
Homework 9

36-462/662, Spring 2022

Due at 6 pm on Thursday, 31 March 2022

Agenda: Practice with pieces of linear algebra which are important for dimension reduction,
especially for principal components analysis. There are a lot of problems, but they’re small.

Reminders (which you can use without proving):

• The trace of a square matrix is the sum of its diagonal entries.
• The trace of a matrix is always equal to the sum of its eigenvalues.
• The eigenvalues of a symmetric matrix are all real (not complex) numbers, and all of the eigenvectors

can be chosen to be orthogonal to each other.
• For any (scalar) random variables X and Y , Var [X + Y ] = Var [X] + Var [Y ] + 2Cov [X, Y ]. More

generally, Var [
∑p

i=1 Xi] =
∑p

i=1
∑p

j=1 Cov [Xi, Xj ].
• When ~X is a p-dimensional vector, Var

[
~X
]
is a p× p matrix, where Var

[
~X
]

ij
= Cov [Xi, Xj ].

• If a is a q × p matrix, then Var
[
a ~X
]

= aVar
[

~X
]

aT .

Unless otherwise noted, you can assume:

• every vector ~v is a p× 1 column matrix, so the inner or dot product ~v · ~v could also be written ~vT~v;
• 1 is the p× 1 matrix whose entries are all 1.
• ũ is a vector of length 1, and if ~v is a vector of arbitrary length, ṽ = ~v/‖~v‖, the length-1 vector in the

same direction1.

1. Online questions (10) were online and due on Monday.
2. Idempotency (5) A matrix w is idempotent when w = w2. Show that every eigenvalue of an

idempotent matrix is either 0 or 1. Hint: Pretend another eigenvalue was possible, and derive a
contradiction.

3. Projecting on to a line (experiment)
a. (2) Generate 100 random two-dimensional vectors. The exact distribution you use doesn’t matter,

so long as it’s not all concentrated on a single line. Give the command(s) you use to create
the vectors, explain why that command generates vectors from that distribution, and a plot
showing the locations of the vectors on the plane.

b. (3) Multiply all vectors by the matrix
[

1/2 1/2
1/2 1/2

]
. Give the commands you used to do this,

and plot the new vectors.
c. (2) Check numerically that the matrix from the previous part has two eigenvalues, 0 and 1, and

that the eigenvector with eigenvalue 1 is (proportional to)
[

1
1

]
. Hint: eigen().

d. (3) Explain, in words, where the new vectors are located, and the geometric relationship between
the old vectors and the new. (It may help to draw lines between the old and new vectors.)

4. Projecting on to a line (theory)
a. (3) Let ũ be an arbitrary vector of length 1, and ~v be any vector, of any length. Explain (in your

own words) the meaning of the following statement: “ũũT~v projects ~v on to the line defined
by ũ”.

b. (2) Show that the p× p matrix w ≡ ũũT is idempotent.
1The more usual notation in linear algebra would be û, but in statistics we use hats for estimation.
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c. (2) Show that ũ is an eigenvector of w with eigenvalue 1.
d. (1) Are there any other eigenvectors of w with non-zero eigenvalues?
e. (2) Explain (in your own words) why it makes sense that projecting on to a line should be

idempotent and have only one non-zero eigenvalue.
5. Projecting on to a plane (experiment) For plotting in three dimensions, you may find the

scatterplot3d library helpful.
a. (2) Generate 100 random vectors in three dimensions. (The exact distribution doesn’t matter

very much.) Give the command(s) you used to create the vectors, explaining how they create
the distribution you want. Plot the points in 3D space.

b. (2) Multiply all your random vectors by the matrix

 0.5 0 0.5
0 1 0

0.5 0 0.5

. Give the commands you

used to do this, and plot the new vectors in 3D space.
c. (1) Check numerically that of this matrix’s three eigenvalues, two of them equal 1 and the other

equals 0. Also check that it has two orthogonal value-1 eigenvectors.

d. (1) Check that

 1√
2

1

, and
 −1√

2
−1

 are both eigenvectors, with eigenvalue 1.

e. (1) Explain why your numerical answer from Q5c didn’t have to be (proportional to) the vectors
in Q5d, but they’re all nonetheless eigenvectors with eigenvalue 1.

f. (3) Explain, in words, where the new vectors are located, and the geometric relationship between
the old vectors and the new. (It may help to draw lines between the old and new vectors.)

6. Projecting on to a plane (theory) For any two-dimensional plane, we can always find two vectors
ũ1 and ũ2 which are in the plane, have length 1, and are orthogonal to each other, ũ1 · ũ2 = 0. Let u
be the p× 2 matrix whose columns are ũ1 and ũ2. Finally, let w = uuT .
a. (4) Explain, in your own words, the meaning of the following statement: “w~v projects ~v on to the

plane defined by ũ1 and ũ2”.
b. (2) Show that w is idempotent. Hint: Use the properties of the vectors ũ1 and ũ2.
c. (3) Show that w has two non-zero eigenvalues, and that ũ1 and ũ2 are both eigenvectors of

eigenvalue 1.
7. Projecting on to a linear subspace (5) Suppose we want to project on to a q-dimensional linear

subspace, q < p. Explain how to construct the matrix to do this projection, and why the matrix will be
idempotent and have q non-zero eigenvalues.

8. Linear regression is projection Suppose we linearly regress an n× 1 vector ~y on an n× p matrix of
regressors x by ordinary least squares. As you recall from your regression class, the vector of fitted
values is ~m = x(xT x)−1xT ~y. The matrix x(xT x)−1xT is called the hat matrix, or influence matrix,
or just h.
a. (2) Show that h is idempotent.
b. (3) Show that h has p non-zero eigenvalues. (Remember that x is n× p.)
c. (4) Explain, in your own words, the meaning of the following statement: “The actual response

vector is n dimensional, but ordinary least squares projects it into a p-dimensional subspace”.
9. Variance of linear combinations and positive-semi-definite matrices X1, X2, . . . Xp are random

variables, with Cov [Xi, Xj ] = cij (and so Var [Xi] = cii). We say that the collection of variables has
variance (or covariance) matrix c, of dimension p× p.
a. (1) Show that Var [

∑p
i=1 Xi] = 1T c1.

b. (2) Show that Var [
∑p

i=1 aiXi] = ~aT c~a, for any vector of coefficients ~a.
c. (3) A matrix b is called positive-semi-definite when for any vector ~v, ~vT b~v ≥ 0. (Some

people say non-negative-definite instead.) Explain why every variance matrix must be
positive-semi-definite.

d. (1) If ~vT b~v > 0 for all vectors ~v 6= ~0, the matrix is positive-definite (not just semi-definite).
Give an example of random variables where the variance matrix is non-negative definite, but
not positive definite. Hint: Consider negative correlations between some of the variables, and
find a linear combination of the variables with zero variance.

e. (2) Show that if a matrix is non-negative definite, then all its eigenvalues are ≥ 0.
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f. (2) Show that if a matrix is positive-definite, then all its eigenvalues are > 0.
g. (1) Suppose every linear combination of the variables has a variance > 0. Show that all the

eigenvalues of the variance matrix are > 0.
10. Correlating and decorrelating by matrix multiplication Suppose a matrix b is a symmetric,

positive-definite matrix with eigendecomposition b = vdvT , where d is the diagonal matrix of eigenval-
ues, and v is the matrix whose columns are the eigenvectors.
a. (3) Define b1/2 = vd1/2, where d1/2 is the diagonal matrix with the (positive) square roots of

eigenvalues of b on the diagonal. Show that b = (b1/2)(b1/2)T .
b. (3) Suppose that ~Z is a p-dimensional random vector where each dimension has variance 1 and

the dimensions are uncorrelated, so Var
[

~Z
]

= I. Show that Var
[
b1/2 ~Z

]
= b.

c. (3) Suppose that Var
[

~X
]

= b. Show that Var
[
b−1/2 ~X

]
= I.

11. Timing (1) How long, roughly, did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles
and legends; they are placed near the text of the corresponding problem. All plots and tables are generated by
code included in the R Markdown file. All quantitative and mathematical claims are supported by appropriate
derivations, included in the text, or calculations in code. Numerical results are reported to appropriate
precision. All parts of all problems are answered with actual coherent sentences, and raw computer code
or output are only shown when explicitly asked for. Text from the homework assignment, including
this rubric, is included only when relevant, not blindly copied.

Extra credit

a. (2) In Q6, we built the projection matrix for one choice of two orthonormal vectors lying in plane.
Show that we get the same projection matrix no matter what vectors we start with, so long as
they’ve got length 1, are orthogonal to each other, and lie in the plane.
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