
36-462/36-662, Data Mining

Cosma Shalizi

Lecture 1, 18 January 2022 — Welcome to the course

Agenda for today

• Course mechanics
– All of the details are in the syllabus

• General orientation to the course

What is statistical learning?

• Statistical learning:
– how to fit predictive models
– to training data
– usually by solving an optimization problem
– so the model will probably predict well
– on average
– on new data

Course mechanics

• Class meetings
• Readings
• Homework
• Class homepage: [http://www.stat.cmu.edu/~cshalizi/dm/22]

– Full syllabus with all the details
– Links to course assignments, due dates, etc.
– What to read when

• Gradescope: submitting almost all your work
• Canvas: submitting reading questions, gradebook, solutions
• Piazza: question-answering

Class meetings

• Lecture: me explaining and demonstrating stuff, you asking questions
• In-class exercises: you checking your understanding
• No electronics when we’re in person
• No recordings
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In-class exercises

• Short (< 20) minute problem-solving exercises related to lecture and homework
• Pencil-and-paper, not electronics
• Groups of up to 4 when we’re in person
• Most if not all class meetings, due via Gradescope the next day

Reading

• Most class meetings will have key reading: do it!
• Many will have suggested reading: try to do some of it
• Most will have background reading: if you get interested
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Figure 1: Principles of Data Mining
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Reading: Textbook

Reading: Textbook
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Reading: Textbook

Reading: Textbook

Reading: Recommended

Homework

• Implementing methods on actual data
• Working out some of the mathematical details
• Practicing interpreting and communicating the results
• One assignment per week, 12 in all

– Released by Friday each week (sometimes earlier)
– Usually due Thursdays at 6 pm via Gradescope

Homework

• 10% of each homework will be graded on the quality & clarity of your communication
– There will be a rubric for this on each assignment

• Most (if not all) homeworks will also have an online assignment
– Easy if you’ve done the reading
– Usually due Mondays at 6 pm via Canvas
– Online assignments will be about 10% of each homework

Grading

• Homework: 90% of your grade
– Lowest 3 homework grades dropped automatically
– No late homework
– If you do all homeworks with a minimum grade of ≥ 60%, lowest 4 grades get dropped

• In-class exercises: 10% of your grade
– Lowest 5 dropped automatically
– If you do all exercises with minimum of ≥ 60%, lowest 6 dropped

• No exams
• Grade boundaries: 90 for an A, 80 for a B, etc.

– 662: 97 for an A+, etc.

Time expectations

• This is a 9 credit-hour class
• You spend 3 hours in lecture each week
• ⇒ 6 hours working on the class outside of lecture each week

– averaged over the semester
– Talk to me if it’s taking much longer than that

Cheating, collaboration & plagiarism

• Don’t
• You can talk to each other, you can read whatever you like, but everything you turn in must

be your own work
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Figure 2: The Ethical Algorithm: The Science of Socially Aware Algorithm Design
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Figure 3: Statistical Learning from a Regression Perspective
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Figure 4: Elements of Statistical Learning

– Exception to “read whatever you like”: Don’t read old solutions, or share this year’s
– Exception to “all work must be your own: Working together is OK for in-class exercises

• Full policy in the syllabus
• You will need to do a HW 0 about the class cheating policy before anything else will be

graded

Homework format

• We will use R Markdown to integrate your code directly in to your writing
– Write a source file that’s mostly ordinary text, plus the R code you want
– “Knit” to an HTML or PDF with the text plus the output of the code (figures, tables, numbers)

• Ensures computational reproducibility: your results really came from the code that you say/think
they came from

• Keep your raw R Markdown; expect to be randomly picked to turn it in about once this semester

What are we going to learn about

So many things!

Nearest neighbors

• “This new case will do what similar cases did” is surprisingly powerful
• Need good ways to define “similar”
• Need good ways to find similar cases in big data sets
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Prediction and decision trees
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• Simple, binary-choice models for prediction
• Plus ways of combining many trees to get “forests”

Nonlinear features and kernels

• Recycle everything we know about linear models by using new, nonlinear features of the data
• Avoid having to actually calculate the transformations by using tailored similarity measures (“kernels”)
• Random nonlinear functions are surprisingly powerful

Dimension reduction

Figure 5: https://live.staticflickr.com/3560/3487720211_1df38f25e8.jpg

• More than 3D is very hard for us to grasp
– Maybe 5 if you use color and animation well

• Somehow reduce the huge number of features to something more manageable but still
intelligible

Clustering

• Divide the data into groups, without knowing what the right groups are
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• Using probability models so this isn’t totally arbitrary

Mathematical tools to make all this work

• Decision theory to think carefully about what’s a good prediction
• Optimization to actually fit good models
• Regularization to keep the models from getting too weird

Checking our guesses

• Estimates of prediction error on new data
– Models are always optimistic

• Approximate formulas based on optimization theory
• Cross-validation for seeing how well our models actually predict

– Divide the data, fit the model to one part, evaluate predictions on the other

Applications

• Could have looked at astronomy, biology, marketing, medicine, supply-chain management,
social welfare services. . .

• Will instead focus on four:
– Recommendation engines
– Credit scoring and loan decisions
– Criminal risk/recidivism prediction
– Predictive policing
– You live with the first two and hopefully will never be on the receiving end of the others

Recommendation engines

• “You may also like”
• Uses: nearest neighbors, clustering, dimension reduction, classification, . . .
• Abuses/unintended consequences. . .

Fairness in prediction

• How do we keep our models from just reproducing the injustices of the society around us?
– Can we keep our models from doing this? Should we?
– What counts as an injustice?

• Case study: credit scores, predicting who will repay loans, and loan-making
• Case study: how risky is it to release this just-arrested person, before their trial?
• Case study: what happens when the police try to predict where there will be crime? when

they try to predict who will do the crimes?

Waste, fraud and abuse

• Sometimes statistical learning just won’t work
– Bad data
– No useful predictions to be made
– Overwhelming data and the curse of dimensionality
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Figure 6: https://web.archive.org/web/20080901072600if_/http://failblog.files.wordpress.com/2008/01/
camerafail.jpg

Waste, fraud and abuse

Figure 7: https://web.archive.org/web/20080901072600if_/http://failblog.files.wordpress.com/2008/01/
camerafail.jpg

• Sometimes statistical learning is just the wrong thing to do

Where did this come from?

• Statistics worked out lots of ideas about how to make predictions and how to evaluate
predictions
– Regression, especially regression by matching and by nonlinear functions
– Principal components and factor analysis
– Classifiers and discriminant analysis
– Clustering and mixture models
– Cross-validation
– Many of these ideas weren’t very practical in the 1960s, or 1920s, or even 1800s. . .

• Computer scientists had been interested in getting machines to learn almost from the first
computers in the 1940s

• Between 1980 and 1995, some computer scientists started using those statistical tools, and
statisticians started using models and algorithms from CS
– Or from theoretical biology (“neural networks”), physics, etc.
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• “Data mining”, “Knowledge discovery in data bases”, “Statistical learning”, “Machine
learning”. . .

What will you need to know?

• 36-401, modern regression
• = Linear statistical models in R
• = Actual experience with predictive modeling of data

– + Mathematical statistics (for notions of inference and error)
– + Probability (for notions of distributions and risk)
– + Linear algebra through eigenvalues and eigenvectors (essential for multivariate data)
– + Calculus (essential for optimization)

Next time: The truth about linear regression

• A review, without the mythology, to set us up for more powerful prediction methods
• Do the reading!

Backup: Where did this really come from?

• “The state, the coldest of all cold monsters”

Backup: Where did this really come from?

• We invented data-processing machines, before computers, because we were already keep tabs on so
much about so many people

• We have traditions of data-driven prediction and decision-making going back hundreds of years
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Figure 8: http://farm3.static.flickr.com/2411/2404562785_5b887699de.jpg
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Backup: Where did this really come from?

Figure 9: https://live.staticflickr.com/369/19194898203_6f9b3bba5f_c.jpg

• Computers made it really easy to create, store and analyze data
– Create: sensors (phones, cameras, cash registers. . . ), digitization (doing everything via computer)
– Store: hard disks, disk arrays, data-bases. . .
– Analyze: that’s where we come in
– Organizations create and store the data even when they don’t have particular analyses in mind

Backup: Where did this really come from?

• Tension: flexibility to find many different patterns vs. vulnerability to noise and coincidence
– All the data is great: brilliant ideas from 50–100 years ago become practical!
– Why we look a lot of different ways of finding patterns
– All the data is a problem: If you run a gazillion analyses, (gazillion/20) will be significant at the

5% level
– Why we look at how to avoid fooling ourselves

Backup: Where did this really come from?

• If we hadn’t spent centuries re-shaping our societies to collect and act on data, dropping in people
skilled in statistical learning wouldn’t accomplish very much

• Even dropping in statistical learners and computers wouldn’t accomplish very much
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