
Homework 11: Showtime!

36-462/662, Spring 2022

Due Thursday, 21 April 2022 at 6 pm

Agenda: Implementing matrix factorization, and making movie recommendations.

Remember1 that in matrix factorization, we have an n× p matrix x, and we want to approximate it as
the product of two matrices,

x ≈ fgT

where f is n× q and g is p× q, and q � n, q � p. This is “factorization” because we have (approximately)
“factored” x into f and g. Here q is the number of factor variables.

In recommendation systems, x is the matrix of ratings, with n users and p items. If every user had rated every
item, we could do matrix factorization using PCA. Since most users have not rated most items, straightforward
PCA won’t work so well. One approach is to start with guesses about f and g, and iteratively improve:
holding f fixed, adjust g to fit the ratings we do have, and then, holding g fixed, optimize f .

In a little more detail, say that the rating of user i for item j is xij . Then we want

xij ≈
q∑

k=1
fikgjk .

Mean squared error tells us how well the combination of user scores f and item scores g fit the ratings x:

MSE = 1
|C|

∑
(i,j)∈C

(
xij −

q∑
k=1

fikgjk

)2

,

C being the set of pairs where user i has rated item j, and |C| the number of ratings. We can re-write this as

MSE = 1
|C|

n∑
i=1

∑
j∈I(i)

(
xij −

q∑
k=1

fikgjk

)2

or as (1)

= 1
|C|

p∑
j=1

∑
i∈U(j)

(
xij −

q∑
k=1

fikgjk

)2

, (2)

where I(i) are the items which user i has rated, and U(j) are the users who have rated item j.

In alternating least squares, we first hold g fixed, and minimize equation (1) to find f . Then we hold that
new f fixed, and minimize equation (2) to find g. Then we iterate to convergence.

There is one last bit of math. Notice that if d is a diagonal q × q matrix, then

fgT = fdd−1gT = fd(gd−1)T ,

so matrix factorizations aren’t unique. (Find one, and we can find another just as good by making compensating
changes to the user and the item columns.) We can fix this by insisting that every column of g have norm 1.

1In the notes, I wrote this as x ≈ fg and said g should be q × p. This is just a notational difference, but the way I’m writing
it here is a bit more common when people use matrix factorization for recommendation systems, whereas the way I wrote it in
the notes is more common in factor analysis in the social sciences.
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The file hw-11.R on the class website contains all the provided code for this assignment. (You will have to
write more code of your own.) Questions below refer to functions in this code by name. The names are
deliberately meaningless (which you should not imitate in your own code).

Some of the calculations in Q6 take multiple minutes on my computer. Use caching!

1. Reading questions are from Kearns and Roth’s The Ethical Algorithm (=TEA), chapter 2 (available
electronically through the library, if you haven’t bought a copy already). This looks ahead to HW 12.
a. (2) On p. 68, TEA says that “it has become virtually impossible to enforce notions of fairness that

work by trying to restrict the inputs given to a machine learning or algorithmic decision-making
process”. What are two specific reasons the book gives to justify this assertion?

b. (1) On p. 69, TEA explains a notion of fairness they call “statistical parity”. Define “statistical
parity” in your own words.

c. (1) On pp. 69–71, TEA lays out several objections to statistical parity. Explain the objection the
book regards as most serious.

d. (2) On p. 75, TEA claims that “even. . . the most accurate model may badly violate fairness”.
What is the reason given for this (in your own words)?

e. (1) On p. 77, TEA considers using different models for different groups. It gives one legal/ethical
objection to doing so, and one technical objection. Explain them both.

f. (1) What is being shown in the figure on p. 80? Specifically, what are the axes, what are the dots,
and what is the curve?

g. (1) Why, in the figures on p. 83, are there no points above and to the right of the curves, as there
are in the figure on p. 80?

h. (1) On pp. 81–82, TEA describes how an algorithm for optimizing a single criterion (like accuracy)
can be used to map the trade-off between minimizing two distinct criteria (like accuracy and
fairness). Explain the procedure, in your own words. We have seen a similar, if not identical,
idea earlier in the course — what is it?

2. Understanding the Math
a. (3) Explain how the following statement relates to equation (1) above: “Holding the item scores

constant, we can find each user’s scores on all factors by linearly regressing that user’s ratings
on the item scores.” Why should the intercept in this regression be 0? How many items must
each user have rated, in terms of the number of factors q?

b. (3) Explain how the following statement relates to equation (2) above: “Holding the user scores
constant, we can find each item’s scores on all factors by linearly regressing that item’s ratings
on the user scores.” Should the intercept in this regression also be 0? How many users must
have rated each item, in terms of q?

3. Linking Code and Math Explain your answers, don’t just assert.
a. (3) What part of the math does the function foo() implement? That is, what is foo() trying to

do, how does it try to do it, and how can you tell?
b. (3) What part of the math does bar() implement? What is the point of part of the code between

the call to apply() and the final return()?
c. (1) How do the foo() and bar() functions handle the possibility that some users didn’t rate

some items, so there are NA entries in the ratings matrix?
d. (4) What part of the math does baz() implement? Why is this an inefficient implementation

when many ratings are missing? (You do not have to suggest a better one.)
e. (4) What part of the math does qux() implement?
f. (5) What part of the math does alice() implement? Why does it set old.MSE to infinity before

it’s calculated anything?
4. Try It Out Where We Know the Answers

a. (3) What does the babur() function try to do, and how does it do it?
b. (3) Run babur() to produce a simulated data set with 50 users, 10 items, and two factors. Run

qux() on the rating matrix, again with 2 factors. Plot (i) the estimated user scores as a
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function of the true user scores, (ii) the estimated item scores as a function of the true item
scores, and (iii) the predicted ratings (found using the estimated scores) as a function of the
true ratings. (You may find it helpful to convert these objects to vectors before plotting.) You
should find that (iii) gives a much better match than either (i) or (ii) — why is that?

c. (3) What does the chandra() function do, and how does it work? Run it on the demo ratings
matrix you just made in Q4b, and verify that (i) this function creates the right over-all number
of NAs, (ii) it creates the right number of NAs per row, and (iii) it doesn’t change any other
entries in the matrix.

d. (3) Use the chandra() function to create a matrix from your earlier demo ratings matrix where
two ratings per user are replaced by NAs. Call the resulting matrix obscured. Run qux()
on this new matrix with NAs. Check that the new initial scores are not the same as the
initial scores that you got on the full matrix in Q3b. Using these initial scores for items and
users, calculate predicted ratings for all items and users. Make a plot of true ratings against
predicted ratings, using different plotting symbols (or colors, etc.) to indicate whether the
true rating was obscured or not. Do these initial estimates do a better job of matching the
un-obscured ratings? How can you tell?

e. (3) Run alice() on the matrix obscured that you made in the previous problem. Using those
estimated scores, calculate predicted ratings for all combinations of users and items. Plot the
true ratings against the estimated ratings, as in the previous question. Do these predictions
better match the un-obscured ratings than the initial predictions? Do they better match the
obscured ratings than the initial predictions?

f. (5) What is the point of Q4d and Q4e? That is, what do you learn from doing them, why is that
an important thing to know about the code, and how do Q4a–Q4c contribute to it?

5. Keep Asking It Questions Whose Answers We Know
a. (5) Write a function, calc.rmse(), which takes 3 arguments: (i) sub, a ratings matrix with some

obscured entries; (ii) super, the ratings matrix which sub was derived from; and (iii) mdl, a
model of the kind returned by alice(). Your function should calculate predictions for all
ratings, using mdl, and then calculate the RMSE for the ratings which are visible in super
but were NA in sub. Your code should allow for the possibility that super has some NA entries
as well, but you can assume that every entry that is NA in super will also be an NA in sub.
(That is, sub’s missing values are a superset of super’s.)
Using your calc.rmse() and your obscure matrix, calculate, and plot, the RMSE on the
hidden ratings for q ∈ 1 : 5 (i.e., from 1 to 5 factors inclusive). Why is 2 factors the best? (If
it is not the best, you have a mistake somewhere.)

b. (5) What is the point of Q5a? What do you learn from doing it, why is that an important thing to
know about the code, and why do I ask you to do this before using the code on real data?

c. (5) Why is your calc.rmse() giving us an estimate of predictiion error? What kind of estimate
is it (empirical risk, leave-one-out CV, k-fold CV, empirical risk plus optimism penalty, etc.)?
For full credit, explain your answers, rather than just making assertions.

6. Try It on Something Real The MovieLens project was an early movie recommendation system,
running during the 1997–1998 academic year. It had 943 users who gave 1–5 ratings on 1664 movies,
with about 100,000 ratings in the data set. The data is part of the recommenderlab package in R, as
MovieLense (sic), but in a slightly annoying format, so I have saved it as a matrix in MovieLense.csv.
Load the data and make sure it has the right dimensions.
a. (4) As you saw in Q2a and Q2b above, matrix factorization has trouble if there are users who’ve

rated too few items, or items rated by too few users, compared to the number of factors.
Create two histograms, one of the number of ratings per user, and the other of the number of
ratings per item. Report the number of users who have rated < 6 items, and the number of
items rated by < 6 users. Remove those rows and columns from the data set. (If necessary,
iterate.) Report the dimensions of the data set you are left with. Use this pruned data in all
further problems.

b. (4) Using the chandra() function, create a version of the data set which hides 1 extra ratings per
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user. How do you know that this has worked properly?
c. (5) Do matrix factorization for q ∈ 1 : 5 on the obscured data set. Use your calc.rmse() to

calculate, and plot, the RMSE of these models. What number of factors works best?
d. (5) Repeat what you did in Q6b and Q6c nine more times, and average the RMSEs you get from

each run. (Make sure that you are obscuring different ratings each time.) Plot the results.
What number of factors works best here on average?

7. Timing (1) How long, roughly, did you spend on this problem set?

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy
to follow. Plots are carefully labeled, with informative and legible titles, axis labels, and (if called for)
sub-titles and legends; they are placed near the text of the corresponding problem. All plots and tables are
generated by code included in the R Markdown file. All quantitative and mathematical claims are supported
by appropriate derivations, included in the text, or calculations in code. Numerical results are reported
to appropriate precision. All parts of all problems are answered with actual coherent sentences, and raw
computer code or output are only shown when explicitly asked for. Text from the homework assignment,
including this rubric, is included only when relevant, not blindly copied.

Extra Credit

These are all independent of each other.

a. Heteroscedasticity (3) When the variance isn’t constant, we say that a process is “heteroscedastic”
(or “heteroskedastic”), as opposed to “homoscedastic”. For the final model you selected in Q6, what is
the over-all MSE? Call this σ̂2. Calculate the MSE for each movie; call this ŝ2

j for movie j. Display a
histogram of the ŝ2

j . Does this suggest heteroscedasticity or homoscedasticity? For comparison, do a
simulation where, for movie j which was rated nj times, you generate nj N (0, σ̂2) random variables
and find their sample variance (so you end up with one simulated sample variance per movie). Explain
whether this simulation is homoscedastic or heteroscedastic. Plot the histogram from the simulation
and compare the distributions. Does this comparison suggest homoscedasticity or heteroscedasticity in
the data?

b. Interpretation (5) The recommenderlab package contains, along with the MovieLense data frame of
ratings, a MovieLenseMeta data frame of meta-data about the movies themselves, such as title, year,
and genre. Using the movie scores you estimated with q = 2 latent factors, try to use this meta-data
to interpret the factors for non-statisticians. That is, say in ordinary language how movies with high
scores on each factor differ from those with low scores on that factor. (If you think it’s not possible
to give such an interpretation, explain why not.) Hint: You’re trimming the data set in Q6a, so keep
track of which movies you’re dropping, and trim rows from the meta-data accordingly, or this will be
very hard to do.

c. Regularized recommendations (5) The reason we need at least q rating per user or per item is
that otherwise we are trying to estimate more coefficients than there are observations. Ordinary least
squares can’t do this, but methods for high-dimensional, “p > n” regression are perfectly happy to do
so. Modify the code provided to use the lasso; include a way to pick the lasso penalty. Does it change
any of the results for MovieLens? In particular, does it give a better fit on obscured movies, and/or
pick a different number of factors?

d. Fair recommendations (5) The dataframe MovieLenseUsers gives information about the users who
provided the ratings, including their sex and occupation. Compute the RMSE of the ratings when
q = 2 for both sexes, and for each occupational group. Are the RMSEs equal for different groups? Is
there a relationship between the size of the group and how accurate the predictions are? How big is the
difference in RMSEs between the sexes, compared to the difference in RMSEs across occupations?
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