverting hypothesis tests

Unfortunately,

• Interesting statistics T are very complicated functions of the data, so their sam-
pling distribution is complicated even if P is simple;

• Realistic distributions P are usually also complicated; and

• We don’t know P anyway.

Put these together, and we should be surprised we can ever get nice, useful formulas
for the sampling distribution of any statistic, rather than disappointed that we can’t
make it happen for regression without Gaussian noise.

The reason we can work out the sampling distributions for regression with Gaus-
sian noise is that we (or rather, the ancestors) carefully adjusted the assumptions about
the noise, the model, and the statistic just so, and everything came together. (E.g., we
needed both a linear estimator and a noise distribution which was stable under linear
combinations.) What could we do if we can’t, or won’t, fine-tune all the assumptions?
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24.3 The Monte Carlo Principle
What is sometimes called the Monte Carlo principle is a general strategy for figuring
out the behavior of complicated functions of complicated distributions: it says to
simulate it and see what happens2. If we have samples D1, D2, . . . Db from P , and we
want to know the expectation of T (D), we can approximate that as

E [T (D)]≈ 1
b

b
∑

i=1

T (Di )≡ T

If we want to know the variance, we can approximate that by

Var [T (D)]≈ 1
b

b
∑

i=1

(T (Di )−T )2

If we want to know the q th quantile of T , we can order the T (Di ) from smallest
to largest, and take the q b value as our estimate. If we want an interval which will
contain T with probability 1− α, we order the T (Di ) from smallest to largest, and
exclude those with rank from 1 to bα/2 on one side, and from b (1− α/2) to b on
the other. And so on and so forth. All we need to do to get at any property of any
function of the distribution P is to be able to draw from, or simulate, P .

One limitation of this for statistics is that, of course, we don’t know the true P .

24.4 The Bootstrap Principle

The bootstrap principle is that if we have good approximation P̂ to P , we can sim-
ulate from P̂ , and get a good approximation to the sampling distribution we want.
That is, we apply the Monte Carlo principle to a distribution (P̂ ) which we hope is
close to the distribution we really care about (P ).

More specifically, bootstrapping is always an algorithm, which goes, abstractly, as
follows:

1. Observe data D , calculate estimate T (D) and get an approximation P̂ to P

2. Repeat b times:

(a) Simulate surrogate data D̃ from P̂ .

(b) Calculate T̃ = T (D̃), just as those D̃ were real data

3. Approximate the distribution of T under P with the distribution of T̃ under
P̂

2The name, and to some extent the technique, originated with the physicists designing first the atomic
and then the hydrogen bomb. Those designs required calculating the expectations of many elaborate func-
tions of complex distributions (Serber, 1992). Rather than trying to actually do the integrals involved, they
just developed efficient ways to sample from the distributions, and computed sample averages (Metropolis
et al., 1953). The spirit of “try it, and see what happens” went deep at Los Alamos. . .
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385 24.5. BOOTSTRAPS FOR REGRESSION

There are a lot of variants and refinements, some of which we will cover as this
goes on, but in the meanwhile, we really need to be clearer about what “a good ap-
proximation P̂ to P” might mean.

The two basic options are model-based bootstraps and re-sampling bootstraps3.
In a model-based bootstrap, our approximation P̂ is a full model of the data gener-
ating process, which we’ve estimated; we then simulate that model. In a re-sampling
bootstrap, we treat the sample we observed as our best estimate at the distribution
of the whole population, and so we draw a new sample from our original sample —
we re-sample it. (If you like, in re-sampling the empirical distribution is our model.)
Both of these ideas can be made a bit more concrete in the context of regression.

24.5 Bootstraps for Regression
Any regression model can be written as

Y = m(X )+ ε

with the caveat that the noise term εmight not have expectation zero4 or be indepen-
dent of X . Specifying the true regression function m and the distribution of the noise
ε, including its dependence on X , gives us the data-generating distribution P .

Depending on what we are willing to believe about the true regression function
m and the noise ε, we have different ways of coming up with approximations P̂ to P ,
and different ways of simulating from those approximations.

24.5.1 The Linear, Gaussian Bootstrap

The simplest case we could have is where we think all of our usual modeling assump-
tions hold, so that m(x) = xβ and ε ∼ N (0,σ2), IID and independent of x. Then
simulating from the estimated model is very easy.

# Simulate from a previously fitted linear model with Gaussian noise Inputs:
# model; data frame Outputs: new data frame with response values replaced
# Presumes: all necessary variables are in data frame
sim.lm.gauss <- function(mdl, df) {

# What's the response variable called? Should be the first variable in the
# vector of all variables
resp.var <- all.vars(formula(mdl))[1]
# What value should we expect for the response?
expect.resp <- predict(mdl, newdata = df)
# How big is the noise?
sigma2.mle <- mean(residuals(mdl)^2)
# Add appropriately-sized Gaussian noise to the response
response <- expect.resp + rnorm(nrow(df), 0, sqrt(sigma2.mle))

3Often called these “parametric” and “non-parametric”, respectively, but that’s not quite as transparent,
I think, as the other names.

4For instance, if the m(X ) is biased.

21:34 Monday 6th May, 2024



24.5. BOOTSTRAPS FOR REGRESSION 386

df[, resp.var] <- response # Won't change df outside this function!
return(df)

}

What we are doing in this function is creating a (very small!) imaginary or alterna-
tive world, the simulation world or bootstrap world, where we know that the model
Y = xβ̂+ ε, ε ∼ N (0, σ̂2) is exactly true. If β̂ ≈ β and σ̂2 ≈ σ2, and ε is Gaussian,
then what we see in the simulation world is (close to) representative of what would
happen in the real world if we could repeat our experiments many times. The ad-
vantage of the simulation world is that it’s easy to re-run the simulation many times,
whereas repeating the experiment may be expensive, difficult, unethical or flat-out
impossible.

Of course, we don’t just want to get a new data set, from an new simulation-world
experiment; we want to know what we’d have concluded from that experiment. This
is also easy.

# Re-estimate a linear model on a new data set Inputs: old model; data frame
# Output: new lm object Presumes: data frame contains columns with appropriate
# names
re.lm <- function(mdl, df) {

return(lm(formula(mdl), data = df))
}

Now if we want to get at the sampling distribution of, say, the estimated coefficient
vector bβ, we just simulate it. We’ll need some particular initial estimate to work with,
so let’s try to predict how much a cat’s heart will weigh, from the cat’s total body
weight and its sex:

library(MASS)
data(cats)
cats.lm <- lm(Hwt ~ Sex * Bwt, data = cats)

We now simulate from our cats.lm model many times (10000 is a conveniently
small number), re-estimate the coefficients each time, and store the re-estimates in an
array:

beta.boots <- replicate(10000, coefficients(re.lm(cats.lm, sim.lm.gauss(cats.lm,
cats))))

beta.boots is now a 4,10000 array, with one row for each coefficient, and 10000
columns, because we replicated the simulation 10000 times. Each column is a separate
visit to the bootstrap world, where the true value of β is fixed to our initial estimate
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bβ. Symbolically, it looks like













β̃01 β̃02 . . . β̃0b

β̃11 β̃12 . . . β̃1b
...

...
...

...
β̃p1 β̃p2 . . . β̃p b













That being the case, we can get the bias:

rowMeans(beta.boots) - coefficients(cats.lm)
## (Intercept) SexM Bwt SexM:Bwt
## 0.02916253 -0.02528605 -0.01176551 0.01050829

Each row contains all of our samples for one coefficient estimate, so the mean
along each row is our (approximate) expected value of the estimate; we subtract the
truth from that to get the bias.

We can also get the standard errors:

apply(beta.boots, 1, sd)
## (Intercept) SexM Bwt SexM:Bwt
## 1.8262271 2.0630580 0.7678846 0.8361266

There is no rowSDs function, but the utility (or meta-) function apply lets us take
any array (the first argument) and apply any function (the third argument) to either
all its rows (middle argument 1) or all its columns (middle argument 2), or every entry
in the array (middle argument c(1,2)). So the incantation above takes the standard
deviation of each row.

To get a 1−α confidence interval, we (conceptually) take all the values we got for
each coefficient, sort them, and discard the lower and upperα/2 tails. The appropriate
incantation for 95% intervals is

apply(beta.boots, 1, quantile, prob = c(0.05/2, 1 - 0.05/2))
## (Intercept) SexM Bwt SexM:Bwt
## 2.5% -0.5114128 -8.2469745 1.076132 0.06191073
## 97.5% 6.7126991 -0.1744782 4.107776 3.33522125

Now, none of this is actually necessary if we assume the truth is linear-and-Gaussian.
We know that the bias is zero; we know that the standard deviations come from
σ̂2(xT x)−1; specifically, for the cats, they’re

coefficients(summary(cats.lm))[, "Std. Error"]
## (Intercept) SexM Bwt SexM:Bwt
## 1.8428394 2.0617552 0.7759022 0.8373255

We also know how to calculate the confidence intervals:
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24.5. BOOTSTRAPS FOR REGRESSION 388

confint(cats.lm, level = 0.95)
## 2.5 % 97.5 %
## (Intercept) -0.6620801 6.62470490
## SexM -8.2416012 -0.08919944
## Bwt 1.1024137 4.17041438
## SexM:Bwt 0.0208271 3.33170228

The fact that these numbers are very close to what we got by simulation tells us
two things:

1. Simulation can work to replace intricate probabilistic mathematics with straight-
forward (even simple-minded) computations.

2. Simulation is completely redundant in the linear-Gaussian case, where we, and
R, know all the formulas.

Simulation comes into its own when the formulas aren’t available.

24.5.2 Linear, Non-Gaussian Noise
Suppose that we think the residuals follow some particular non-Gaussian distribution,
which we know up to some set of parameters, e.g., a t distribution. (We might have
reached this conviction either because of some actual scientific theory, or by staring
at the plot of the residuals.) If we know how to estimate the parameters of this noise
distribution, and we can simulate from it, then we are in business.

I will illustrate this idea by using a t distribution for the noise in the model of
cat’s hearts. This is not an especially great model for this data, but it’s only meant as
an illustration5. We’ll need to estimate the parameters of the t distribution; this job
is already done for us by the function fitdistr in the MASS library.

# Simulate from a previously fitted linear model with t-distributed noise
# Inputs: model; data frame Outputs: new data frame with response values
# replaced Presumes: all necessary variables are in data frame
sim.lm.t <- function(mdl, df) {

# What's the response variable called?
resp.var <- all.vars(formula(mdl))[1]
# What value should we expect for the response?
expect.resp <- predict(mdl, newdata = df)
# Estimate the t parameters, using MASS::fitdistr
stopifnot(require(MASS)) # Make sure the library's available
# After the example in help(fitdistr)
mydt <- function(x, s, df) {

dt(x/s, df)/s
}
t.params <- fitdistr(residuals(cats.lm), mydt, start = list(s = 1, df = 50),

lower = c(0, 1))$estimate
# Add appropriately-sized t-noise to the response

5 t -distributed noise is a much better idea in areas like finance.
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389 24.5. BOOTSTRAPS FOR REGRESSION

response <- expect.resp + t.params["s"] * rt(nrow(df), df = t.params["df"])
df[, resp.var] <- response # Won't change df outside this function
return(df)

}

Having changed the function we use to simulate, absolutely nothing else needs to
change:

beta.boots2 <- replicate(10000, coefficients(re.lm(cats.lm, sim.lm.t(cats.lm, cats))))

apply(beta.boots2, 1, quantile, prob = c(0.05/2, 1 - 0.05/2))
## (Intercept) SexM Bwt SexM:Bwt
## 2.5% -0.6079851 -8.1955570 1.155966 0.02749805
## 97.5% 6.4952558 -0.1147882 4.162899 3.27903236

24.5.3 Resampling Residuals

Suppose we are willing to believe that

Y = xβ+ ε

and even that ε is independent of x, but not that we have any good idea about what
the distribution of ε is. What are we to do?

Well, it will still be true that our residuals will give us an estimate of what the
noise ε looks like — of what the true noise distribution is. We can use that. When
we generate new data, we’ll take x bβ+ ε̃, where ε̃ is our simulated noise. Every time
we need a value for ε̃, we’ll go to our vector of residuals and draw a random value
from it — we will re-sample the residuals, with replacement. Here’s how it works
computationally:

# Simulate from a previously fitted linear model, resampling residuals Inputs:
# model; data frame Outputs: new data frame with response values replaced
# Presumes: all necessary variables are in data frame
sim.lm.residuals <- function(mdl, df) {

# What's the response variable called?
resp.var <- all.vars(formula(mdl))[1]
# What value should we expect for the response?
expect.resp <- predict(mdl, newdata = df)
# Resample the residuals
new.noise <- sample(residuals(mdl), size = length(expect.resp), replace = TRUE)
# Add new noise to the expected response
response <- expect.resp + new.noise
df[, resp.var] <- response # Won't change df outside this function
return(df)

}
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24.5. BOOTSTRAPS FOR REGRESSION 390

When (as is usually the case) we want the re-sample to be exactly as large as the
original sample, we can define a little convenience function:

resample <- function(x) {
sample(x, size = length(x), replace = TRUE)

}

(Note that, as written, this only works for vectors.) Let’s see what kind of things
this does to a short vector:

head(residuals(cats.lm))
## 1 2 3 4 5 6
## -1.2541405 -0.8541405 1.2458595 -1.3177819 -1.2177819 -0.9177819
resample(head(residuals(cats.lm)))
## 2 5 3 5 4 5
## -0.8541405 -1.2177819 1.2458595 -1.2177819 -1.3177819 -1.2177819
resample(head(residuals(cats.lm)))
## 3 1 2 1 3 3
## 1.2458595 -1.2541405 -0.8541405 -1.2541405 1.2458595 1.2458595

Every time we run this function, we get different results; some samples get picked
more than once, some don’t get picked at all. When we look at the over-all distribu-
tion of each re-sample, it’s somewhat less diverse than the sample we took it from, just
as the sample is less diverse than the population, but it has the same over-all shape.

par(mfrow = c(1, 3))
hist(residuals(cats.lm), main = "", xlab = "Residuals")
hist(resample(residuals(cats.lm)), main = "", xlab = "Residuals")
hist(resample(residuals(cats.lm)), main = "", xlab = "Residuals")
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With this understood, once we have our simulator for resampling residuals, we
have to make absolutely no changes to how we use it:

beta.boots3 <- replicate(10000, coefficients(re.lm(cats.lm, sim.lm.residuals(cats.lm,
cats))))

apply(beta.boots3, 1, quantile, prob = c(0.05/2, 1 - 0.05/2))
## (Intercept) SexM Bwt SexM:Bwt
## 2.5% -0.6181038 -8.1326972 1.162809 0.02503376
## 97.5% 6.5230192 -0.1336846 4.160795 3.28090168

24.5.4 Resampling Cases
The last bootstrap we’ll look at, here, is what’s variously called the case (or cases)
bootstrap, or the pairs bootstrap, or, more rarely, the rows bootstrap. The idea here
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is that our data consists of cases, each of which contains the predictor variables and
the response variables, and we’ll re-sample those whole points. The other names arise
from thinking of each data point as a pair (x, y), or as a row in a data frame. We’re
using as our approximation P̂ to the data-generating distribution P the joint empirical
distribution of the predictors and the response.

The simulator is now sheer elegance in its simplicity:

# Re-sample the rows of a data frame Inputs: the data frame Output: a new data
# frame, contain a random sample, with replacement, of rows from the input
resample.data.frame <- function(df) {

df[resample(1:nrow(df)), ]
}

Notice that we don’t use the estimated model here at all in the simulation — the
procedure is quite agnostic as to whether our model is good or bad.

Having the simulator in hand, we can use it just like the others, and do inference
using the simulation just like the others:

beta.boots4 <- replicate(10000, coefficients(re.lm(cats.lm, resample.data.frame(cats))))

apply(beta.boots4, 1, quantile, prob = c(0.05/2, 1 - 0.05/2))
## (Intercept) SexM Bwt SexM:Bwt
## 2.5% 0.1610193 -7.8819191 1.450448 0.2299905
## 97.5% 5.8309568 -0.5529635 3.839225 3.1292420

Resampling cases makes only very weak assumptions about the data-generating
distribution, that all data points ((x, y) pairs) are independent and identically dis-
tributed. It does not assume that any linear regression is correct6, or that the noise is
independent of x, or has constant variance.

24.6 Error in the Bootstrap, and Which Bootstrap When?
The bootstrap, remember, is a way of calculating the sampling distribution of T , un-
der the true data-generating distribution P . There are two main sources of error in
this calculation:

Simulation We’d like to see the full distribution of our statistic T under P̂ , but instead we
only run b simulations under P̂ .

Approximation We’re simulating from P̂ rather than P .

Simulation error (or “Monte Carlo error”) is easy to grasp, and in principle easy
to control: the more simulations we run, the better. As b →∞, the simulation goes

6If the linear model is wrong, then we’re doing statistical inference on the coefficients in the best linear
approximation to the true regression function m(x).
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to zero. The only reason to ever restrict b is that each simulation does have some
cost, in time if nothing else. In fact, for (most) inferential statistics, we can expect
the simulation error to be O(1/

p
b ), so if we keep increasing b we will experience

diminishing returns, but never negative returns.
Approximation error comes from the fact that P̂ is not P . This can itself be bro-

ken into two parts: estimation error (roughly, variance), and systematic distortion
(roughly, bias). Estimation error arises because we only have a finite amount of data,
say n observations, with which to estimate P̂ . Even if we resample cases, and so use
the empirical distribution as our P̂ , we still only have n samples from the full popula-
tion, which isn’t all of it. Generally, estimation error will shrink to zero as n→∞,
but it may shrink at different rates for different approximations. Systematic distor-
tion is basically the approximation error which would be left even if we had infinite
data — it comes from using a linear-Gaussian simulation when reality isn’t linear or
Gaussian, or resampling residuals when the noise is really heteroskedastic.

There is a trade-off when it comes to the two kinds of approximation error. The
more we constrain P̂ in advance of seeing any data, the stronger the assumption we
put on it, the less we have to estimate, and so the smaller the estimation error. But, the
true P doesn’t obey those constraints, if our assumptions are wrong, the bigger the
systematic distortion we’re introducing. If our assumptions are right, using a more
constrained P̂ is pure advantage — basically, we’re not wasting data figuring out that
the constraints hold — but if those assumptions are wrong, they can easily make things
worse.

Which bootstrap to use, then, depends on how strongly you trust your modeling
assumptions.

• If you believe that the regression is linear and you know the distribution of the
noise, use the fully model-based bootstraps.

• If you believe that the regression is linear and the noise is independent of x, use
resampling of residuals.

• If you are unwilling to believe that the noise is independent of x, and/or that
the regression is truly linear, use resampling of cases.

(We’ll cover the situation where you don’t think the truth is linear but you are, some-
how, convinced the noise is Gaussian when we go over fitting nonlinear models in
402.)

How do we tell? Well, in the first situation, all of the diagnostics we’ve been
doing should look good, including the appropriate Q-Q plot. In the second situation,
while the residuals should have the same distribution for all x, we don’t care what
that distribution is. Therefore when we plot residuals against predictors and fitted
values, everything should look random, but not necessarily Gaussian, and the Q-Q
plot need show no particular shape. In the third situation, by resampling cases we’re
still assuming independence across data points, so we should try to check that, but
that’s about all that we do need to check.
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24.7 Further Reading
The bootstrap was introduced, by that name, by Efron (1979), in a remarkably acces-
sible paper which is still worth reading. Related ideas, such as the “jackknife” (omit
one data point, re-estimate, and look at the variance over all such re-estimates) go back
at least to the 1940s, though they weren’t systematically developed, or applied, until
computing power got cheap enough to make something like the bootstrap feasible. A
good systematic textbook is Davison and Hinkley (1997).

For the validity of case resampling even when all the usual linear-Gaussian assump-
tions fail, see, e.g., Buja et al. (2014). (That paper also shows how this bootstrap does
the same job as the “robust standard errors” of econometrics.)

Next time, we will look at some of the techniques for reducing approximation er-
ror in bootstrap calculations, bootstrap prediction intervals, and what sorts of things
the bootstrap can’t do; all of these are also covered in Davison and Hinkley (1997).
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Chapter 25

The Bootstrap, II

Note to self: currently a bit of
a stub; merge this into previous
chapter?

25.1 Improving the Bootstrap: Pivoting
In Chapter 24, I said there were three causes of error when we use the bootstrap to do
statistical inference, e.g., to calculate a confidence interval. These were (1) using only
a finite number of simulations; (2) simulating from an approximate distribution P̂
which systematically distorts the true, data-generating distribution P ; and (3) having
only a finite amount of data with which to estimate P̂ .

Increasing the number of simulations we run is simple (in principle), but does
nothing about using a P̂ which is not the same as the true P . We can’t do much about
the systematic error issue either, unless we find better models. But there are tricks
for addressing the third issue — of trying to bring P̂ closer to P at a given amount of
data. One of the most important of these is called pivoting, and it involves changing,
slightly, what we look at in the simulations.

We have a certain estimate of our quantity of interest from the data, θ̂; this is
a random variable with a distribution governed by P . When we run the bootstrap,
we get estimates on the bootstrap data, θ̃, with a distribution governed by P̂ . So far,
we’ve been saying that the distribution of θ̃ should be approximately the same as the
distribution of θ̂. In symbols,

D(θ̂)≈D(θ̃)

As the number of actual observations grows, these two distributions should indeed
converge. The key observation to pivoting is that, at the same n, the distribution of
estimation errors is often closer than the distribution of estimates:

D(θ̂−θ0)≈D(θ̃− θ̂)

In words: the distribution of bootstrap estimates around our real-data estimate is a
good approximation to the distribution of estimates around the truth. In fact, it’s
usually better than using the distribution of bootstrap values to approximate the dis-
tribution of estimates.

395

http://www.stat.cmu.edu/~cshalizi/TALR/


25.2. IMPROVING THE BOOTSTRAP: STUDENTIZING AND THE
DOUBLE BOOTSTRAP 396

Confidence Intervals This doesn’t change how we get a bootstrap standard error,
or a bias. But it does change our bootstrap confidence intervals. Let’s say the quantiles
of θ̃ are qα/2 and q1−α/2. In our first crude bootstrap1, we’d use the range [qα/2, q1−α/2]
as our 1−α confidence interval for θ. Here’s how we come up with a better interval
using pivoting:

1−α = P̂ (qα/2 ≤ θ̃≤ q1−α/2) (25.1)

= P (qα/2− θ̂≤ θ̃− θ̂≤ q1−α/2− θ̂) (25.2)

≈ P (qα/2− θ̂≤ θ̂−θ0 ≤ q1−α/2− θ̂) (25.3)

= P (qα/2− 2θ̂≤−θ0 ≤ q1−α/2− 2θ̂) (25.4)

= P (2θ̂− q1−α/2 ≤ θ0 ≤ 2θ̂− qα/2) (25.5)

= P (θ̂+(θ̂)− q1−α/2)≤ θ0 ≤ θ̂+(θ̂− qα/2)) (25.6)

The third line is where we use the bootstrap principle, and pivoting: the distribution
of θ̃ around θ̂ should be close to the distribution of θ̂ around θ0. The rest is just book-
keeping, where in the last line I’ve re-written it so it looks more like the confidence
intervals we’re used to seeing for means or for regression coefficients.

25.2 Improving the Bootstrap: Studentizing and the
Double Bootstrap

25.3 A Hint of Theory

25.3.1 Why the Bootstrap Works

25.3.2 When the Bootstrap Fails

1Often called the “quantile” or “percentile” bootstrap.

21:34 Monday 6th May, 2024



21:34 Monday 6th May, 2024
Copyright ©Cosma Rohilla Shalizi; do not distribute without permission

updates at http://www.stat.cmu.edu/~cshalizi/TALR/

Appendix A

Problem Sets

Weekly problem sets were an essential part of the class. Add them!
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Appendix B

TODO

• Fix URLs for data sets to something not so class-specific

• Improve cross-chapter cross-references (to individual sections or even pages, not
just the chapter as a whole)

• Add lasso material to chapter on variable selection

• Number all equations

• Fix collisions between captions and footers

B.1 Outline to Be Revised To
This is just an aid to my own mem-
ory — CRS 1. Linear Least Squares with One Predictor

(a) Optimal Linear Prediction

(b) Estimation by Least Squares

(c) Diagnostics

(d) Outliers and Influential Points

(e) Parametric Inference: Bootstrap and Asymptotics

(f) Predictive Inference

(g) Model Selection

(h) Smoothing Splines

(i) Gaussian Noise Theory

2. Linear Least Squares with More Than One Predictor

(a) Linear Models in Matrix Form

(b) Estimation by Least Squares

(c) Polynomial Terms, Categorical Predictors, Interactions
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(d) Diagnostics

(e) Collinearity

(f) Influential Points and Outliers

(g) Parametric Inference: Bootstrap and Asymptotics

(h) Predictive Inference

(i) Variable Selection

(j) Linear Prediction and Estimation for Spatio-Temporal Data (Forecasting,
Kriging, Filtering)

(k) Additive Models

(l) Gaussian Noise Theory

3. Beyond Ordinary Least Squares

(a) Weighted Least Squares and Heteroskedasticity

(b) Generalized Least Squares and Correlated Noise

(c) Ridge Regression

(d) The Lasso

(e) Generalized Linear Models

(f) Regression Trees

4. Let the Dead Bury the Dead

(a) What F and Wald Tests Actually Test

(b) R2: Distraction or Nuisance?

(c) Transforming for Gaussianity

(d) ANOVA Tables
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