
Homework 10

36-462/662, Data Mining, Spring 2020

Due at 10 pm on Thursday, 2 April 2020

Agenda: Hammering home the importance of not evaluating
predictive models on testing data.

1. Online questions (10) are online and due at the same time as the homework
(but it will help if you do the reading first).

2. Optimism and the “covariance penalty” If we use data (X1, Y1), . . . (Xn, Yn)
to learn a predictive model µ̂, the “optimism” of our method is defined as
how much worse that model would do on new data with the same values
of X but independent Y s. That is, for each i, Y ′

i has the same distribution
as Yi (conditional on Xi), but is independent of Yi, and the optimism (for
regression) is
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In this problem and the next, we’ll see how to build a simple, unbiased
estimator of the optimism.

(a) (5) Show that the optimism (as defined above) is equal to
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(b) (5) Show that E [Y ′
i − µ̂(Xi)] = E [Yi − µ̂(Xi)].

(c) (5) Show that the optimism is equal to

1
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(Var [Y ′
i − µ̂(Xi)]−Var [Yi − µ̂(Xi)]) (3)

(d) (5) Show that

Var [Yi − µ̂(Xi)] = Var [Yi] + Var [µ̂(Xi)]− 2Cov [Yi, µ̂(Xi)] (4)

(e) (5) Show that

Var [Y ′
i − µ̂(Xi)] = Var [Yi] + Var [µ̂(Xi)] (5)
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(f) (5) Show that the optimism equals
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(g) (5) Explain why
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is an unbiased estimate of
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3. Optimism and degrees of freedom The previous problem left us with an un-

biased estimate of the risk on new data, but one which involved covariances
that seem hard to estimate. In this problem, we add two assumptions:

• Our predictor is a linear smoother, so that µ̂(X0) =
∑n

j=1 w(X0, Xj)Yj .

In particular, µ̂(Xi) =
∑n

j=1 wijYj for an n× n matrix w.

• Yi = µ(Xi)+εi, with E [εi|Xi] = 0, Var [εi|Xi] = σ2, and Cov [εi, εj ] =
0 when i 6= j

(a) (5) Using these assumptions, show that Cov [Yi, µ̂(Xi)] = σ2wii.

(b) (5) Show that, under all these assumptions, the optimism is

2σ2

n
trw (8)

(c) (5) What is the optimism of a linear regression model with p coef-
ficients? Answer in terms of σ2, n and p (and numerical constants
such as 2 or π). (Hint: Homework 6.) Does the optimism → 0 as
n→∞ with p fixed?

(d) (5) What is the optimism of a k-nearest-neighbor regression? Answer
in terms of σ2, n and k (and numerical constants). Does the optimism
→ 0 as n→∞ with k fixed?

4. (a) (5) Explain what the following code does.

sim.poly <- function(n, degree) {
x <- runif(n, min=-2, max=2)

poly.x <- poly(x, degree=degree, raw=TRUE)

alternating.signs <- rep(c(-1,1),length.out=degree)

sum.poly <- poly.x %*% alternating.signs

y <- sum.poly+rnorm(n,0,0.1)

return(data.frame(x=x,y=y))

}

2



(You might need to look up the poly() function.)

(b) (2) Use the code from the previous part to generate 3 data frames,
where Y is a cubic function of X plus noise. The data frames should
contain 100, 1000 and 10000 rows. Check that they have the right
dimensions, and that each one shows the expected cubic relationship
between X and Y .

(c) (3) For each of the three data sets, do k-nearest-neighbor regression
with k running from 1 to 90. Plot the in-sample error as a function
of k for each n. (Ideally, this should be three curves, for the three
sample sizes, in one plot.)

(d) (5) Use the formula for the optimism we derived in problem 2 to plot
the estimated generalization error or risk as a function of k for each
n. (Ideally, this should be three curves in one plot, added to the
three curves from your previous plot.) Be sure to plot the risk and
not the optimism itself. What k is best, according to this criterion,
at each n? Why does it change with n?

(e) (5) Calculate the risk as estimated by leave-one-out cross-validation,
and plot it as a function of k for each n. (Ideally, this is adding three
more curves to your plot.) What k is best, according to this criterion,
at each n? Why does it change with n?

Hint: The knn.reg() function from FNN is set up to do leave-one-out
cross-validation for nearest-neighbor regression by default.

(f) (5) Plot the predictions you get from selected ks — are they getting
visibly better as n grows?

Rubric (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical
and other mechanical errors, and easy to follow. All plots and tables are gen-
erated using code embedded in the document and automatically re-calculated
from the data. Plots are carefully labeled, with informative and legible titles,
axis labels, and (if called for) sub-titles and legends; they are placed near the
text of the corresponding problem. All quantitative and mathematical claims
are supported by appropriate derivations, included in the text, or calculations in
code. Numerical results are reported to appropriate precision. Code is properly
integrated with a tool like R Markdown or knitr, and both the knitted file and
the source file are submitted. The code is indented, commented, and uses mean-
ingful names. All code is relevant; there are no dangling or useless commands.
All parts of all problems are answered with actual coherent sentences, and raw
computer code or output are only shown when explicitly asked for.
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