
Linear Classifiers and Logistic Regression

36-462/36-662, Spring 2022

25 January 2022

Housekeeping

• We’re back in person next week: Margaret Morrison Hall A14
• Homework 0?
• Homework 1?

In our previous episode

• Regression ≡ predicting a quantitative, numerical variable Y from other variables X (maybe numerical
maybe not)

• If we use expected squared error, the optimum prediction rule is to guess µ(x) = E [Y |X = x]
• If we have to use a linear rule, the optimum is to guess E [Y ]− Cov[Y,X]

Var[X] (x− E [X])
– Or similarly for multivariate x

• Ordinary least squares estimates that consistently, pretty generally

Today: classification

• Classification is predicting a binary, categorical Y
• Some linear classification methods
• Some linear methods which also estimate probabilities
• What’s a good classifier anyway?

Classification

• We want to predict a binary, categorical Y from other variables X
– Often convenient to say the two classes are 0 and 1

• A classifier rule should map each x to a guess at the right category
– Multi-class classification: basically similar but more notation, skip for now

Classification accuracy and error rate

• The error rate of a classifier rule m : X 7→ {0, 1} is P (Y 6= m(X))
• The accuracy of m is P (Y = m(X))

– So error rate = 1− accuracy and vice-versa
• Clearly P (Y = 1|X = x) ≡ p(x) is going to matter here
• The optimal rule c(x) is c(x) = 1 if p(x) ≥ 0.5 and c(x) = 0 otherwise

– You will show this in HW 2
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Even the optimal classifier will make mistakes

• Suppose 0 < p(x) < 0.5
– Then when X = x, the optimal rule makes a mistake with probability p(x) (why?)

• Suppose 0.5 < p(x) < 1
– Then when X = x, the optimal rule makes a mistake with probability 1− p(x)

• The over-all error rate of the optimal rule is E [min (p(X), 1− p(X))]
– This won’t, generally, be zero (when will it be?)

A baseline: the constant classifier

• Consider the idiot who ignores X and always predicts the more common class
– If P (Y = 1) > 0.5 always predict 1, if P (Y = 1) < 0.5 always predict 0

• The idiot gets an accuracy of at least 50%
– Potentially much higher if one class is rare

• Always compare your accuracy to the idiot baseline

The prototypical case for the prototype method
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The prototype method

• Find the prototype feature vector for each class
– Prototypes are usually the means: for each class c, with nc data points in the training data,

~mc = 1
nc

∑
i:yi=c

~xi

– Sometimes use medians, trimmed means, etc.
• Classify a new point, ~x0, by seeing which class has the closest prototype to ~x0:

ŷ(~x0) = argmin
c
‖~x0 − ~mc‖
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The prototype method in action
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The prototype method in action
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The prototype method in action
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The prototype method. . .

• will tend to work well when each class forms a clump
• and the clumps are widely separated

The boundary

• Where is the boundary where our classification switches over?
– Clearly, it’s where the distance to the two class centers is equal.

• We remember how to find that from high school geometry:
– Draw the line segment connecting the two centers
– Then draw the perpendicular bisector of that line segment
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Difference between centers
Classification boundary / perpendicular bisector

The boundary, with algebra

‖~x0 − ~m1‖ = ‖~x0 − ~m0‖
‖~x0 − ~m1‖2 = ‖~x0 − ~m0‖2

‖~x0‖2 − 2~x · ~m1 + ‖~m1‖2 = ‖~x0‖2 − 2~x · ~m0 + ‖~m0‖2

‖~m1‖2 − ‖~m0‖2 = ~x0 · 2(~m1 − ~m0)

• So the prototype method is equivalent to the rule

ŷ(~x0) =
{

1 if
(
‖~m0‖2 − ‖~m1‖2)+ ~x0 · 2(~m1 − ~m0) ≥ 0

0 otherwise

• Notice we’ve got one equation for the boundary, with p unknown coordinates in ~x0, so we get a
(p− 1)-dimensional set of solutions (a line if p = 2, a plane if p = 3, etc.)

– The boundary is going to be perpendicular to the difference vector ~m1 − ~m0 (why?)

Linear classifiers

• A linear classifier takes the form

ŷ(~x0) = 1
{
b0 +~b · ~x0 ≥ 0

}
– ~b is perpendicular to the decision boundary (the normal vector of the decision boundary), and

the offset b0 says how far the decision boundary is from going through the origin
– (Some people instead write 1 {b+ ~w · ~x0 ≥ 0}, etc.)

• Every prototype classifier is a linear classifier, but not vice versa
– We just saw how to get the offset and the coefficient vector from the locations of the prototypes

• The prototype method doesn’t work well when the two classes inter-penetrate or overlap
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– Over-lap pulls the two class centers together
– We can still try to find a good linear classifier

• Multiple linear classifiers can give the same results
– (b0,~b) works just the same as (ab0, a~b) for any a > 0
– Often (but not always) we standardize so ‖~b‖ = 1

• Example code:

linear.classifier = function(x, coefficients, offset) {
# The following is actually a (multiple of) the directed distance
distance.from.plane = function(z) { offset + z %*% coefficients }
directed.distances = apply(x, 1, directed.distance.from.plane)
return(ifelse(directed.distances >= 0, 1, 0))

}

Margin

• Once we have a boundary, the margin of point ~xi ≡ distance of ~xi from the boundary
– We count the distance positively if ~xi is correctly classified, and negatively if ~xi is mis-classified

• In symbols,

γi(b0,~b) = (2yi − 1)
(
b0

‖~b‖
+ ~xi ·

~b

‖~b‖

)
– Stuff inside the parentheses ≡ directed distance of ~xi from the boundary (> 0 when ~xi is on

the positive side)
– (2yi − 1) is +1 if yi = 1 and −1 if yi = 0
– So γi is, as promised, positive for correctly-classified points and negative for mis-classified points

• The margin of the classifier is the smallest margin of any point:

γ(b0,~b) = min
i∈1:n

γi(b0,~b)

• γ > 0 if and only if all the points are correctly classified
• Notice that γi is continuous in the parameters

– ∴ γ is also continuous in the parameters
– The number of mis-classifications is dis-continuous. . .

Estimating a linear classifier

• Prototypes
• Maximize the classification accuracy

– Combinatorial optimization is hard (as we’ll go over in a few lectures)
– Usually many linear boundaries with equal accuracy

• Maximize the margin
– Continuous optimization is much nicer
– Prefers saner-looking boundaries
– Can control out-of-sample error rates in terms of in-sample margin

• “Rosenblatt’s Perceptron Rule” (1956): go over the data points one at a time
– If the current boundary classifies the current point correctly, change nothing and go on to the

next point
– Otherwise, move the boundary in the direction of accommodating the current point, and go on to

the next
– Repeat until nothing changes
– (Confusion: “perceptron” is also the name for a class of models)
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Working probabilities back in

• If a point is very close to the boundary, we shouldn’t have much confidence in the classification
• If a point is far away from the boundary, we should have more confidence

– Unless maybe it’s also far away from the training data?
• Let’s try to connect probabilities to classifications

First try: linear probability models

• Since Y = 0 or Y = 1, E
[
Y | ~X = ~x

]
= P

(
Y = 1| ~X = ~x

)
, so just use linear regression; the decision

boundary will be where the predicted response is 0.5
• Pro: requires no knowledge beyond how to type lm
• Con: cheerfully predicts probabilities > 1 or < 0

– You should be embarrassed to say things like “people in X county had a 200% probability of voting
for the Republican Party”

• Don’t do this
– Unless you are quite sure your features are always going to be in the range where the predicted

probability is sensible
– And you are quite sure that your later users are never going to extrapolate outside that range
– And you are comfortable using a linear regression here (because why, exactly?)

Second try: find a transformation of the probability that’s linear

• We care about p(~x) ≡ P
(
Y = 1| ~X = ~x

)
• Find a transformation of p that’s linear in ~x

– log p won’t work (why not?)
• There are many functions which map [0, 1] to (−∞,+∞) and are continuous and invertible

– Inverse of the standard Gaussian CDF (“probit”)
– Inverse of any CDF for a distribution with unbounded range

Think about the likelihood

• We observe data (~x1, y1), (~x2, y2), . . . (~xn, yn)
• Assuming independent responses (given features), the likelihood will be

n∏
i=1

p(~xi)yi(1− p(~xi))1−yi

– This is like a Bernoulli or binomial, but now each trial gets its own success probability that’s a
function of the features

• Re-arrange terms:
n∏
i=1

(1− p(~xi))
(

p(~xi)
1− p(~xi)

)yi

– p
1−p is the odds ratio; the likelihood only depends on the outcomes (yi) through the odds ratios

• Take the log:

L =
n∑
i=1

log (1− p(~xi)) + yi log
(

p(~xi)
1− p(~xi)

)
– The log-likelihood only depends on the outcomes yi through the log odds ratio log p

1−p
– The log odds ratio maps [0, 1] to (−∞,∞) continuously and invertibly
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– Any model we use is going to fundamentally involve the log odds ratio, so why don’t we make that
linear in the features?

Logistic regression

• Assume that
log
(

p(~x)
1− p(~xi)

)
= β0 + ~β · ~x

– Interpretation: unit change in feature xj adds βj to the log odds of Y = 1 vs. Y = 0
• Equivalently, assume that

p(~x) = eβ0+~β·~x

1 + eβ0+~β·~x
= 1

1 + e−(β0+~β·~x)

– No easy interpretation of how changing xj changes the probability that Y = 1
• Jargon: people call log p/(1− p) the logit transform of p (probability 7→ log-odds), and eq/(1 + eq)

is the inverse logit transform (log-odds 7→ probability)
– The faraway library implements these as the logit() and ilogit() functions

The logistic curve
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• Very large negative values of β0 + ~β · ~x: probabilities driven to 0
• Exponential take-off as β0 + ~β · ~x increases
• Probability 1/2 as β0 + ~β · ~x crosses 0
• Very large positive values of β0 + ~β · ~x : probabilities driven to 1
• “Diminishing returns” or “saturation”

– If we start from log-odds of 0 (probability 1/2), adding or subtracting 1 to the log-odds changes
the probability to 0.73 or 0.27. . .

– . . . but if we start from a log-odds of 10 (probability 0.9999546), adding or subtracting one from
log-odds barely matters (probabilities 0.9999833 or 0.9998766)

8



Thinking through logistic regression
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• Suppose we’ve estimated a logistic regression here and gotten β̂0 = 0, β̂1 = 1, β̂2 = 1
• The classification boundary will be the place where the log-odds = 0, so the probability = 1/2, or the

line x2 = −x1 (dashed, above)
• Movement perpendicular to the boundary changes the log odds
• Movement parallel to the boundary does not change the log odds

– The points A and B will have equal log odds for Y = 1 (and those log odds will be > 0)
– The point C will have slightly lower log odds than either A or B
– The point D will have much lower log odds than either A or B
– . . . even though D is geometrically closer to A and B than C is

How do we estimate logistic regression?

• Maximize the log-likelihood!
• Take derivatives w.r.t. parameters, set equal to zero. . .
• There is no closed-form solution

– This is the usual story with maximum likelihood; linear regression with Gaussian noise is kind of
weird in that you can write out the maximum explicitly

– Fortunately, we can optimize numerically
– We’ll come back to that in a week or so
– WARNING: Maximum likelihood estimation of a logistic regression will diverge when you give it

linearly-separable data
∗ Can you explain why?
∗ This is what we have in our running example
∗ You should be so lucky as to have this problem in real life

• We’ll look at optimization in detail in about a week. . .

How do we estimate logistic regression?

• In R:
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glm(y ~ x1 + x2, data = df, family = "binomial")

## Warning: glm.fit: algorithm did not converge

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##
## Call: glm(formula = y ~ x1 + x2, family = "binomial", data = df)
##
## Coefficients:
## (Intercept) x1 x2
## 1.462 2.852 3.747
##
## Degrees of Freedom: 199 Total (i.e. Null); 197 Residual
## Null Deviance: 277.3
## Residual Deviance: 2.16e-09 AIC: 6

• The family="binomial" option tells glm() that we’re trying to estimate the probability that y == 1,
and the default “link function” is the logistic
– if you want another transformation of the probability (e.g., “probit”), that’s another option

• Notice: warning about not converging due to perfect separation of the classes

Why logistic regression?

• Tradition / recycling of methods and algorithms from linear regression
– Tables of coefficients, p-values, confidence intervals. . .
– We can do very familiar statistical inference when the model’s right
– Less of a concern for data mining

∗ “in the predictive setting, all parameters are nuisance parameters” (Butler 1986, 1)
• It often works pretty well, especially if you give it good features

– . . . but lots of things work pretty well, if you give them good features

Summing up

• The prototype method works well for classification if each class comes from a well-separated clump
• The prototype method is a special case of linear classification, where we try to find a linear boundary

between the classes
• We can often get good performance by looking for classifiers with large margins
• Logistic regression extends linear classifiers to an actual probability model

– We can apply any probability threshold we like
– We can check then model
– . . . all of which may be superfluous if we just want to classifty
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Going beyond linear classification
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• Can’t separate the “x” points from the “o” points with a linear boundary
• In fact, no linear classifier will do much better than chance here
• So should we just give up on linear methods, or is there some way to adapt these ideas? A hint:
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Backup: Why “logistic”?

• The function et/(1 + et) is called the logistic function or logistic curve
• It first showed up in models of population growth against a fixed resource base: starts small, exponential

growth, then saturates as the population approaches what resources can support
– And “logistics” is the art of supplying an army (from the French word loger, “to lodge”)
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• So in one sense this is just re-cycling bits of math because the Ancestors could. . .
• . . . but the log-odds ratio does legitimately show up when we try to do maximum likelihood for any

model with binary responses
– Making the log-odds linear in ~x is less obvious
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