Finding Informative Features

36-462/662: Data Mining, Fall 2019
Lectures 15 and 16 — 21 and 23 October 2019
READINGS: David P. Feldman, “Introduction to Information Theory”, chapter

1 (http://hornacek.coa.edu/dave/Tutorial/)
Principles of Data Mining, sections 10.1, 10.2, 10.6 and 10.8

Contents
[1__Entropy and Information| 2
1.1 xample: How Much Do Words Tell Us About Topics?[. 4
12 Finding Informative Features| 8
13__Feature Interactions and Feature Selectionl 11
3.1 Entropy tor Multiple Variables| 11
[3.2 _Information in Multiple Variables|. 12
3.2.1 Example Calculation] 12
B3 Conditional Tnformaftion and Tnferaction] 13
18.3. Interactionl 13
.32 The Chain Rulel 13
4 Feature Selection with Mutual Information (Once More with |
Feeling)| 14
4.1 Example for the Tvmes Corpus| 15
ETT Codd. 15
B2 Resultd . . o oo oo oo e e 20
B Suffiq STatish [the Tk ron Botil n 23

Everything we have learned how to do so far — similarity searching, nearest-
neighbor and prototype classification, multidimensional scaling — relies on our
having a vector of features or attributes for each object in data set. (The
dimensionality of vector space equals the number of features.) The success of
our procedures depends on our choosing good features, but I've said very little
about how to do this. In part this is because designing good representations
inevitably depends on domain knowledge. However, once we’ve picked a set of
features, they’re not all necessarily equally useful, and there are some tools for
quantifying that.

http://hornacek.coa.edu/dave/Tutorial/

The basic idea, remember, is that the features are the aspects of the data
which show up in our representation. However, they’re not what we really
care about, which is rather something we don’t, or can’t, directly represent,
for instance the class of the object (is it a story about art or about music? a
picture of a flower or a tiger?). We use the observable features to make a guess
(formally, an inference) about the unobservable thing, like the class. Good
features are ones which let us make better guesses — ones which reduce our
uncertainty about the unobserved class.

Good features are therefore informative, discriminative or uncertainty-
reducing. This means that they need to differ across the different classes, at
least statistically. I said before that the number of occurrences of the word “the”
in an English document isn’t a useful feature, because it occurs about as often
in all kinds of text. This means that looking at that count leaves us exactly as
uncertain about which class of document we’ve seen as we were before. Similarly,
the word “cystine” is going to be equally rare whether the topic is art or music,
so it’s also uninformative. On the other hand, the word “rhythm” is going to
be more common in stories about music than in ones about art, so counting its
occurrences s going to reduce our uncertainty. The important thing is that the
distribution of the feature differ across the classes.

1 Entropy and Information

Information theory is one way of trying to make precise these ideas about un-
certainty, discrimination, and reduction in uncertainty. (Information theory has
many other uses, and is at once one of the great intellectual achievements of the
twentieth century and a key technology of the world around us. But we’ll just
look at this aspect.) X is some feature of the data in our representation, and x
is a particular value of the feature. How uncertain are we about X7 Well, one
way to measure this is the entropy of X:

H[X]=-) Pr(X =x)log, Pr(X =) (1)

The entropy, in bits, equals the average number of yes-or-no questions we’d
have to ask to figure out the value of X. (This is also the number of bits of
computer memory needed to store the value of X.) If there are n possible
values for X, and they are all equally likely, then our uncertainty is maximal,
and H[X] = log, n, the maximum possible value. If X can take only one value,
we have no uncertainty, and H[X] = 0.

Similarly, our uncertainty about the class C, in the absence of any other
information, is just the entropy of C:

H[C]= - Pr(C=c)log,Pr(C =c) (2)

Now suppose we observe the value of the feature X. This will, in general, change

S
—
@ _|
IS

—

2 9o |

a o

=

)

9]

=

c

Ll
<
o
N
IS

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Entropy of a binary variable as a function of the probability of (either)
class value. Note that it is symmetric around p = 1/2, where it is maximal.

our distribution for C| since we can use Bayes’s Rule:

Pr(C=c¢,X=2) Pr(X=2/C=c)

Pr(C=clX =x)= Pr(X=z) Pr(X=ua)

Pr(C=c) (3)

Pr (X = z) tells us the frequency of the value x is over the whole population.
Pr(X = z|C = ¢) tells us the frequency of that value is when the class is c. If
the two frequencies are not equal, we should change our estimate of the class,
making it larger if that feature is more common in ¢, and making it smaller if
that feature is rarer. Generally, our uncertainty about C' is going to change,
and be given by the conditional entropy:

H[C|X =a] ==Y Pr(C=c|X =z)log, Pr(C = ¢|X = z) (4)

The difference in entropies, H[C|—H[C|X = z], is how much our uncertainty
about C has changed, conditional on seeing X = x. This change in uncertainty
is realized information:

1[C; X = 2] = H[C] — HIC|X = 1] (5)

Notice that the realized information can be negative. For a simple example,
suppose that C' is “it will rain today”, and that it normally rains only one day
out of seven. Then H[C] = 0.59 bits. If however we look up and see clouds (X =
cloudy), and we know it rains on half of the cloudy days, H[C|X = cloudy] = 1
bit, so our uncertainty has increased by 0.41 bits.

We can also look at the expected information a feature gives us about the
class:

I[C; X] = H[C] - H[C|X] = H[C] - Y Pr(X =) H[C|X =] (6)

The expected information is never negative. In fact, it’s not hard to show that
the only way it can even be zero is if X and C are statistically independent
— if the distribution of X is the same for all classes c,

Pr(X|C =c¢) =Pr(X) (7)

It’s also called the mutual information, because it turns out that H[C] —
H[|C|X] = H[X] — H[X|C]. (You might want to try to prove this to yourself,
using Bayes’s rule and the definitions.)

1.1 Example: How Much Do Words Tell Us About Top-
ics?

Let’s look at this for the documents from homework 1. I've made the bag-of-
words vectors into a data frame (as in that homework), with all the art stories
coming before the music stories, and saved it into a data frame called nyt . frame
athttp://www.stat.cmu.edu/~cshalizi/dm/19/lectures/15/nyt.frame.csvl
It will be convenient to add the labels themselves as an extra column in the data
frame:

nyt.frame <- read.csv("http://wuw.stat.cmu.edu/ cshalizi/dm/19/lectures/15/nyt.frame.csv")
dim(nyt.frame)

[1] 102 4431

class.labels <- c(rep("art", 57), rep("music", 45))

nyt.frame <- data.frame(class.labels = as.factor(class.labels), nyt.frame)

dim(nyt.frame)

[1] 102 4432

(Remember that factor is R’s data type for categorical variables.)

C will be the class label, so its two possible values are “art” and “music”. For
our feature X, we will use whether or not a document contains the word “paint”,
i.e., whether the “paint” component of the bag-of-words vector is positive or

http://www.stat.cmu.edu/~cshalizi/dm/19/lectures/15/nyt.frame.csv

not; X = 1 means the word is present, X = 0 that it’s absentEl We can do the
counting by hand, and get

x

c “paint” not “paint”
art 12 45
music 0 45

Let’s calculate some entropies. We don’t want to do this by hand, so let’s write
a function, entropy, to do so (Example .

Calculate the entropy of a vector of counts or proportions Inputs: Vectd
of numbers Output: Entropy (in bits)
entropy <- function(p) {
Assumes: p is a numeric vector
if (sum(p) == 0) {
return(0) # Case shows up when calculating conditional
entropies
}
p <- p/sum(p) # Normalize so it sums to 1
p <- plp > 0] # Discard zero entries (because 0 log 0 = 0)
H <- -sum(p * log(p, base = 2))
return(H)

Code Example 1: The entropy function.

Notice that we can either give the entropy function a vector of probabilities,
or a vector of counts, which it will normalize to probabilities

entropy(c(0.5, 0.5))

[1] 1
entropy(c(1, 1))
[1] 1
entropy(c(45, 45))
[1] 1

There are 57 art stories and 45 music stories, so:

entropy(c(57, 45))
[1] 0.9899928

In other words, H[C] = 0.99. Of course in general we don’t want to put
in the numbers like that; this is where the class.labels column of the data
frame is handy:

1X is thus an indicator variable.

table(nyt.frame[, "class.labels"])

##

art music

#it 57 45

entropy(table(nyt.frame[, "class.labels"]))
[1] 0.9899928

From the 2 x 2 table above, we can calculate that
e H[C|X = “paint”] =0

e H[C|X = not “paint”] =1

e Pr(X = “paint”) = 12/102 = 0.12

o I[C;X] = H[C] — (Pr(X = 1) H|C|X = 1] + Pr (X = 0) H[C|X = 0]) =
0.11

In words, when we see the word “paint”, we can be certain that the story
is about art (H[C|X = “paint”] = 0 bits). On the other hand, when “paint” is
absent we are as uncertain as if we flipped a fair coin (H[C|X = not “paint”] =
1.0 bits), which is actually a bit more uncertainty than we’d have if we didn’t
look at the words at all (H[C] = 0.99 bits). Since “paint” isn’t that common a
word (Pr (X = “paint”) = 0.12), the ezpected reduction in uncertainty is small
but non-zero (I[C; X] = 0.11).

If we want to repeat this calculation for another word, we don’t want to do all
these steps by hand. It’s a mechanical task so we should be able to encapsulate
it in more code (Code Example .

If this works, it should agree with what we calculated by hand above:

word.mutual.info(matrix(c(12, 0, 45, 45), nrow = 2))
[1] 0.1076399

which is exactly what the manual calculation gave before rounding off to two
significant figures. (With about a hundred examples, it’s nonsense to calculate
anything to one part in a million.)

Now we can calculate the information a word gives us about a category so
long as we can get indicator counts. Doing this manually is tedious, so again,
let’s automate (Code Example.

Again, let’s double-check this:

word.class.indicator.counts(nyt.frame, "paint")
[,11 [,2]
art 12 45
music 0 45

Putting the pieces together,

Get the expected information a word's indicator gives about a document'g
class Inputs: array of indicator counts Calls: entropy() Outputs: mutual
information
word.mutual.info <- function(counts) {
Assumes: counts is a numeric matrix get the marginal entropy of the
classes (rows) C
marginal.entropy = entropy(rowSums(counts))
Get the probability of each value of X
probs <- colSums(counts)/sum(counts)
Calculate the entropy of each column
column.entropies = apply(counts, 2, entropy)
conditional.entropy = sum(probs * column.entropies)
mutual.information = marginal.entropy - conditional.entropy
return(mutual.information)

Code Example 2: The word.mutual.info function. apply(foo,2,bar) ap-
plies the function bar to each column of the array foo and collects the results
in a vector; changing the middle argument to 1 applies bar to the rows of foo.
See help (apply).

Count how many documents in each class do or don't contain a word Presun
that the data frame contains a column, named 'class.labels', which has t
classes labels; may be more than 2 classes Inputs: dataframe of word
counts with class labels (BoW), word to check (word) Outputs: table of
counts
word.class.indicator.counts <- function(BoW, word) {
What are the classes?
classes <- levels(BoW[, "class.labels"])
Prepare a matrix to store the counts, 1 row per class, 2 cols (for
present/absent)
counts <- matrix(0, nrow = length(classes), ncol = 2)
Name the rows to match the classes
rownames (counts) = classes
for (i in 1:length(classes)) {
Get a Boolean vector showing which rows belong to the class
instance.rows = (BoW[, "class.labels"] == classes[i])
sum of a boolean vector is the number of TRUEs
n.class = sum(instance.rows) # Number of class instances
present = sum(BoW[instance.rows, word] > 0)
present = Number of instances of class containing the word
counts[i, 1] = present
counts[i, 2] = n.class - present

H OB H R H

}

return(counts)

Code Example 3: The word.class.indicator.counts function.

he

word.mutual.info(word.class.indicator.counts(nyt.frame, "paint"))
[1] 0.1076399

2 Finding Informative Features

Here’s one information-theoretic procedure for finding the important words.
1. Count how often each class ¢ =1,2... K appears.
2. For each word, make the K x 2 table of classes by word indicators.
3. Compute the mutual information in each table.
4. Return the m most-informative words.

This ranks words by how informative it is to see them at all in the document.
We could also look at how much information we get from the number of times
they appear in the document — the table we build in step two would no longer
necessarily by K x 2, as the number of columns would depend on the number
of different values for that word’s feature.

The info.bows function (Code Example[d) does steps (1)—(3) of the ranking
procedure.

H OH H H R

Calculate realized and expected information of word indicators for clasg
Assumes: one column of the data is named 'class.labels' Inputs: data frg
of word counts with class labels Calls: word.class.indicator.counts(),
word.realized.info(), word.mutual.info() Output: two-column matrix givig
the reduction in class entropy when a word is present, and the expected
reduction from checking the word

info.bows <- function(BoW) {

lexicon <- colnames (BoW)

One of these columns will be class.labels, that's not a lexical iten

lexicon <- setdiff(lexicon, "class.labels")

vocab.size = length(lexicon)

word.infos <- matrix(0, nrow = vocab.size, ncol = 2)

Name the rows so we know what we're talking about

rownames (word.infos) = lexicon

for (i in 1:vocab.size) {
counts <- word.class.indicator.counts(BoW, lexicon[i])
word.infos[i, 1] = word.realized.info(counts)
word.infos[i, 2] = word.mutual.info(counts)

}

return(word.infos)

ime

Code Example 4: The info.bows function

I[C;X] I[C;X=1]
art 0.32 abandoned 0.99
painting | 0.24 abc 0.99
museum 0.23 abroad 0.99
gallery 0.21 abstractions | 0.99
artists 0.21 academic 0.99
paintings | 0.15 accents 0.99
evening 0.15 accept 0.99
orchestra | 0.14 acclaimed 0.99
music 0.13 accounted 0.99
artist 0.13 achievement | 0.99

Table 1: Most informative words for discriminating between art and music. Left:
ranked by expected information, I[C; X]. Right: ranked by realized information
when the word is present, I[C'; X = 1].

This does two calculations for each word: how much the entropy of the class
is reduced when the word is present, and how much the entropy is reduced on
average by checking the word’s indicator (the mutual information). I have not
given code for the function for the first calculation, word.realized.info, but
you can figure it out from what I have said.

Table [I| shows the ten words whose presence or absence in a document have
the most information for the art/music classification task. Figure |2| plots this
for all 4431 distinct words in the data.

Of course, nothing in this really hinges on our features being words; we could
do the same thing for colors in a bag-of-colors representation of pictures, etc.

Calculating the expected information is actually very similar to performing
a x? test for independence. (Remember that mutual information is 0 if and only
if the two variables are statistically independent.) In fact, if the sample size is
large enough, the samples are IID, and the variables really are independent,

then the sample mutual information has a x? distribution (Kullback 1968E|

2In general, working out the bias, standard error, and sampling distribution of mutual
information estimates is not easy. See, for instance, [Victor| (2000); Paninski| (2003).

art
o
O"! —
[
L0
('\! —
e museum painting
c
o I artists gallery
— o
s o
IS
=
L
£
8 ﬁ] paintings evening
g o orchestra
music artist
% musical opera
nl painted studio
S work images mipsiEnS
d — performance performances edtuiplivies
exhibition walls nNHBmisss
hi sqjiinss
e meaan‘gl[her stagmsed ‘ma\;@‘:‘h“"‘g organized
0 hal €€ o0 gman fine agg:'m
o x. °ne nlaysid others almost - [
o L el L | i photagkaphy
n overONKLIRRHCORM come makes CHeumiings M
s, S il oo
o
<
o
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Realized information
plot(0, xlim = range(info.matrix[, 1]), ylim = range(info.matrix[, 2]), xlab = "Realized information",
ylab = "Expected information", type = "n")

text(info.matrix[, 1], info.matrix[, 2], rownames(info.matrix), cex = 0.5)

Figure 2: How much do we reduce our uncertainty about whether a Times
story is about art or music by checking for various words? The horizontal
axis (“realized information”) shows the reduction in entropy when the word is
present. The vertical axis (“expected information”) shows the average reduction
in entropy from checking for the word. Notice that the two values tend to rise
together, but that the expected information tends to be smaller than the realized
information (the scales on the two axes are different). The code beneath the
figure shows how it was produced.

10

3 Feature Interactions and Feature Selection

We’ve talked about using features to predict variables which are not immediately
represented, like future events, or the category to which an object belongs. We
now have the machinery for saying how much entropy a single random variable
has, and how much knowledge of one variable reduces the entropy of another —
how much information they have about each other. This leads to a basic idea for
how to select features: if you want to predict C' and have features X;, Xs,... X,
calculate I[C; X;] for i = 1 : p, and take the most informative feature.

Normally — and this is especially true when you have enough features that
you want to do feature selection — you have many features, so we want a way
to talk about using multiple features to predict C'. You could just go down the
list of informative features, but it’s easy to suspect this isn’t the right thing
to do. Look at [[table 1]]. “Painting” was the second most informative word,
but “paintings” was number 6. Do you really think you’ll learn much about the
document from checking whether it has the word “paintings” if you already know
whether it contains “painting”? Or looking for “music” after you’ve checked
“orchestra”?

Our remaining subject, accordingly, is to extend the information theory
we’ve seen to handle multiple features, and the idea that there can be inter-
actions among features, that they can be more or less informative in different
contexts.

3.1 Entropy for Multiple Variables

The joint entropy of two random variables X and Y is just the entropy of
their joint distribution:

H[X,Y]=-) Pr(X =2,Y =y)log, Pr(X =2,V =y) (8)

This definition extends naturally to the joint entropy of an arbitrary number of
variables.
A crucial property is that joint entropy is sub-additive:

H[X,Y] < H[X]+ H[Y] 9)

with equality if and only if X and Y are statistically independent. In terms of
uncertainty, this says that you can’t be more uncertain about the pair (X,Y)
than you are about its components. In terms of coding, it says that the number
of bits you need to encode the pair is no more than the number of bits you
would need to encode each of its members. Again, this extends to any arbitrary
number of variables.

Conditional entropy and mutual information can both be defined in terms
of the joint entropy:

HY|X] = H[X,Y]- H[X] (10)
I[X;Y] = H[X]+H[Y]- H[X,Y] (11)

11

The last of these says that the mutual information is the difference between
the joint entropy and the sum of the marginal entropies. This can be extended
to any number of variables, giving what’s called the multi-information or
higher-order mutual information,

I1X:Y;Z) = H[X] + H[Y] + H[Z] - H[X.Y, Z] (12)

(and so on for more than three variables). This is zero if and only if all the
variables are statistically independent of each other.

3.2 Information in Multiple Variables

If all we want is to know how much information a set of variables X1, X5, ... X
have about a given outcome or target variable C, that is just

I[C; X1, X, ... X3 = H[C]+H[X1, Xo, ... X3]—H[C, X1, X5, ... X;] = H[C|-H[C| X1, Xo, ...

(13)
It should not be hard to convince yourself that adding an extra variable
increases joint entropy, decreases conditional entropy, and increases information:

H[X,Y] > H[X] (14)
H|IC|X,Y] < H[C|X] (15)
I[C; X, Y] > I|C;X] (16)

and similarly with more predictor variables.

3.2.1 Example Calculation

Let’s do an example. The single most informative word for our documents, we
saw above, is “art”, call its indicator X1, followed by “painting” (say X2). How
informative is the pair of words?

To calculate this, we need a 2x2x2 (class x “art” x “painting”) contingency
table, or alternately a 2 x 4 (class x (“art”, “painting”)) table. Because it’s
easier to get two dimensions down on the page than three, I'll use the latter
right now, but we’ll switch later on, and you should get used to alternating
between the two perspectives.

“art” yes “art” no
“painting” yes “painting” no ‘ “painting” yes “painting” no
art 22 25 2 8
music 0 8 0 37

I'll use the word.mutual.info function from above:

art.painting.indicators <- matrix(c(22, 25, 2, 8, 0, 8, 0, 37), byrow = TRUE,

nrow = 2)
word.mutual.info(art.painting.indicators)
[1] 0.4335985

12

Xk)

so I[C; X1, X5] = 0.43 bits.

From the work above, we know that I[C; X;] = 0.32 bits, and I[C; Xo] = 0.24
bits. So using both words gives us more information than either word alone.
But we get less information than the sum of the individual informations.

3.3 Conditional Information and Interaction

If we have three variables, X,Y and C, we can ask how much information Y
contains about C, after we condition OIEI X:

I[C;Y|X] = H[C|X] — H|C|Y, X] (17)
Notice that this is the average of
H[C|X =z] - HIC|Y, X =] = I[C;Y|X = z] (18)

over possible values of x. For each x, we have an ordinary mutual information,
which is non-negative, so the average is also non-negative. In fact, I[C;Y|X] =0
if and only if C' and Y are conditionally independent given X. This is
writterf’] CLY'| X.

3.3.1 Interaction

While I[C;Y|X] is non-negative, it can be bigger than, smaller than or equal
to I[C;Y]. When it is not equal, we say that there is an interaction between
X and Y — as far as their information about C. It is a positive interaction
if I[C;Y|X] > I[C;Y], and negative when the inequality goes the other way.
If the interaction is negative, then we say that (some of) the information in ¥’
about C' is redundant given X.

You can begin to see how this connects to feature selection: it would seem
natural to prefer variables containing non-redundant information about C'. We
can explicate this a little more with a touch more math.

3.3.2 The Chain Rule

The chain rule for joint entropy is that

k
H[Xy, Xo,... X¢] = H[X1] + Y H[X;|X1,... Xi 1] (19)
=2
To see this, notice that
H[Xi|X1,... Xio1] = H[X1,... Xi] — H[X1, ... Xi1] (20)

3Some people call this “controlling for” X, but that’s a misleading phrase, unless we make
some causal assumptions.

40ne way to do this in IXTEXis \rotatebox{90}{\ensuremath{\models}}. If you have
trouble with this in your LaTeX setup, L is often acceptable.

13

If we use this to expand the sum in Eq. we see that every term in the sum
is added and subtracted once and so cancels out, except for H[X7, Xo,... Xj].
This is an example of a telescoping sum, one which, as it were, folds up like
a telescope.

This implies a chain rule for mutual information:

k
I1C; X1, X, . Xg] = I[C; X0 + > T[C5 X4| X1, ... Xi] (21)
=2
To see this, thing about just the k = 2 case:
IC;Xh] = H[C]- H[C]X,] (22)
I[C; Xo|Xa] = H[C|Xy] — H[C| X2, X4] (23)

Add the two lines and the H[C|X] terms cancel, leaving
H[C| - H[C|X1, X5 = I[C; X1, X5] (24)

Remember that a moment ago we said there was a positive interaction be-
tween X; and X5 when

1C; Xo| Xa] > I[C; X5 (25)

and a negative interaction if the inequality was reversed. This means that there
is a positive interaction just when

and we get more information about C' from using both features than we would
expect from using either of them on their own. Of course if there is a negative
interaction, we get less,

I[C; Xy, Xo] < I[C; X1] + I[C; Xo] (27)

because some of what X5 has to tell us about C' is redundant given what X;
says. (Or vice versa.)

4 Feature Selection with Mutual Information (Once
More with Feeling)

Here is an improved procedure for selecting features from a set X, Xs,... X,
for predicting an outcome C.

1. Calculate I[C;X;] for all ¢ € 1 : p. Select the feature with the most
information, call it X/y).

2. Given k selected features X1y, X(a), ... X(1), calculate I[C; X;| X1y, ... X))
for all 7 not in the set of selected variables.

14

3. Set X(x41) to be the variable with the highest conditional information and
go to step 2.

Picking i to maximize I[C; X;|X(1),... X()] is the same as picking it to
maximize I[C; X1y, ... X), Xs]. (Why?) So at each step, we are picking the
variable with the most non-redundant information, given the variables we have
already selected.

There are two things to notice about this algorithm.

1. Tt is greedy.
2. It doesn’t know when to stop.

As to the first point: A greedy optimization algorithm is one which always
takes the step which improves things the most right away, without concern about
what complications it might create down the line. “Gallery” is not as good by
itself as “art”, but it could be that “gallery” is part of a better combination of
features than any combination involving “art”. A greedy algorithm closes itself
off to such possibilities. What it gains in exchange for this is a more tractable
search problem. We will see a lot of greedy algorithmsﬂ

As to the second point: As I've written it, the algorithm will simply add
all the features in a certain order. (There is always some variable, among the
unselected features, which adds more information than the others.) In practice,
we want to modify the last step so it checks for a stopping condition before
going back to step 2. One possibility is to decide on a number of features ¢ to
use, and stop once k = ¢. Another is to stop when I[C; X ()| X(1), ... X(1)] gets
sufficiently small — for instance, smaller than we can reliably estimate given
our finite data, or smaller than we think can be useful to uSEI

4.1 Example for the Times Corpus

Before I can illustrate the new, better procedure, I need to actually come up
with a way to calculate the mutual information values it needs — doing it by
hand is infeasible, and the code above is only for a single feature. T’ll actually
go over some of the design process, so that you how I get to the code, rather
than just the destination.

4.1.1 Code

I want to pick the variable which adds the most information, given the ones
which are already chosen. So with a choice of X(y),... X4, I want to evaluate
IC; X5, X1y, . . - X(1)] for all not-yet-selected j. To figure out how to do this, I
write some pseudocode:

50f course, if you are willing to spend the computing time, it’s easy to make a procedure
less greedy: it can “look ahead a step” by considering adding pairs of features, for example,
or it can try deleting a feature (other than the one it just added) and going from there, etc.

SVerleysen et al.| (2009) discusses the issue of the stopping criterion in detail. Parts of the
paper use methods more advanced than we’ve seen so far, but you should be able to follow it
by the end of the course.

15

Given: a data-frame with p features and class labels
a number of features q to pick
Desired: the q most informative features
until q features are selected
calculate how much information each unselected variable adds given the others
select the most informative variable

Both parts of the procedure need some expansion to turn into code, but calcu-
lating the information sounds harder, so think about that first.

Given: a data-frame with p features and class labels
k already-selected features
a feature to consider selecting
Desired: Information about the class in the selected features and the candidate
Calculate marginal entropy of the class
Calculate joint entropy of the features
Calculate joint entropy of the class and the features
Calculate mutual information from entropies

We know how to do the last step. We also know how to get the entropy of the
class, since that’s just a single variable. The tricky bit is that we don’t have a
way of calculating the joint entropy of more than one variable.

To find the joint entropy, we need the joint distribution. And it turns out
that our friend the table() function will give it to us. Before, we’ve seen
things like table(document), giving us the counts of all the different values
in the vector document. If we give table multiple arguments, however, and
they're all the same length, we get a multi-dimensional array which counts the
occurrences of combinations of values. For example,

ape = table(nyt.frame[, "art"] > O, nyt.frame[, "painting"] > 0, nyt.framel[,
"evening"] > 0, dnn = c("art", "painting", "evening"))

creates a 2 X 2 x 2 table, counting occurrences of the three words “art”,
“painting” and “evening”[] Thus if I want to know how many stories contain
“art” and “painting” but not “evening”,

apel[2, 2, 1]
[1] 22

I find that there are 22 of them. See Code Example

Now I need another bit of R trickery. The output of table() is an object of
class table, which is a sub-type of the class array, which is a kind of structure,
meaning that inside it’s just a vector, with a fancy interface for picking out
different components. I can force it back to being a vector:

as.vector (ape)
[1] 3¢ 32 22211 1 0 O

"The dnn argument of table names the dimensions of the resulting contingency table.

16

ape = table(nyt.frame[, "art"] > 0, nyt.frame[, "painting"] > O, nyt.framel[,
"evening"] > 0, dnn = c("art", "painting", "evening"))

ape

, , evening = FALSE

#i#

#i# painting

art FALSE TRUE

FALSE 34 2

TRUE 32 22

##

, , evening = TRUE

#i#

#i# painting

art FALSE TRUE

#i# FALSE 11 0

TRUE 1 0

Code Example 5: Use of table() to create a multi-dimensional contingency
table, and the organization of the result.

and this gives me the count of each of the eight possible combinations of
values for the indicator variables. Now I can invoke the entropy () function I
wrote earlier:

entropy(as.vector(ape))
[1] 2.053455

So the joint entropy of the three features is just over 2 bits.

Now we just need to automate this computation of the joint entropy for an
arbitrary set of features. It would be nice if we could just make a vector of
column numbers, v say, and then say

table(nyt.frame[,v])

but unfortunately that gives a one-dimensional rather than a multi-dimensional
table. (Why?) To make things work, we’ll paste together a string which would
give us the commands we’d want to issue, and then have R act as though we’d
typed that ourselves (Code Example [6).

Let’s try this out. Sticking in all the > 0 over and over is tiresome, so I’ll
just make another frame where this is done already:

nyt.indicators = data.frame(class.labels = nyt.frame[, 1], nyt.frame[, -1] >
0)

Check this on some easy cases, where we know the answers.

columns.to.table(nyt.indicators, c("class.labels"))
class.labels

17

Create a multi-dimensional table from given columns of a data-frame
Inputs: frame, vector of column numbers or names Outputs: multidimension
contingency table
columns.to.table <- function(frame, colnums) {
my.factors = c()
for (i in colnums) {

al

Create commands to pick out individual columns, but don't evaluate them

yet

my.factors = c(my.factors, substitute(frame[, i], list(i = i)))
}
paste those commands together
col.string = paste(my.factors, collapse = ", ")

Name the dimensions of the table for comprehensibility
if (is.numeric(colnums)) {
if we gave column numbers, get names from the frame
table.names = colnames (frame) [colnums]
} else {
if we gave column names, use them
table.names = colnums
3
Encase the column names in quotation marks to make sure they stay na
and R doesn't try to evaluate them

table.string = paste("\"", table.names, "\"", collapse = ",")

paste them together

table.string = paste("c(", table.string, ")", collapse = ",")

Assemble what we wish we could type at the command line

expr = paste("table(", col.string, ", dnn=", table.string, ")", collap

execute it parse() takes a string and parses it but doesn't evaluate
eval() actually substitutes in values and executes commands
return(eval (parse(text = expr)))

imes

se = Illl)
it

Code Example 6: The columns.to.table function. The table command
creates multi-dimensional contingency tables if given multiple arguments, so we
need to somehow provide the appropriate objects to it. The trick here is to
write out the R command we wish to execute as a string, and then get R to
run it (with the parse and eval functions). There are other ways of doing this,
but creating the command you want before you execute it is useful in other
situations, too.

18

Calculate the joint entropy of given columns in a data frame Inputs:
frame, vector of column numbers or names Calls: columns.to.table(),
entropy() Output: the joint entropy of the desired features, in bits
jt.entropy.columns = function(frame, colnums) {

tabulations = columns.to.table(frame, colnums)

H = entropy(as.vector(tabulations))

return (H)

Code Example 7: Calculating the joint entropy of an arbitrary set of columns
in a data frame.

art music
57 45

columns.to.table(nyt.indicators, c("class.labels", "art"))

art

class.labels FALSE TRUE

art 10 47

music 37 8

columns.to.table(nyt.indicators, c("art", "painting", "evening"))
, , evening = FALSE

##

#i# painting

art FALSE TRUE
FALSE 34 2

TRUE 32 22
#it

, , evening = TRUE
#it

#i# painting

art FALSE TRUE
FALSE 11 0
TRUE 1 0

So far this looks good. Now we can calculate the joint entropy (Code Ex-
ample E[)
We can check this on our “art” /“painting” / “evening” example:

jt.entropy.columns(nyt.indicators, c("art", "painting", "evening"))
[1] 2.053455

From the joint entropy, we can get the information selected columns have
about the class feature.

The word “art” is # 244 in the list of column names for this frame, and
“painting” is # 2770. So we can check this function against our earlier results
like so:

19

Compute the information in multiple features about the outcome Inputs:
data frame, vector of feature numbers, number of target feature (optional,
default=1) Calls: jt.entropy.columns Output: mutual information in bits
info.in.multi.columns = function(frame, feature.cols, target.col = 1) {
H.target = jt.entropy.columns(frame, target.col)
H.features = jt.entropy.columns(frame, feature.cols)
H.joint = jt.entropy.columns(frame, c(target.col, feature.cols))
return(H.target + H.features - H.joint)

Code Example 8: Finding the information a set of columns have about a given
target. What happens if target.col is a vector rather than a single column
number?

info.in.multi.columns(nyt.indicators, 244)
[1] 0.32327
info.in.multi.columns(nyt.indicators, 2770)
[1] 0.238395

The payoff, though, is this:

info.in.multi.columns(nyt.indicators, c(244, 2770))
[1] 0.4335985

Code Examples [0] and [I0] take us back up our chain of thought, until Code
Example [TI] is what we sought at the beginning. In itself, it does very little;
this is as it should be.

Computational efficiency note The code above is not the most efficient
possible implementation of the greedy search scheme. For instance, we end

up computing H[C], the entropy of the target variable, many times, though it

never changes. It would be faster to compute it once, in the top-level function
best.q.columns, and then pass it as an argument down to the info.in.multi.columns
function]

4.1.2 Results

Let’s take the top seven words:

best.7 = best.q.columns(nyt.indicators, 7)

colnames (nyt.indicators) [best.7]

[1] "art" "youre" "features" "music" "gallery" "heavy"
[7] "second"

info.in.multi.columns(nyt.indicators, best.7)

[1] 0.9629841

8Using global variables for tasks like this is just begging for trouble down the road when
you change something.

20

Information about target after adding a new column to existing set Inpuf

new column, vector of old columns, data frame, target column (default 1

Calls: info.in.multi.columns() Output: new mutual information, in bits

info.in.extra.column <- function(new.col, old.cols, frame, target.col = 1
mi = info.in.multi.columns(frame, c(old.cols, new.col), target.col = {
return(mi)

Code Example 9: info.in.extra.column

Identify the best column to add to an existing set Inputs: data frame,
currently-picked columns, target column (default 1) Calls:
info.in.extra.column() Output: index of the best feature
best.next.column <- function(frame, old.cols, target.col = 1) {
Which columns might we add?
possible.cols = setdiff(l:ncol(frame), c(old.cols, target.col))
How good are each of those columns?
infos = sapply(possible.cols, info.in.extra.column, old.cols = old.col
frame = frame, target.col = target.col)
which of these columns is biggest?
best.possibility = which.max(infos)
what column of the original data frame is that?
best.index = possible.cols[best.possibility]
return(best.index)

Code Example 10: Picking the most-informative column to add, given the
columns already selected. sapply is used to avoid an explicit iteration over the
possibilities.

Identify the best q columns for a given target variable Inputs: data
frame, q, target column (default 1) Calls: best.next.column() Output:
vector of column indices
best.q.columns <- function(frame, q, target.col = 1) {
possible.cols = setdiff(l:ncol(frame), target.col)
selected.cols = c()
for (k in 1:q) {
new.col = best.next.column(frame, selected.cols, target.col)
selected.cols = c(selected.cols, new.col)
}

return(selected.cols)

Code Example 11: Function for greedy selection of features by their informa-
tion about a target variable. Note how almost all of the work has been passed
off to other functions.

21

n

{
arget.col)

word cumulative information
“art” 0.32
“youre” 0.49
“features” 0.62
“music” 0.75
“gallery” 0.84
“heavy” 0.90
“second” 0.96

Table 2: The seven most informative words, as selected by the greedy search.

Table[2]shows how much information we can from each additional word along
this path.

Some of these words were informative by themselves — “art”, “music”,
“gallery” — but others were not.

22

5 Sufficient Statistics and the Information Bot-
tleneck

For any random variable X and any function f, f(X) is another random vari-
able. How does the entropy of f(X) relate to that of X7 It’s easy to believe
that

H[X] > H[f(X)] (28)

After all, we can’t be more uncertain about the value of a function than about
the input to the function. (Similarly, it can’t be harder to encode the function’s
value.) This is in fact true, and the only way to get an equality here is if f is
a one-to-one function, so it’s just, in effect, changing the label on the random
variable. It’s also true that

I[C; X] > 1[C; f(X)] (29)

but now we can have equality even if f is not one-to-one. When this happens, we
say that the function is sufficient for predicting C' from X — it’s predictively
sufficient for short, or a sufficient statistic. To mark this, we’ll write it as
€(X) rather than just f(X)H

Intuitively, a sufficient statistic € captures all the information X has about
C; everything else about X is so much extraneous detail, so how could it be
of any use to us? More formally, it turns out that optimal prediction of C
only needs a sufficient statistic of X, not X itself, no matter how we define
“optimal” E

All of this applies to functions of several variables as well, so if we have
features Xi,...X,, what we’d really like to do is find a sufficient statistic
€(X1,...X,), and then forget about the original features. Unfortunately, find-
ing an ezxactly sufficient statistic is hard, except in special cases when you make
a lot of hard-to-check assumptions about the joint distribution of C' and the
Xi. (One which has “all the advantages of theft over honest toil” is to assume
that your favorite features are sufficient; this is a key part of what’s called the
method of maximum entropy.) There is however a tractable alternative for
finding approximately sufficient statistics.

A sufficient statistic solves the optimization problem

max | [C; f(X)] (30)

where F contains all the functions of X. Let’s modify the problem:

max I[C; f(X)] — BH[F(X)] (31)

90f course, one-to-one functions are sufficient, but also trivial, so we’ll ignore them in what
follows.
10Even more formally: any loss function can be minimized by a decision rule which depends
only on a sufficient statistic. (If you can follow that sentence, you most likely already know
the result, but that’s why this is a footnote.)

23

where [is some positive number which we set. Call the solution to this problem
ng. What happens here? Well, the objective function is indifferent between
increasing I[C; f(X)] by a bit, and lowering H[f(X)] by 1/8 bits. Said another
way: it is willing to lose up to B bits of predictive information if doing so
compresses the statistic by an extra bit. As g — 0, it becomes unwilling to lose
any predictive information, and we get back a sufficient statistic. As 8 — oo,
we become indifferent to prediction and converge on 7., which is a constant
function.

The random variable 7g(X) is called a bottleneck variable for predicting
C from X; it’s approximately sufficient, with 3 indicating how big an approx-
imation we're tolerating. The method is called the information bottleneck,
and the reason it’s more practical than trying to find a sufficient statistic is that
there are algorithms which can solve the optimization in Eq. at least if X
and C are both discreteB This is a very cool topic — see [Tishby et al.| (1999))
— which we may revisit if time permits.v

Further Reading

Information theory appeared almost fully formed in [Shannon| (1948]), a classic
paper which is remarkably readable. The best available textbook on informa-
tion theory, covering its applications to coding, communications, prediction,
gambling, the foundations of probability, etc., is [Cover and Thomas| (1991).
Poundstone| (2005) is a popular book about how information theory connects to
gambling and the stock market; Poundstone| (1984) explains how it connects to
fundamental aspects of physical science, as does |Wiener| (1954)).

References

Cover, Thomas M. and Joy A. Thomas (1991). Elements of Information Theory.
New York: Wiley.

Kullback, Solomon (1968). Information Theory and Statistics. New York: Dover
Books, 2nd edn.

Paninski, Liam (2003). “Estimation of entropy and mutual information.” Neu-
ral Computation, 15: 1191-1254. URL http://www.stat.columbia.edu/
~liam/research/abstracts/info_est-nc-abs.html.

Poundstone, William (1984). The Recursive Universe: Cosmic Complexity and
the Limits of Scientific Knowledge. New York: William Morrow.

11To begin to see how this is possible, imagine that X takes on m discrete values. Then
f(X) can have at most m values, too. This means that the number of possible functions of X
is finite, and in principle we could evaluate the objective function of Eq. [31] on each of them.
For large m the number of functions is the m'™ |“Bell number”, and these grow wvery rapidly
indeed — the first ten are 1,2,5,15,52,203,877,4140,21147,115975 — so exhaustive search
is out of the question, but cleverer algorithms exist.

24

http://www.stat.columbia.edu/~liam/research/abstracts/info_est-nc-abs.html
http://www.stat.columbia.edu/~liam/research/abstracts/info_est-nc-abs.html
http://en.wikipedia.org/wiki/Bell_numbers

— (2005). Fortune’s Formula: The Untold Story of the Scientific Betting Sys-
tems That Beat the Casinos and Wall Street. New York: Hill and Wang.

Shannon, Claude E. (1948). “A Mathematical Theory of Communication.” Bell
System Technical Journal, 27: 379-423. Reprinted in ?.

Tishby, Naftali, Fernando C. Pereira and William Bialek (1999). “The Informa-
tion Bottleneck Method.” In Proceedings of the 87th Annual Allerton Con-
ference on Communication, Control and Computing (B. Hajek and R. S.
Sreenivas, eds.), pp. 368-377. Urbana, Illinois: University of Illinois Press.
URL http://arxiv.org/abs/physics/0004057.

Verleysen, Michel, Fabrice Rossi and Damien Francois (2009). “Advances
in Feature Selection with Mutual Information.” In Similarity-Based Clus-
tering (Thomas Villmann and Michael Biehl and Barbara Hammer and
Michel Verleysen, eds.), vol. 5400 of Lecture Notes in Computer Science, pp.
52-69. Berlin: Springer Verlag. URL http://arxiv.org/abs/0909.0635.
doi:10.1007/978-3-642-01805-3_4.

Victor, Jonathan D. (2000). “Asymptotic Bias in Information Estimates and
the Exponential (Bell) Polynomials.” Neural Computation, 12: 2797-2804.

Wiener, Norbert (1954). The Human Use of Human Beings: Cybernetics and
Society. Garden City, New York: Doubleday, 2nd edn. Republished London:
Free Association Books, 1989; first edition Boston: Houghton Mifflin, 1950.

25

http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/0909.0635
http://dx.doi.org/10.1007/978-3-642-01805-3_4

Exercises

These are for you to think about, rather than to hand in.

1.
2.

10.
11.

How would you reproduce Figure

Looking at Figure [2| why does expected information tend to generally
increase with realized information?

Why does expected information tend to be smaller than realized informa-
tion?

Why are so many words vertically aligned at the right edge of the plot?
Write word.realized.info.

What code would you have to change to calculate the information the
number of appearances of a word gives you about the class?

Read help(order). How would you reproduce Table
Prove Egs. [I0] and [T}

What will info.in.multi.columns() do if its target.cols argument is
a vector of column numbers, rather than a single column number?

Prove Egs. 2§ and 29

Why is “youre” so informative after checking “art”?

26

	Entropy and Information
	Example: How Much Do Words Tell Us About Topics?

	Finding Informative Features
	Feature Interactions and Feature Selection
	Entropy for Multiple Variables
	Information in Multiple Variables
	Example Calculation

	Conditional Information and Interaction
	Interaction
	The Chain Rule

	Feature Selection with Mutual Information (Once More with Feeling)
	Example for the Times Corpus
	Code
	Results

	Sufficient Statistics and the Information Bottleneck

