
Homework 4: Ridge, Lasso, False-Positive Control

36-462/662, Spring 2022

Due at 6 pm on Thursday, 17 February 2022

Agenda: Practice with thinking through penalized and constrained model fitting, especially (but
not just) regularizing linear regression.

If you view the PDF online, there are embedded links to parts of the lecture notes you may find helpful.

1. (10) Online reading questions are on Canvas and are due on Monday at 6 pm.

2. Ridge regression: penalty view This question will guide us through finding an explicit solution
to the problem of minimizing the mean squared error with a penalty on the squared length of the
coefficient vector. Specifically, we fix λ > 0, and ask for

β̂λ = argmin
b∈Rp

1
n

n∑
i=1

(yi − (xi · b))2 + λ‖b‖2 (1)

To simplify the book-keeping, we’ll assume throughout that the variables y and x are both centered, so
n−1∑

i yi = 0, n−1∑
i xi = 0.

a. (8) As a warm-up, assume that p = 1, so x is one dimensional (a scalar). Write out the optimization
problem, and show that its solution is

β̂λ =
n−1∑n

i=1 xiyi
λ+ n−1∑n

i=1 x
2
i

(2)

How does this differ from what we’d get from ordinary least squares (OLS)? Does it coincide
with OLS in some limit for λ and/or other variables? Hint: As usual, take derivative and set
equal to 0 (i.e., use the first-order condition).

b. (8) The general, p > 1 version of the problem can be written in matrix form as

β̂λ = argmin
b∈Rp

1
n

(y− xb)T (y− xb) + λbTb (3)

What are the dimensions of b as a matrix? Show that the solution is

β̂λ = (xTx + nλI)−1xTy (4)

c. (8) Does the formula in Q2b reduce to the formula in Q2a when p = 1? Should it?

3. Ridge regression: constraint view. In class, we talked about how penalties and constraints are
equivalent to each other via Lagrange multipliers (“a fine is a price”). We’ll explore that in this problem,
taking p = 1 for simplicity. Let’s abbreviate the unconstrained OLS estimate as β̂0. The constraint
we’ll impose is that b2 ≤ c.

a. (7) Explain why, if β̂2
0 ≤ c, the constraint is not binding, and the Lagrange multiplier should be 0.

Does this mean the Lagrangian should be 0?

b. (7) Explain why the Lagrangian for the constrained problem is

L(b, λ) = 1
n

n∑
i=1

(yi − xib)2 + λ(b2 − c) (5)
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c. (7) Show that the two first-order conditions for minimizing the Lagrangian, assuming the constraint
is binding, are

(b∗)2 = c (6)
1
n

n∑
i=1

(yi − b∗xi)xi = λ∗b∗ (7)

d. (6) Explain why, if the constraint is binding, b∗ =
√
c sgn β̂0, where sgn u is the “sign” function,

= 1 if u > 0, = −1 if u < 0, and = 0 if u = 0. Hint: why should the constrained β̂ have the
same sign as β̂0?

e. (5) Use the first-order conditions, and Q3c, to show that, when the constraint is binding,

λ∗ = 1
√
c sgn β̂0

1
n

n∑
i=1

xiyi −
1
n

n∑
i=1

x2
i (8)

4. Classifiers with false-positive control. Suppose we want to predict a binary variable Y from a
covariate X. Any way of doing prediction like this is a classifier, and it’s describable as a region C: if
x ∈ C then the classifier predicts Y = 1, and if x 6∈ C then the classifier predicts Y = 0. (See HW2,
Q6 and Q7.) We can make two kinds of errors: false positives, where Y = 0 but we guess Y = 1, and
false negatives, where Y = 1 but we guess Y = 0. The 0-1 loss doesn’t distinguish between these errors.
Using different losses (as in HW2 Q7) is one way to do so, but another approach is to constrain the
false positive rate to be ≤ α for some acceptably small α, and minimize the false negative rate. (This
can be especially useful when true positives are rare but important to find.) Say that p(x) is the PDF
of X conditional on Y = 1 and q(x) is the PDF of X conditional on Y = 0.

a. (6) Explain what the optimization problem

C∗ = argmax
C

∫
C

p(x)dx (9)

subject to∫
C

q(x)dx ≤ α (10)

has to do with finding classifiers with controlled false-positive rates.

b. (6) Explain what the optimization problem

max
C,λ

λα+
∫
C

(p(x)− λq(x))dx (11)

has to do with finding classifiers with controlled false-positive rates.

c. (6) Explain why, if p(x) > λq(x), the point x should be in C∗, but if p(x) < λq(x), x should not
be in C∗. Also explain why we don’t care whether x is in C∗ when p(x) = λq(x).

d. (5) Explain why the optimal classifier s∗(x) will always have the form

s∗(x) =
{

1 p(x)/q(x) ≥ λ
0 p(x)/q(x) < λ

(12)

5. Timing (1) How much time did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy
to follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for)
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sub-titles and legends; they are placed near the text of the corresponding problem. All plots and tables are
generated by code included in the R Markdown file. All quantitative and mathematical claims are supported
by appropriate derivations, included in the text, or calculations in code. Numerical results are reported
to appropriate precision. All parts of all problems are answered with actual coherent sentences, and raw
computer code or output are only shown when explicitly asked for.
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