
Nonlinear Dimensionality Reduction II: Diffusion

Maps

36-462/662, Data Mining

23 September 2019

Contents

1 Introduction 1

2 Diffusion-Map Coordinates 3
2.1 Fun with Transition Matrices . 5
2.2 Multiple Scales . 8
2.3 Choosing q . 9

3 What to Do with the Diffusion Map Once You Have It 9
3.1 Spectral Clustering . 9
3.2 Asymmetry . 10

4 The Kernel Trick 11

A From Random Walks to the Diffusion Equation 14

1 Introduction

Let’s re-cap what we did with locally linear embedding. We start p-dimensional
data (~x1, . . . ~xn in vector form, stacked into a data-frame x), which we suspect
are on, or are near, a q-dimensional manifold embedded in the feature space. As
an exercise in least squares, we got weights wij saying how much of data-point
~xj we needed to use to reconstruct ~xi. Since

∑
j wij = 1, we can think of wij as

saying how similar i is to j. Next, we asked for the new vectors ~yi which were
best reconstructed by those weights, i.e., which minimized

n∑
i=1

∥∥∥∥∥∥~yi −
n∑

j=1

wij~yj

∥∥∥∥∥∥
2

(1)

under the constraint that n−1yTy = I. We turned this into an eigenvalue
problem, that of finding the eigenvectors of

M = (I−w)T (I−w) (2)

1

It was nice to do this, because finding eigenvectors is something our computers
are very good at. These eigenvectors were then the new coordinates of our data
points on the low-dimensional manifold.

To introduce diffusion maps, we need to change tack a little from the ge-
ometric/optimization approach we’ve been taking, though we’ll come back to
it. Notice that when we do LLE, we identify a neighborhood of k points for
each point in our data set. We can imagine drawing a graph or network which
connects a point to its neighbors. We can also attach weights to the edges in
this graph, since we get them from our w matrix. If the weights are all non-
negative, we can use them to define a random walk on the data, and use that
random walk to define coordinates.1

Let’s be a little more formal, and more general. Suppose that we have a
function K which takes two data-points ~x1, ~x2 are inputs, and gives us a non-
negative real number as an output:

K(~x1, ~x2) ≥ 0 (3)

Further suppose that it’s symmetric

K(~x2, ~x1) = K(~x1, ~x2) (4)

We’ll form a matrix K for our data, where

Kij = K(~xi, ~xj) (5)

and as a last requirement, insist that the matrix be non-negative definite, i.e.,
for any vector ~v

~vTK~v ≥ 0 (6)

As we saw in the homework, this last is equivalent to requiring that all the
eigenvalues of K be ≥ 0.

Tradition says that we should call K the kernel matrix or Gram matrix
corresponding to the kernel2 function K. The point of this matrix is, once
again, to give us a weighted graph, which tells us which points are tied to
which other points, and how similar those neighbors are — it’s going to play
much the same role in the generalized case that w did for LLE.3 The advantage
of abstracting away from the least-squares procedure of LLE to “some kernel
function or other” is that it lets us deal with cases where least-squares does
not apply — because it’s not the right metric, because some of the data are
categorical, etc.; I will return to the “kernel trick” below, and we’ll come back
to it again later in the course.

1We didn’t require the weights to be non-negative, but they often will be spontaneously,
and it’s not, generally, a hard requirement to impose. See Saul and Roweis (2003), if you want
the details.

2A name whose origins are lost in the mists of 19th century algebra.
3If you are getting suspicious because w is not symmetric, even if we force is entries to be

non-negative, good; but notice that what ultimately shows up in finding the coordinates is
wT + w −wTw, which is symmetric.

2

Given this K, we need one more step to make a random walk on the data
graph, which is to turn it into a stochastic transition matrix, where each row
adds up to one:

D = diag(rowSums(K)) (7)

that is, D is the diagonal matrix whose ith entry is the sum of the ith row of
K.4 Now

A ≡ D−1K (8)

defines the same graph as K, but it’s properly row-normalized. It’s the transition
matrix for a Markov chain — specifically or a random walk on the graph of
the data. The random walk is biased towards making transitions that take it
between similar points. If we look at the behavior of the random walk, then, it
should tell us about the geometry of the data (how can we move around the data
without ever making a big, discontinuous step?), and about groups of similar
points (i.e., what are the clusters?). We’ll take these two in order.

2 Diffusion-Map Coordinates

Let’s say that we want to assign a single coordinate to every point on the data,
which we’ll write as f , with f(i) being the coordinate for i. Because there are
n data points, instead of treating f as a function, we can also treat it as an
n × 1 matrix, which for simplicity I’ll also write f . (Here, as with PCA and
with LLE, starting with a single coordinate, the q = 1 case, is just to simplify
the initial algebra.) Let’s say that we want to minimize

Φ(f) ≡
∑
i,j

Aij(fi − fj)2 (9)

This should force the coordinates of points which are very similar (Aij ≈ 1)
to be close to each other, but let the coordinates of deeply dissimilar points
(Aij ≈ 0) vary freely.5 Now that we know what to do with quadratic forms,
let’s try and turn this into one.∑

i,j

Aij(fi − fj)2 =
∑
ij

Aij(f
2
i − 2fifj + f2j) (10)

=
∑
i

f2i
∑
j

Aij − 2
∑
i

fi
∑
j

Aijfj +
∑
i

∑
j

Aijf
2
j(11)

=
∑
i

f2i − 2
∑
i

fi
∑
j

Aijfj +
∑
j

f2j (12)

= 2fT f − 2fTAf (13)

4If you don’t like my mix of R and matrix notation, you try writing it out in proper matrix
form.

5This is not quite the same as the minimization problem for LLE.

3

using the facts that Aij = Aji and
∑

j Aij = 1. So minimizing Φ is the same as
minimizing

fT (I−A)f ≡ fTLf (14)

where of course L ≡ I − A. The matrix L is called the Laplacian of the
graph. Now we impose the constraint that fT f = 1, to avoid the uninteresting
minimum at f = 0, and as before we get an eigenvalue problem:

Lf = λf (15)

is the solution. Substituting back in to the expression for Φ, we see that the
value of Φ is 2λ, so we want the bottom eigenvectors, as we did with LLE.

For exactly that same reasons that w1 = 1 for LLE, we know that A1 = 1
— i.e., the vector of all 1s is an eigenvector of A with eigenvalue 1. It turns out
(see below) that this is the largest eigenvalue. Now, every eigenvector of A is
also an eigenvector of L, but the eigenvalues change:

Lf = λf (16)

(I−A)f = λf (17)

f −Af = λf (18)

Af = (1− λ)f = µf (19)

where of course µ = 1 − λ. Thus, 1 is an eigenvector of the Laplacian with
eigenvalue 0. Again as with LLE, we discard this solution as useless.

The next-to-bottom eigenvector of L has to be orthogonal to 1, because all
the eigenvectors are orthogonal. This means it must have both negative and
positive entries (otherwise 1T f =

∑
i fi > 0). We will see later how to use the

signs of the entries in this eigenvector. What matters for right now is that it
gives us a non-trivial coordinate, in which similar data points are close to each
other.

If we want q coordinates, then (yet again as with LLE) we just take the
bottom q+1 eigenvectors6 f (n), f (n−1), . . . f (n−q) of L, and their eigenvalues 0 =
λn, λn−1, . . . λn−q. We discard the bottom one as uninteresting. The diffusion
map Ψ uses the remaining eigenvectors and eigenvalues to find a point in Rq

corresponding to each of the original data points. Specifically, the image of the
point v is

Ψ(v) =
(
µ1f

(n−1)
v , µ2f

(n−2)
v , . . . µqf

(n−q)
)

(20)

where I’ve abbreviated 1− λn−i as µi.
The coordinates we get from the diffusion map are related to, but not iden-

tical with, the coordinates we would get from LLE.7 They former are, however,
in a reasonable sense the optimal coordinates to represent the original matrix
of similarities K (Lee and Wasserman, 2010).

By now you may be asking what any of this has to do with “diffusion”.

6Eigenvectors are conventionally numbered starting from 1 at the top.
7In fact, in some cases, it can be shown (Belkin and Niyogi, 2003, §5) that the matrix in

the LLE minimization problem is related to the Laplacian, because (I−w)T (I−w) ≈ 1
2
L2.

Since the powers of L have the same eigenvectors as L, when this holds the coordinates we
get from the diffusion map are approximately the same as the LLE coordinates.

4

2.1 Fun with Transition Matrices

The matrix A is a stochastic transition matrix, so the entries in each row are
non-negative and add up to one. Suppose we have a function f on the graph;
since there are only n data points, we can represent it as an n×1 matrix, which
for simplicity I’ll also write as f . What’s Af? Well, it’s another n× 1 matrix:

(Af)i =

n∑
j=1

Aijfj (21)

In words, the ith entry of Af is a weighted average of the values of f at i’s
neighbors; the weight of j is the likelihood of going from i to j. Suppose I write
Zt for the node occupied by the random walk at time t. Then

E [f(Zt+1)|Zt = i] = (Af)i (22)

If f encodes a function, then Af encodes the expected value of that function
after one step of the random walk, A2f is the expected function after two steps,
and so forth. So, acting to the right, A forecasts what the value of a fixed
function is going to be later.

This is inside-out from (or, a the mathematicians say, “adjoint to”) asking
where the random walk will be later. As you know, if ρ is a distribution over
the states of a Markov chain, written as a 1× n matrix, then

ρA (23)

is the distribution of the Markov chain at the next time step. So from the left
A updates distributions, and from the right A forecasts functions. Without
getting in to the more profound aspects of this duality8, what we care about
here is how this can help us understand the data.

We know (if only because I asserted it during the lecture on page-rank) that
A has a left eigenvector with eigenvalue 1:

ρ(1)A = ρ(1) (24)

Moreover, every entry of ρ(1) is > 0, and it is the top (or “dominant”) eigen-
vector, the one with the largest eigenvalue. This means that all the other
eigenvectors must have both positive and negative entries.

What happens if we let the walk evolve for many steps undisturbed? Er-
godicity happens, that’s what. Let’s say that the let eigenvectors of A are
ρ(1), ρ(2), . . . ρ(n), with corresponding eigenvalues 1 = µ1 > µ2 > . . . µn > 0.
Since th eigenvectors are orthogonal, and there are n of them, they span the
space — any arbitrary vector can be written as a linear combination of eigen-
vectors. So start with any initial distribution ρ we like; it’s the case that

ρ =

n∑
i=1

aiρ
(i) (25)

8It’s the difference between the Schrödinger and Heisenberg pictures of quantum mechanics.

5

How does ρ evolve after t steps of the random walk?

ρAt =

(
n∑

i=1

aiρ
(i)

)
At (26)

=

n∑
i=1

aiρ
(i)At (27)

=

n∑
i=1

aiρ
(i)µiA

t−1 (28)

=

n∑
i=1

aiρ
(i)µt

i (29)

Since all of the µi < 1, except for µ1 = 1, as we step through the random walk,
the distribution comes closer and closer to ρ(i), the invariant distribution. This
is ergodicity.

I bring this up not only because it’s a cool bit of math, but also because
it’s relevant to diffusion maps. The last few paragraphs have been all about left
eigenvectors, but of course there is a close relationship between them and the
right eigenvectors, which are the coordinates of the diffusion map. Recall what
happens when you transpose a matrix product:

(ρA)T = AT ρT (30)

If ρ should happen to be a left eigenvector of A, then ρT is a right eigenvector of
AT , with the same eigenvalue. Since we have arranged for our matrix A to be
symmetric, A = AT , the left and right eigenvectors are the same. So we know
the right eigenvalues of A — they’re the same as the left eigenvalues, starting
at 1 and counting down from there towards a lowest value µn > 0. I could write
the right eigenvectors as (ρ(i))T , but that’s ugly and awkward; let’s call them
f (i) instead.

We’ve already seen that A1 = 1, so we’ve identified the top eigenvector:
f (i) = 1. In other words, if a function is constant, then its expected value
after one step is also constant. Averaging a constant just gives you back the
constant. What happens to other functions, especially if we are trying to predict
multiple steps ahead (i.e., averaging repeatedly)? We’ll pull the expansion-in-

6

eigenvectors trick again.

Atf = At

(
n∑

i=1

aif
(i)

)
(31)

=

n∑
i=1

aiA
tf (i) (32)

=

n∑
i=1

aiµiA
t−1f (i) (33)

=

n∑
i=1

aiµ
t
if

(i) (34)

→ ai1 (35)

since all the eigenvalues are ≤ 1. In other words, projected far enough into the
future, every function looks constant. Any irregularities in the initial function
f get averaged away.

This is where diffusion enters into it. In physics, diffusion refers to the
process of passive drift of substances9 away from regions of high concentration
and towards regions of low concentration. This is accomplished by particles
of the substance taking unbiased random walks. If two adjacent regions of
space start with different concentrations of the substance — say it’s higher in
region 1 than in region 2 — then, even though the individual random walks are
unbiased, there will be more random walkers going from region 1 to region 2
than going in the opposite direction; which will tend to reduce then difference
in concentrations.

More specifically, if ρ(~r, t) is the density of the substance at the point ~r at
the time t, the diffusion equation is

∂ρ

∂t
= D

(
∂2ρ

∂x2
+
∂2ρ

∂y2
+
∂2ρ

∂z2

)
= D∇2ρ (36)

where the last equation (implicitly) defines the Laplacian ∇2, which is some-
times also written as ∆, and D is the diffusion constant.10 Remember that
second derivatives are positive at minima and negative at maxima; this is say-
ing that the substance, whose density is ρ, will move away from regions of high
concentration and towards ones of low concentration, until it’s evenly distributed
everywhere.11 On the one hand, it’s almost Biblical12; on the other hand, it’s

9Or heat; which for many purposes acts roughly like a subtle fluid.
10See the appendix.
11Actually, precisely linear gradients are also left alone by the diffusion equation (why?).

This reflects a difference between the finite-dimensional operator L for graphs, and the infinite-
dimensional operator ∇2 for Euclidean space. (If this comment makes no sense, don’t worry;
it’s mostly intended to reassure anyone who may have taken operator theory and started
reading these notes by mistake.)

12Isaiah 40:4, “Every valley shall be exalted, and every mountain and hill shall be laid low”.

7

the mathematical expression of what we mean when in ordinary language we
say “it oozes” (Haldane, 1985, p. 33).

Without going into all the ramifications of the diffusion equation (a subject
that fills volumes), the important thing to notice about it is that ∇2f says
how much f changes per unit time. It takes the very simple form it does
because Euclidean space is isotropic — every direction is the same as every
other direction — and flat, uncurved. Now consider a diffusion process which
is confined to some manifold — say some substance diffusing over the surface
of a sphere. The flow can’t be given by ∇2, since that describes inequalities of
concentration in the embedding space, and we don’t care about (for instance)
the fact that the concentration is > 0 on the manifold and = 0 off it — we
can’t diffuse of the manifold. Rather, each manifold M has its own Laplacian
operator, ∇2

M, which takes into account its curvature and anisotropy.13 In
fact, the connection also goes the other way: knowing a manifold’s Laplacian
basically tells you its shape, because it tells you how the manifold curves.

This is where we connect back, at last, to the random walk on the graph.
∇2f says how rapidly f changes through diffusion in ordinary Euclidean space.
∇2
Mf says how rapidly f changes through diffusion on a manifold M. Lf says

how much f changes through one step of the random walk on the graph. Suppose
we build the graph by uniformly sampling points from M; as we sample more
and more densely, our graph looks more and more like a discrete approximation
to the continuous manifold, and so L has to encode the same geometry as ∇2

M.14

So L is estimating the natural or intrinsic “shape” of the data. This remains
true even if the data don’t come from uniform sampling on a manifold, but some
other distribution.

2.2 Multiple Scales

If A is the transition matrix for a Markov chain, then so is Am, for any integer
m — it’s just taking m steps at a time, rather than one. It’s easy to show (see
exercises) that Am has the same eigenvectors as A, but different eigenvalues
— specifically, the eigenvalues of A, all also raised to the power m. We can
therefore look at diffusion maps defined not by one step of the random walk
but by m steps. The advantage of doing so is that it tends to reduce the
influence of small-scale local noise. Computationally, this is because it shrinks
the small eigenvalues rapidly, meaning those coordinates become less influential.

13You might want to try to work out what the Laplacian is for a sphere, say in spherical
coordinates.

14The exact sense in which this is true is fairly subtle. On the one hand, L is an n × n
matrix, so multiplying by it transforms vectors in Rn into other vectors in Rn. On the other
hand, ∇2

M takes functions to functions — points in RM to RM. Similarly, L represents an
amount of change in one time step, while ∇2

M represents a rate of change per unit time.
Roughly speaking, we need to integrate ∇2

M over the duration of a time-step, call it h. This

gives us an operator Lh defined through Lhf = eh∇
2
Mf . If we evaluate Lhf only at points on

the graph, we should have Lhf ≈ Lf . See Grimmett and Stirzaker (1992) for an introduction
on how discrete-time Markov chains relate to continuous-time Markov processes, and Lee and
Wasserman (2010) for a precise statement of what’s going on in the present case.

8

Stochastically, it’s because, by ergodicity, where the random walk is after m
steps depends less on its starting position than where it is after 1 step. Of course
if m is very large, all the points blur into each other (again by ergodicity), so
m is best seen as a control setting.

2.3 Choosing q

It can be shown (through a very complicated argument; Lee and Wasserman
2010) that how accurately the diffusion map reconstructs the underlying geom-
etry depends on the ratio ∑q

i=1 µi∑n
j=1 µj

(37)

where the µ are the eigenvalues of A.15 This suggests that a practical rule for
choosing q is to fix a value for this ratio, and use the smallest q which achieves it.
This is the default implemented in the diffuse function in the CRAN package
diffusionMap.

3 What to Do with the Diffusion Map Once You
Have It

First, everything you might do with ordinary vector-valued data can be done
with the diffusion coordinates. You can do similarity search, you can look for
clusters (for instance, k-means; there’s a function to do this nicely in diffusionMap),
classification, etc. We’ll be looking at regression after the midterm, and you can
use the diffusion-map coordinates as the input variables in a regression.

3.1 Spectral Clustering

One cute application of diffusion maps is to clustering. Remember that only the
top eigenvector of A is all positive; all the other eigenvectors have both positive
and negative entries. What does the difference in signs mean?

To be concrete, let’s think about ρ(2), the next-to-top eigenvector. Every
point gets either a positive or a negative sign in the eigenvector. Suppose we
want to start with a distribution which is concentrated solely on the points with
positive sign. We can decompose any such distribution into the eigenvectors:

ρ = ρ(1) + aρ(2) +

n∑
j=2

bjρ
(j) (38)

but now a will be large and positive, enhancing the probability of the positive
points and lowering that of the negative ones, and the bj will be small. (The bj

15More exactly, the accuracy depends on the ratio of the sums of the population quantities
of which these eigenvalues are estimates, and n in the denominator has to go to infinity. I
told you it was complicated.

9

might even manage to be zero.) After one time step, this will become

ρA = ρ(1) + aµ2ρ
(2) +

n∑
j=2

bjµjρ
(j) (39)

. . . which looks rather like ρ: while it’s closer to being uniform than ρ was, since
the eigenvalues are all < 1, it’s still concentrated on the positive points of ρ(2),
since the eigenvalues are decreasing and the bj are small. In other words, if
we start with a distribution concentrated on the positive points of ρ(2), it will
tend to stay there, though diffusion will disperse it eventually. Things would
work exactly the same if we concentrated the initial probability on the negative
points — the only difference would be that a < 0.

What about the other eigenvectors? Well, we could make a similar argument,
but, because eigenvalues are smaller, initial concentrations on the positive points
will diffuse away more quickly — how much more quickly will depend on the
ratios of the eigenvalues. If we had to split the graph into two parts with the
minimum diffusion between them, we’d split it into the points with positive and
negative coordinates in ρ(2).

How does this relate to clustering? Well, suppose the data fall into two or
more clusters, within which all the points are much more similar to each other
than they are to outsiders. We would like to call these clusters. We could then
re-arrange the kernel matrix K so it’s block-diagonal, or nearly so. Then A
will also be nearly block-diagonal. Thus a random walk which starts inside one
of the blocks will tend to stay inside the block for a long time. This means
that all the points in a block should have the same sign in at least one of the
eigenvectors. The signs of the eigenvectors, in other words, act like indicator
functions, or linear combinations of indicator functions, for the clusters.

In the most basic form of spectral clustering, we first divide the data into
two clusters by the signs of entries in ρ(2). Having done that, we can further
sub-divide the clusters by the signs of ρ(3) and so forth. This is a top-down
(divisive) hierarchical clustering. At some point it’s no longer worth it to keep
splitting, and we should instead use the remaining eigenvectors as coordinates
within each cluster.

3.2 Asymmetry

We required the matrix K we started from to be symmetric; consequently the
transition matrix A was too. How much of what we’ve done depends on sym-
metry, and how much would apply to any Markov chain over the data?

Most of it carries through, actually. It’s no longer the case that the left and
right eigenvectors are the same, but the left and right eigenvalues are. And it’s
still the case that the top right eigenvector is 1, that all of the others have both
positive and negative signs, etc. (Also, the non-dominant left eigenvectors all
have both positive and negative signs.) It’s also the case that the signs of the
entries in the non-dominant eigenvectors correspond to clusters.

10

4 The Kernel Trick

Everything that went before rested on having a kernel matrix K, derived from a
kernel function. Where that function came from, or what kind of data it took as
arguments, was irrelevant. The data could be Euclidean vectors and the kernel
the ordinary inner product, but nothing required that. So long as the kernel
function was mathematically OK, nothing else mattered. This is a very powerful
idea in data mining: we can split our problem into (a) finding an algorithm (for
prediction or clustering or whatever) that works in terms of kernels, and (b)
finding a kernel function for our representation. Then we can recycle algorithms
across problems. We will return to kernel methods repeatedly, but I want to
close with a small illustration of how they can be powerful, something often
called “the kernel trick”.16

Suppose that we have data points x1, x2, . . . xn (which may be vectors or
something else). Each point is represented by certain features, but we don’t
think those are really the right ones for our problem. Instead, we have q different
functions ψ1, ψ2, . . . ψq, and we really think those are the appropriate features.
So we’d like to work with the vectors

Ψ(x) = (ψ1(x), ψ2(x), . . . ψq(x)) (40)

Let us say that K(xi, xj) is the inner product of Ψ(xi) and Ψ(xj):

K(xi, xj) =

q∑
k=1

ψk(xi)ψk(xj) (41)

Since this is an inner product, it’s got all the properties we need for a kernel
function — symmetry, forms a positive-definite matrix, etc. So if I can express
my problem in terms of inner products of the transformed features Ψ, I can also
write it in terms of the kernel function K on the original features. In particular,
if I can find a formula for the right-hand side of Eq. 41, then I never have to
calculate the functions ψ at all. In fact, I can even let q go to infinity!

A concrete and very useful example is the Gaussian kernel:

Kh(xi, xj) =
1√

2πh2
exp−(xi − xj)2/2h2 (42)

(Sometimes you see this without the normalizing factor.) The features here are
actually all the powers of xi and xj , though they’re not all equally weighted.
This is in fact what people typically use with diffusion maps, rather than the
Euclidean inner product, because the Gaussian distribution is preserved under
diffusion.

16For much more about kernel methods in data mining, see Shawe-Taylor and Cristianini
(2004).

11

References

Belkin, Mikhail and Partha Niyogi (2003). “Laplacian Eigenmaps for Di-
mensionality Reduction and Data Representation.” Neural Computation,
15: 1373–1396. URL http://www.cse.ohio-state.edu/~mbelkin/papers/

LEM_NC_03.pdf. doi:10.1162/089976603321780317.

Grimmett, G. R. and D. R. Stirzaker (1992). Probability and Random Processes.
Oxford: Oxford University Press, 2nd edn.

Haldane, J. B. S. (1985). On Being the Right Size, and Other Essays. Oxford:
Oxford University Press. Edited and introduced by John Maynard Smith.

Lee, Ann B. and Larry Wasserman (2010). “Spectral Connectivity Analysis.”
Journal of the American Statistical Association, 105: 1241–1255. URL http:

//arxiv.org/abs/0811.0121. doi:10.1198/jasa.2010.tm09754.

Saul, Lawrence K. and Sam T. Roweis (2003). “Think Globally, Fit Locally:
Supervised Learning of Low Dimensional Manifolds.” Journal of Machine
Learning Research, 4: 119–155. URL http://jmlr.csail.mit.edu/papers/

v4/saul03a.html.

Sethna, James P. (2006). Statistical Mechanics: Entropy, Order Parameters,
and Complexity . Oxford: Oxford University Press. URL http://pages.

physics.cornell.edu/sethna/StatMech/.

Shawe-Taylor, John and Nello Cristianini (2004). Kernel Methods for Pattern
Analysis. Cambridge, England: Cambridge University Press.

12

http://www.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
http://www.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
http://dx.doi.org/10.1162/089976603321780317
http://arxiv.org/abs/0811.0121
http://arxiv.org/abs/0811.0121
http://dx.doi.org/10.1198/jasa.2010.tm09754
http://jmlr.csail.mit.edu/papers/v4/saul03a.html
http://jmlr.csail.mit.edu/papers/v4/saul03a.html
http://pages.physics.cornell.edu/sethna/StatMech/
http://pages.physics.cornell.edu/sethna/StatMech/

Exercises

1. Let B be any n × n matrix. Show that if ~v is an eigenvector of B, then
it is also an eigenvector of B2, and of any power of B. Conclude that B
and B2 have the same eigenvectors. (Hint: how many eigenvectors does
each matrix have?) What happens to the eigenvalues?

13

A From Random Walks to the Diffusion Equa-
tion

Think of a one-dimensional space with coordinate x, and a concentration ρ(x, t)
of particles of some substance at the point x at time t. Divide the axis into
little intervals of width h, small enough that ρ is approximately constant over
each interval. Also, let’s divide time up into intervals of duration τ , again very
small. Fix a point x at time t. How does the concentration change?

Assume that the particles each take independent random walks, and that
the time it takes them to make one jump of the talk is much less than τ ; also
that the step-size is much less than h. The expected change in position of any
one particle over the time-period τ is zero, and the variance ∝ τ . Thus

hρ(x, t+τ) ≈ hρ(x, t)− τD
h2

hρ(x, t)+
1

2

τD

h2
hρ(x−h, t)+

1

2

τD

h2
hρ(x+h, t) (43)

hρ is the number of particles in the interval of length h around x (because ρ
is roughly constant over the interval). The left-hand side is the new number
of particles in that interval. The first term on the right hand side is the old
number. The second is the number of particles which jumped out of the interval
— this will shrink as τ → 0, because there’s less time for them to jump. In fact,
since the variance of a random walk’s position grows ∝ t, this number really
depends on τ/h2 — D is a proportionality constant. The third and forth terms
count particles that jump into the interval from adjacent intervals.

ρ(x, t+ τ)− ρ(x, t) ≈ τD

h2
ρ(x, t) +

1

2

τD

h2
ρ(x− h, t) +

1

2

τD

h2
ρ(x+ h, t)

ρ(x, t+ τ)− ρ(x, t)

τ
≈ D

2

(
(ρ(x− h, t)− ρ(x, t)) + (ρ(x+ h, t)− ρ(x, t))

h2

)
→ ∂ρ

∂t
=

D

2

∂2ρ

∂x2

letting τ and h shrink to zero.
Since D is just a proportionality constant, re-define it to absorb the factor

of 1/2. This gives the one-dimensional diffusion equation, and the argument for
the three-dimensional version is entirely parallel, only with more book-keeping.

Of course, the idea that the particles of some substance all take independent
random walks at discrete time intervals is a fable. We can pass to continuous
time by making the durations and the step-sizes of the random walk smaller
and smaller. The limit is a continuous stochastic process called Brownian
motion (after Robert Brown, who discovered it experimentally in 1827) or the
Wiener process (after Norbert Wiener, who worked out all the mathematical
details in 1922). That the particles move independently of each other is a bigger
assumption. It’s a reasonable approximation when they are not too highly
concentrated — say molecules of perfume diffusing through the air of a room,
rather than the motion of the air molecules themselves. Chapter 2 of Sethna
(2006) is a good place to start.

14

	Introduction
	Diffusion-Map Coordinates
	Fun with Transition Matrices
	Multiple Scales
	Choosing q

	What to Do with the Diffusion Map Once You Have It
	Spectral Clustering
	Asymmetry

	The Kernel Trick
	From Random Walks to the Diffusion Equation

