
Homework 5: Sandwiches, Propagation, Lasso

36-462/662, Spring 2022

Due at 6 pm on Thursday, 24 February 2022

Agenda: Practice using “the usual asymptotics”, specifically to calculate robust standard errors;
learning a useful trick for propagating uncertainty, specifically from parameter estimates into
predictions; trying our hand at actually doing regularized estimation.

1. (10) Reading questions are, as usual, online, and due on Monday at 6 pm.

2. The “sandwich variance” for linear regression Suppose that our data consists of IID pairs (Xi, Yi),
and that both Xi and Yi are centered, one-dimensional random variables, so E [Xi] = E [Yi] = 0. We
want to estimate a linear regression of Y on X by least squares, so we would ideally like to find the β
which minimizes r(b) = E

[
(Y − bX)2]. We do not assume that the true relationship between Y and X

is linear.

a. (4) It is known (e.g., from Lecture 2) that the optimal β = Cov [X,Y ] /Var [X]. Use this to show
that E [Y − βX] = 0 and that Cov [Y − βX,X] = 0.

b. (4) Show that r(b) = Var [Y ] + b2Var [X]− 2bCov [Y,X].

c. (4) Show that the second derivative of r(b) (with respect to b) is r′′(b) = 2Var [X].

d. (4) With finite data, we approximate r(b) by r̂(b) = n−1∑n
i=1 (Yi − bXi)2. We’ll call the minimizer

of this β̂. Define the residual for the ith observation as Di(b) ≡ Yi − bXi. Show that the first
derivative of r̂(b) is

r̂′(b) = −2
n

n∑
i=1

Di(b)Xi (1)

e. (4) Explain why it’s reasonable, under our assumptions, to estimate Var [r̂′(β)] by

Ĵn ≡
4
n2

n∑
i=1

D2
i (β̂)X2

i (2)

“Reasonable” here means you don’t need to give a formal proof, but you should give reasons
to explain why this Ĵn is connected to Var [r̂′(β)]. Hints: (i) What’re the expectations of the
summands in the definition of Ĵn? (ii) Use Q2a.

f. (5) Give an estimator for the variance of β̂. Your answer should involve both Ĵn and the sample
variance of X (and possibly other things, all of which can be calculated from data). Hint:
Lecture 9.

g. (4) Find an estimator for the standard error1 of β̂.
1Recall that every estimator is a random quantity. The standard error of an estimator is, as you’ll remember from your

mathematical statistics and linear models classes, defined as simply that estimator’s standard deviation. The standard error
tells us about how uncertain our estimates are, by saying how far the estimator typically is from its expected value. (This is
proportional to the expected difference in estimates between two repetitions of the same experiment or random sample.) Every
estimator has a standard error; you are used to seeing those for regression slopes in R’s output after you run lm(). One example
of a standard error is “the standard error of the mean”, σ/

√
n, but standard errors for other estimators do not look like that.

1

https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/02/lecture-02.html#(12)


3. Simplifying Q2 when the model is correct (3) Make all the assumptions from Q2, but also assume
that Y = βX + ε where ε is IID with mean 0 and variance σ2. (That is, assume the true regression
function is linear, with constant-variance noise around that line.) Show that your expression for the
standard error from Q2g will converge on σ/

√
nVar [X] for large n.

4. Propagation of error and uncertainty in predictions. The following technique, called “propa-
gation of error”, “the delta method”, or “propagation of uncertainty”, is often useful in simplifying
complicated calculations about the variances of functions.

a. (3) Suppose that R = f(T ), where the random variable T has expectation µ and variance σ2. Use
a Taylor expansion of f to explain why Var [R] ≈ (f ′(µ))2

σ2, at least when σ2 is small.

b. (3) Now suppose that R = f(T1, T2, . . . Td), where Ti has expectation µi and variance σ2
i . Assume

the Ti are uncorrelated with each other. Assuming all the σ2
i are small, explain why

Var [R] ≈
d∑

i=1

(
∂f

∂ti
(µ1, . . . µd)

)2
σ2

i (3)

c. (4) Suppose the situation is as in Q4b, but that Cov [Ti, Tj ] = ρij , not necessarily equal to 0.
Explain why

Var [R] ≈
d∑

i=1

(
∂f

∂ti
(µ1, . . . µd)

)2
σ2

i + 2
d−1∑
i=1

d∑
j=i+1

(
∂f

∂ti
(µ1, . . . µd)

)(
∂f

∂tj
(µ1, . . . µd)

)
ρij (4)

d. (4) Define Σ as the matrix with diagonal entries σ2
1 , . . . σ

2
d, and off-diagonal entries ρij . Define ~g

as the d-dimensional vector ∇f(µ1, . . . µd). (If you like, you can think of this as a d× 1 matrix
g.) Is

Var [R] ≈ ~g ·Σ~g = gT Σg ? (5)

If so, explain why; if not, explain why not, and give a correct expression if possible.

e. (5) Now suppose that our model / strategy / prediction rule makes the prediction s(x; θ) on
information x when the p-dimensional parameters vector is θ = (θ1, . . . θp). We have a p× p
variance-covariance matrix c for our estimated parameter vector θ̂ (perhaps from the “usual
asymptotics” of Lecture 9, or from something like Q2, or perhaps from the Oracle). Explain,
in words, how we could use c, and the earlier parts of this problem, to get a variance for
s(x; θ̂), our prediction at X = x. What, if anything, would we need to calculate, beyond c?

5. Lasso and spam Re-load the spam data set from Homework 2, and divide it into a training and testing
set as before. We’ll work through using the lasso (L1) penalty to regularize, and do variable selection,
on fitting a logistic regression for spam detection. Load (and if need be install) the package glmnet.
(The last page of this assignment gives some usage examples you may find helpful.)

a. (3) The glmnet package’s main function, also called glmnet(), is not quite as clever about
formulas as glm(), so it requires two arguments, x and y, which need to both be matrices.
Run glmnet with y= the spam column of the data set, and x= a matrix consisting of all the
other columns. Be sure to set family="binomial" (so it knows to do a logistic regression)
and alpha=1 (which does what?). By default, glmnet() automatically generates a range of λ
values and fits the model at each one. Run plot() on the model you created. This shows a
picture of the estimated coefficients at different values of λ. Include the plot. Which side of
the figure corresponds to large values of λ, and which to small values? How can you tell?

b. (2) The element lambda in the object which glmnet() returns contains a vector of the actual
values of λ it considered when fitting the model. How many values of λ did it try on this
data? What were the biggest and smallest values tried?
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https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/09/lecture-09.html#(11)
https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/09/lecture-09.html#(11)


c. (4) For each value of λ, calculate the average log loss on the training data. The easiest way to
do this is to use the predict() function, which for glmnet requires a fitted model, a newx
argument which is a matrix of values at which you want predictions, and a type argument
which you find convenient to set to "response". You will get back an array of predictions,
one for each row of newx at each value of λ. Make a plot showing the average log loss on the
training data versus λ. Describe the shape of the curve. Hints: look at examples of calculating
average log loss for logistic regression in earlier homeworks; do the same thing to each column.

d. (4) For each value of λ, classify the rows in the training data as either spam or email. Plot the
error rate as a function of λ, and describe the shape of the curve. Hints: Use predict()
again.

e. (5) Repeat Q5c, but now make predictions for each row of the testing set, plotting the average log
loss against λ. How does this curve differ from that in Q5c? Hints: You may find it helpful to
have both curves in one plot (with different colors or line-types, etc.), and to use a log scale
for the λ axis.

f. (5) Repeat Q5d, but, again, now classify the rows of the testing set, plotting error rate against λ.
How does the shape of this curve differ from that in Q5d? Hints: See hint for Q5e.

g. (5) Based on what you have done so far, what value of λ would you recommend using? Explain
your reasoning.

6. (1) Roughly how much time did you spend on this assignment?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy
to follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for)
sub-titles and legends; they are placed near the text of the corresponding problem. All plots and tables are
generated by code included in the R Markdown file. All quantitative and mathematical claims are supported
by appropriate derivations, included in the text, or calculations in code. Numerical results are reported
to appropriate precision. All parts of all problems are answered with actual coherent sentences, and raw
computer code or output are only shown when explicitly asked for.
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A few code examples, to get you started on Q5
# Make up some data
n <- 200
p <- 10
df <- data.frame(array(rnorm(n*p), dim=c(n,p)),

country=sample(c("Iran", "Turan"), replace=TRUE, size=n))

# Use glmnet() to fit logistic regression with lasso regularization, at many
# different values of lambda
library(glmnet)
lasso.fits <- glmnet(y=df$country,

x=as.matrix(df[,-(p+1)]),
family="binomial",
alpha=1)

# Plot the coefficients as lambda changes
plot(lasso.fits)

# Get predictions on the original data
predictions.in.sample <- predict(lasso.fits, newx=as.matrix(df[,-(p+1)]),

type="response")
# Predictions like this will be a matrix, because we have many data points
# and many values of lambda
dim(predictions.in.sample)
# Compare the first few classes to the first few predictions --- how do you
# think the predictions work here?
head(predictions.in.sample)
head(df$country)

# Make up data to serve as test cases
new.data.points <- matrix(rnorm(n=47*p), ncol=p)

# Get predictions on a different data set
dim(predict(lasso.fits, newx=new.data.points, type="response"))

# Get predictions on a different data set at a particular value of lambda
# Why they decided to call this argument s and not lambda, I do not know

dim(predict(lasso.fits, newx=new.data.points, s=lasso.fits$lambda[1],
type="response"))

# Look at the first few of those
head(predict(lasso.fits, newx=new.data.points, s=lasso.fits$lambda[1],

type="response"))

# Get predictions on a different data set on the log-odds scale at a particular
# value of lambda
head(predict(lasso.fits, newx=new.data.points, s=lasso.fits$lambda[1],

type="link"))
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