
Homework 6

36-462/662, Data Mining, Fall 2019

Due at 10 pm on Wednesday, 9 October 2019

Agenda: Hammering home the importance of not evaluating
predictive models on testing data.

1. Online questions (10) are online and due on Sunday at 10 pm.

2. Optimism If we use data (X1, Y1), . . . (Xn, Yn) to learn a predictive model
µ̂, the “optimism” of our method is defined as how much worse that model
would do no new data with the same values of X but independent Y s. That
is, for each i, Y ′i has the same distribution as Yi (conditional on Xi), but
is independent of Yi, and the optimism (for regression) is
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In this problem, we’ll see how to build a simple, unbiased estimator of the
optimism.

(a) (5) Show that the optimism (as defined above) is equal to
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(b) (5) Show that E [Y ′i − µ̂(Xi)] = E [Yi − µ̂(Xi)].

(c) (5) Show that the optimism is equal to

1

n

n∑
i=1

Var [Y ′i − µ̂(Xi)]−Var [Yi − µ̂(Xi)] (3)

(d) (5) Show that

Var [Yi − µ̂(Xi)] = Var [Yi] + Var [µ̂(Xi)]− 2Cov [Yi, µ̂(Xi)] (4)

(e) (5) Show that

Var [Y ′i − µ̂(Xi)] = Var [Yi] + Var [µ̂(Xi)] (5)
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(f) (5) Show that the optimism equals

2

n

n∑
i=1

Cov [Yi, µ̂(Xi)] (6)

(g) (5) From this point, assume that our predictor is a linear smoother,
so that µ̂(Xi) =

∑n
j=1 w(Xi, Xj)Yj , or just

∑n
j=1 wijYj for short.

Find an expression for Cov [Yi, µ̂(Xi)] in terms of the matrix w and
the variance matrix of the Y ’s.

(h) (5) From this point, assume that Yi = µ(Xi) + εi, with E [εi|Xi] =
0, Var [εi|Xi] = σ2, and Cov [εi, εj ] = 0 when i 6= j. Show that
Cov [Yi, µ̂(Xi)] = σ2wii. (It’s possible to do this part without doing
the previous one, but if you did the previous one right, your general
formula should reduce to this under the extra assumptions.)

(i) (5) Show that, under all these assumptions, the optimism is

2σ2

n
trw (7)

(j) (5) What is the optimism of a linear regression model with p coef-
ficients? Answer in terms of σ2, n and p (and numerical constants
such as 2 or π). (Hint: Homework 2.) Does the optimism → 0 as
n→∞ with p fixed??

(k) (5) What is the optimism of a k-nearest-neighbor regression? Answer
in terms of σ2, n and k (and numerical constants). Does the optimism
→ 0 as n→∞ with k fixed?

3. Leave-one-out In class, we saw a short-cut formula for leave-one-out cross-
validation for linear smoothers, where µ̂(X) =

∑n
j=1 w(x, xj)yj , namely
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)2

(8)

(a) (5) Explain why wii = 1/k for k-nearest-neighbor regression.

(b) (5) Explain why the short-cut formula simplifies to multiplying the

in-sample error by
(

k
k−1

)2
.

(Is there something funny about all this when k = 1?)

4. (a) (5) Explain what the following code does.

sim.poly <- function(n, degree) {
x <- runif(n, min=-2, max=2)

poly.x <- poly(x, degree=degree, raw=TRUE)

alternating.signs <- rep(c(-1,1),length.out=degree)
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sum.poly <- poly.x %*% alternating.signs

y <- sum.poly+rnorm(n,0,0.1)

return(data.frame(x=x,y=y))

}

(You might need to look up the poly() function.)

(b) (2) Use the code from the previous part to generate 3 data frames,
where Y is a quadratic function of X plus noise. The data frames
should contain 100, 1000 and 10000 rows. Check that they have the
right dimensions, and that each one shows the expected quadratic
relationship between X and Y .

(c) (8) For each of the three data sets, do k-nearest-neighbor regression
with k running from 1 to 100. Plot both the in-sample error and the
generalization error as estimated by leave-one-out cross-validation.
What k is the best (by LOOCV) at each sample size? Why does it
change with n? Plot the predictions you get from the selected k —
are they getting visibly better?

Rubric (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical
and other mechanical errors, and easy to follow. Questions which ask for a
plot or table are answered with both the figure itself and the command (or
commands) use to make the plot. Plots are carefully labeled, with informative
and legible titles, axis labels, and (if called for) sub-titles and legends; they are
placed near the text of the corresponding problem. All quantitative and math-
ematical claims are supported by appropriate derivations, included in the text,
or calculations in code. Numerical results are reported to appropriate precision.
Code is properly integrated with a tool like R Markdown or knitr, and both the
knitted file and the source file are submitted. The code is indented, commented,
and uses meaningful names. All code is relevant; there are no dangling or use-
less commands. All parts of all problems are answered with actual coherent
sentences, and raw computer code or output are only shown when explicitly
asked for.

Extra credit (5): Both LOOCV and the optimism formula give ways of
estimating the generalization error. When are they compatible, that is, when
do they give (approximately) the same estimate of the generalization error?
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