
Linear Classifiers and Logistic Regression

36-462/36-662, Spring 2022

25 January 2022

Housekeeping

• We’re back in person next week: Margaret Morrison Hall A14
• Homework 0?
• Homework 1?

In our previous episode

• Regression ≡ predicting a quantitative, numerical variable Y from other variables X (maybe numerical
maybe not)

• If we use expected squared error, the optimum prediction rule is to guess µ(x) = E [Y |X = x]
• If we have to use a linear rule, the optimum is to guess E [Y]− Cov[Y,X]

Var[X] (x− E [X])
– Or similarly for multivariate x

• Ordinary least squares estimates that consistently, pretty generally

Today: classification

• Classification is predicting a binary, categorical Y
• Some linear classification methods
• Some linear methods which also estimate probabilities
• What’s a good classifier anyway?

Classification

• We want to predict a binary, categorical Y from other variables X
– Often convenient to say the two classes are 0 and 1

• A classifier rule should map each x to a guess at the right category
– Multi-class classification: basically similar but more notation, skip for now

Classification accuracy and error rate

• The error rate of a classifier rule m : X 7→ {0, 1} is P (Y 6= m(X))
• The accuracy of m is P (Y = m(X))

– So error rate = 1− accuracy and vice-versa
• Clearly P (Y = 1|X = x) ≡ p(x) is going to matter here
• The optimal rule c(x) is c(x) = 1 if p(x) ≥ 0.5 and c(x) = 0 otherwise

– You will show this in HW 2

1

Even the optimal classifier will make mistakes

• Suppose 0 < p(x) < 0.5
– Then when X = x, the optimal rule makes a mistake with probability p(x) (why?)

• Suppose 0.5 < p(x) < 1
– Then when X = x, the optimal rule makes a mistake with probability 1− p(x)

• The over-all error rate of the optimal rule is E [min (p(X), 1− p(X))]
– This won’t, generally, be zero (when will it be?)

A baseline: the constant classifier

• Consider the idiot who ignores X and always predicts the more common class
– If P (Y = 1) > 0.5 always predict 1, if P (Y = 1) < 0.5 always predict 0

• The idiot gets an accuracy of at least 50%
– Potentially much higher if one class is rare

• Always compare your accuracy to the idiot baseline

The prototypical case for the prototype method

+

+
+ ++

++

+
+

+
+

++
+

++ +

+ +++

+
+

+ +++ +++
+

+
++++

+
+ +
+

+
+

+
+++++

+

+
+ +

+

+ ++
+

+++ +
+

+

++++
+

+

++
++

+

+

+

+

+
++

+++++
++ ++

+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−

−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

− −−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−

−
−−− −−−
−−−

−−−−
−

−−

−

−
−

−−
− −

−−−
−

−
− −−

−
−−−

−
− −−−

−

−

−

−
− −
−

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2

The prototype method

• Find the prototype feature vector for each class
– Prototypes are usually the means: for each class c, with nc data points in the training data,

~mc = 1
nc

∑
i:yi=c

~xi

– Sometimes use medians, trimmed means, etc.
• Classify a new point, ~x0, by seeing which class has the closest prototype to ~x0:

ŷ(~x0) = argmin
c
‖~x0 − ~mc‖

2

The prototype method in action

+

+
+ ++

++

+
+

+
+

++
+

++ +

+ +++

+
+

+ +++ +++
+

+
++++

+
+ +
+

+
+

+
+++++

+

+
+ +

+

+ ++
+

+++ +
+

+

++++
+

+

++
++

+

+

+

+

+
++

+++++
++ ++

+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−

−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

− −−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−

−
−−− −−−
−−−

−−−−
−

−−

−

−
−

−−
− −

−−−
−

−
− −−

−
−−−

−
− −−−

−

−

−

−
− −
−

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2

+

−

The prototype method in action

+

+
+ ++

++

+
+

+
+

++
+

++ +

+ +++

+
+

+ +++ +++
+

+
++++

+
+ +
+

+
+

+
+++++

+

+
+ +

+

+ ++
+

+++ +
+

+

++++
+

+

++
++

+

+

+

+

+
++

+++++
++ ++

+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−

−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

− −−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−

−
−−− −−−
−−−

−−−−
−

−−

−

−
−

−−
− −

−−−
−

−
− −−

−
−−−

−
− −−−

−

−

−

−
− −
−

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2

?

3

The prototype method in action

+

+
+ ++

++

+
+

+
+

++
+

++ +

+ +++

+
+

+ +++ +++
+

+
++++

+
+ +
+

+
+

+
+++++

+

+
+ +

+

+ ++
+

+++ +
+

+

++++
+

+

++
++

+

+

+

+

+
++

+++++
++ ++

+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−

−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

− −−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−

−
−−− −−−
−−−

−−−−
−

−−

−

−
−

−−
− −

−−−
−

−
− −−

−
−−−

−
− −−−

−

−

−

−
− −
−

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2

?

The prototype method. . .

• will tend to work well when each class forms a clump
• and the clumps are widely separated

The boundary

• Where is the boundary where our classification switches over?
– Clearly, it’s where the distance to the two class centers is equal.

• We remember how to find that from high school geometry:
– Draw the line segment connecting the two centers
– Then draw the perpendicular bisector of that line segment

4

+

+
+ ++

++

+
+

+
+

++
+

++ +

+ +++

+
+

+ +++ +++
+

+
++++

+
+ +
+

+
+

+
+++++

+

+
+ +

+

+ ++
+

+++ +
+

+

++++
+

+

++
++

+

+

+

+

+
++

+++++
++ ++

+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−

−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

− −−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−

−
−−− −−−
−−−

−−−−
−

−−

−

−
−

−−
− −

−−−
−

−
− −−

−
−−−

−
− −−−

−

−

−

−
− −
−

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2

+

−

Difference between centers
Classification boundary / perpendicular bisector

The boundary, with algebra

‖~x0 − ~m1‖ = ‖~x0 − ~m0‖
‖~x0 − ~m1‖2 = ‖~x0 − ~m0‖2

‖~x0‖2 − 2~x · ~m1 + ‖~m1‖2 = ‖~x0‖2 − 2~x · ~m0 + ‖~m0‖2

‖~m1‖2 − ‖~m0‖2 = ~x0 · 2(~m1 − ~m0)

• So the prototype method is equivalent to the rule

ŷ(~x0) =
{

1 if
(
‖~m0‖2 − ‖~m1‖2)+ ~x0 · 2(~m1 − ~m0) ≥ 0

0 otherwise

• Notice we’ve got one equation for the boundary, with p unknown coordinates in ~x0, so we get a
(p− 1)-dimensional set of solutions (a line if p = 2, a plane if p = 3, etc.)

– The boundary is going to be perpendicular to the difference vector ~m1 − ~m0 (why?)

Linear classifiers

• A linear classifier takes the form

ŷ(~x0) = 1
{
b0 +~b · ~x0 ≥ 0

}
– ~b is perpendicular to the decision boundary (the normal vector of the decision boundary), and

the offset b0 says how far the decision boundary is from going through the origin
– (Some people instead write 1 {b+ ~w · ~x0 ≥ 0}, etc.)

• Every prototype classifier is a linear classifier, but not vice versa
– We just saw how to get the offset and the coefficient vector from the locations of the prototypes

• The prototype method doesn’t work well when the two classes inter-penetrate or overlap

5

– Over-lap pulls the two class centers together
– We can still try to find a good linear classifier

• Multiple linear classifiers can give the same results
– (b0,~b) works just the same as (ab0, a~b) for any a > 0
– Often (but not always) we standardize so ‖~b‖ = 1

• Example code:

linear.classifier = function(x, coefficients, offset) {
The following is actually a (multiple of) the directed distance
distance.from.plane = function(z) { offset + z %*% coefficients }
directed.distances = apply(x, 1, directed.distance.from.plane)
return(ifelse(directed.distances >= 0, 1, 0))

}

Margin

• Once we have a boundary, the margin of point ~xi ≡ distance of ~xi from the boundary
– We count the distance positively if ~xi is correctly classified, and negatively if ~xi is mis-classified

• In symbols,

γi(b0,~b) = (2yi − 1)
(
b0

‖~b‖
+ ~xi ·

~b

‖~b‖

)
– Stuff inside the parentheses ≡ directed distance of ~xi from the boundary (> 0 when ~xi is on

the positive side)
– (2yi − 1) is +1 if yi = 1 and −1 if yi = 0
– So γi is, as promised, positive for correctly-classified points and negative for mis-classified points

• The margin of the classifier is the smallest margin of any point:

γ(b0,~b) = min
i∈1:n

γi(b0,~b)

• γ > 0 if and only if all the points are correctly classified
• Notice that γi is continuous in the parameters

– ∴ γ is also continuous in the parameters
– The number of mis-classifications is dis-continuous. . .

Estimating a linear classifier

• Prototypes
• Maximize the classification accuracy

– Combinatorial optimization is hard (as we’ll go over in a few lectures)
– Usually many linear boundaries with equal accuracy

• Maximize the margin
– Continuous optimization is much nicer
– Prefers saner-looking boundaries
– Can control out-of-sample error rates in terms of in-sample margin

• “Rosenblatt’s Perceptron Rule” (1956): go over the data points one at a time
– If the current boundary classifies the current point correctly, change nothing and go on to the

next point
– Otherwise, move the boundary in the direction of accommodating the current point, and go on to

the next
– Repeat until nothing changes
– (Confusion: “perceptron” is also the name for a class of models)

6

Working probabilities back in

• If a point is very close to the boundary, we shouldn’t have much confidence in the classification
• If a point is far away from the boundary, we should have more confidence

– Unless maybe it’s also far away from the training data?
• Let’s try to connect probabilities to classifications

First try: linear probability models

• Since Y = 0 or Y = 1, E
[
Y | ~X = ~x

]
= P

(
Y = 1| ~X = ~x

)
, so just use linear regression; the decision

boundary will be where the predicted response is 0.5
• Pro: requires no knowledge beyond how to type lm
• Con: cheerfully predicts probabilities > 1 or < 0

– You should be embarrassed to say things like “people in X county had a 200% probability of voting
for the Republican Party”

• Don’t do this
– Unless you are quite sure your features are always going to be in the range where the predicted

probability is sensible
– And you are quite sure that your later users are never going to extrapolate outside that range
– And you are comfortable using a linear regression here (because why, exactly?)

Second try: find a transformation of the probability that’s linear

• We care about p(~x) ≡ P
(
Y = 1| ~X = ~x

)
• Find a transformation of p that’s linear in ~x

– log p won’t work (why not?)
• There are many functions which map [0, 1] to (−∞,+∞) and are continuous and invertible

– Inverse of the standard Gaussian CDF (“probit”)
– Inverse of any CDF for a distribution with unbounded range

Think about the likelihood

• We observe data (~x1, y1), (~x2, y2), . . . (~xn, yn)
• Assuming independent responses (given features), the likelihood will be

n∏
i=1

p(~xi)yi(1− p(~xi))1−yi

– This is like a Bernoulli or binomial, but now each trial gets its own success probability that’s a
function of the features

• Re-arrange terms:
n∏
i=1

(1− p(~xi))
(

p(~xi)
1− p(~xi)

)yi

– p
1−p is the odds ratio; the likelihood only depends on the outcomes (yi) through the odds ratios

• Take the log:

L =
n∑
i=1

log (1− p(~xi)) + yi log
(

p(~xi)
1− p(~xi)

)
– The log-likelihood only depends on the outcomes yi through the log odds ratio log p

1−p
– The log odds ratio maps [0, 1] to (−∞,∞) continuously and invertibly

7

– Any model we use is going to fundamentally involve the log odds ratio, so why don’t we make that
linear in the features?

Logistic regression

• Assume that
log
(

p(~x)
1− p(~xi)

)
= β0 + ~β · ~x

– Interpretation: unit change in feature xj adds βj to the log odds of Y = 1 vs. Y = 0
• Equivalently, assume that

p(~x) = eβ0+~β·~x

1 + eβ0+~β·~x
= 1

1 + e−(β0+~β·~x)

– No easy interpretation of how changing xj changes the probability that Y = 1
• Jargon: people call log p/(1− p) the logit transform of p (probability 7→ log-odds), and eq/(1 + eq)

is the inverse logit transform (log-odds 7→ probability)
– The faraway library implements these as the logit() and ilogit() functions

The logistic curve

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β0 + β ⋅ x

p(
x)

• Very large negative values of β0 + ~β · ~x: probabilities driven to 0
• Exponential take-off as β0 + ~β · ~x increases
• Probability 1/2 as β0 + ~β · ~x crosses 0
• Very large positive values of β0 + ~β · ~x : probabilities driven to 1
• “Diminishing returns” or “saturation”

– If we start from log-odds of 0 (probability 1/2), adding or subtracting 1 to the log-odds changes
the probability to 0.73 or 0.27. . .

– . . . but if we start from a log-odds of 10 (probability 0.9999546), adding or subtracting one from
log-odds barely matters (probabilities 0.9999833 or 0.9998766)

8

Thinking through logistic regression

+

+
+ ++

++

+
+

+
+

++
+

++ +

+ +++

+
+

+ +++ +++
+

+
++++

+
+ +
+

+
+

+
+++++

+

+
+ +

+

+ ++
+

+++ +
+

+

++++
+

+

++
++

+

+

+

+

+
++

+++++
++ ++

+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−

−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

− −−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−

−
−−− −−−
−−−

−−−−
−

−−

−

−
−

−−
− −

−−−
−

−
− −−

−
−−−

−
− −−−

−

−

−

−
− −
−

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2 A

B

C

D

• Suppose we’ve estimated a logistic regression here and gotten β̂0 = 0, β̂1 = 1, β̂2 = 1
• The classification boundary will be the place where the log-odds = 0, so the probability = 1/2, or the

line x2 = −x1 (dashed, above)
• Movement perpendicular to the boundary changes the log odds
• Movement parallel to the boundary does not change the log odds

– The points A and B will have equal log odds for Y = 1 (and those log odds will be > 0)
– The point C will have slightly lower log odds than either A or B
– The point D will have much lower log odds than either A or B
– . . . even though D is geometrically closer to A and B than C is

How do we estimate logistic regression?

• Maximize the log-likelihood!
• Take derivatives w.r.t. parameters, set equal to zero. . .
• There is no closed-form solution

– This is the usual story with maximum likelihood; linear regression with Gaussian noise is kind of
weird in that you can write out the maximum explicitly

– Fortunately, we can optimize numerically
– We’ll come back to that in a week or so
– WARNING: Maximum likelihood estimation of a logistic regression will diverge when you give it

linearly-separable data
∗ Can you explain why?
∗ This is what we have in our running example
∗ You should be so lucky as to have this problem in real life

• We’ll look at optimization in detail in about a week. . .

How do we estimate logistic regression?

• In R:

9

glm(y ~ x1 + x2, data = df, family = "binomial")

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##
Call: glm(formula = y ~ x1 + x2, family = "binomial", data = df)
##
Coefficients:
(Intercept) x1 x2
1.462 2.852 3.747
##
Degrees of Freedom: 199 Total (i.e. Null); 197 Residual
Null Deviance: 277.3
Residual Deviance: 2.16e-09 AIC: 6

• The family="binomial" option tells glm() that we’re trying to estimate the probability that y == 1,
and the default “link function” is the logistic
– if you want another transformation of the probability (e.g., “probit”), that’s another option

• Notice: warning about not converging due to perfect separation of the classes

Why logistic regression?

• Tradition / recycling of methods and algorithms from linear regression
– Tables of coefficients, p-values, confidence intervals. . .
– We can do very familiar statistical inference when the model’s right
– Less of a concern for data mining

∗ “in the predictive setting, all parameters are nuisance parameters” (Butler 1986, 1)
• It often works pretty well, especially if you give it good features

– . . . but lots of things work pretty well, if you give them good features

Summing up

• The prototype method works well for classification if each class comes from a well-separated clump
• The prototype method is a special case of linear classification, where we try to find a linear boundary

between the classes
• We can often get good performance by looking for classifiers with large margins
• Logistic regression extends linear classifiers to an actual probability model

– We can apply any probability threshold we like
– We can check then model
– . . . all of which may be superfluous if we just want to classifty

10

Going beyond linear classification

x

x
x xx

xx

x
x

x
x

x xx

xx x

x xxx

x
x

x
xxx xxx

x

x
x

xxx
x
x x

x

x
x

x
xxxx x

x

x
x x

x

x
xx

x
xxx x

x

x

xx xx
x

x

xx
xx

x

x

x

x

x

x x

x
x xxx

x
x xx
x x

x
xx

x

x

x
x

x
x

x

x
x x x

x

x
x

x
x

x x
x x

x

x x
xxx

x x

xx
x

x

x
x

x

x

x
xx

x
x

xxx xx x
x

x
x
xxx

x
x

x
xx

x
xxx xxx

xx x

xx xx

x

xx

x

x
x

xx
x x

xx x

x

x

x xx
x

xx x
x

x xxx

x

x

x

x
x x
x

oo o
o

o

o

o o
o

ooo
o oo

o

o o

o
o

ooo
o o

o

o
oo o ooo o

o
oo

o o
o

ooo o
o

o

oo

o
o

o

o

oo
o
o

o oo
oooooo
o

o

o

o

oo
oo o

o oo o

o o
o o

o
o o

o

ooo

o

o o

o

oo
o

o
oo

o

o
o

o

o
o

o

o
ooo

oooo o
o

o

o

o

o

oo o

o
o

o o
o

o
oo

o o

oo

o
o

o

o

o
o

ooo oo
o

o
o

ooo
o

o
o

o

o
o

o

o
o

o

o

oo

o
o oo

o
o o

oo o

o

o

o o

o

oo

o

o
o

o
oo

o
o
o

o
ooo o

o

o

o
o

−5 0 5 10

−
10

−
5

0
5

x1

x2

• Can’t separate the “x” points from the “o” points with a linear boundary
• In fact, no linear classifier will do much better than chance here
• So should we just give up on linear methods, or is there some way to adapt these ideas? A hint:

−10 −5 0 5 10 15−
60

−
40

−
20

 0
 2

0
 4

0
 6

0
 8

0

−15
−10

 −5
 0

 5
 10

x1

x2

x2
 *

 x
1

o
o

x
x

x

x
x

xx

o

x

xxx
x

oo

x

oo

xxx

o

x

oo
oo o

o
o

x xx

o
o

o

x
xx

oooo
o

x

o

x

o

x

o

o

x

o
o

xxx

o

x

o
o

oo

x
x

x

oooo

xx

o

x

oo

x

oo
o

o
o

x

o

xx

oo
o

xx

o

x
x

x

o

x

o
o

xxx

xx

o

x

o

x

oo
o

o

x
x

oo

xx

o

xxxx

o
ooo

x

oo

x x
x

o

x
x

o

x

o

x
xxx

o

xxx

o

xxxx

o
o

x

o

xx

o
o oo

xx

o

xxx

o

x

oo

xx x
x

o
o

oooo

x

o

x

oo o

x

oo o

x

o

xxx
o o

o

x

o

x

oo
o

x

o

x

oo
o

x

o ooo
o

x

o oo

xxx

o

x

o

xxx

oo

x

oo

xxx

o

xxx

o

x
x x

x
xx

ooo

x

o
oo

x

o

x
x

o

x

o

xx

o
o

xx

o

xx

ooo

o

oo

x
x

o

x
x

o

x

oo

xxx

o

x

oo

x
x

o

xx

o
o

x x

o

x

x

ooooo

x

o
oo

o

x x x
x

oo o

x

o

x

o

xx

o
oo

xx

o

x

o

o
o

xxx

oo
o

xx

o o

x

o

x
x

x
x

x

o
o

xx
x

o
o

xx

oo

o

xxx
x

o
o

x

o

x
x

x
xxx

oo

x

o
o

xxx

o
o

x
x

oo

x

Backup: Why “logistic”?

• The function et/(1 + et) is called the logistic function or logistic curve
• It first showed up in models of population growth against a fixed resource base: starts small, exponential

growth, then saturates as the population approaches what resources can support
– And “logistics” is the art of supplying an army (from the French word loger, “to lodge”)

11

• So in one sense this is just re-cycling bits of math because the Ancestors could. . .
• . . . but the log-odds ratio does legitimately show up when we try to do maximum likelihood for any

model with binary responses
– Making the log-odds linear in ~x is less obvious

References

Butler, Ronald W. 1986. “Predictive Likelihood Inference with Applications.” Journal of the Royal Statistical
Society B 48:1–38. http://www.jstor.org/stable/2345635.

12

http://www.jstor.org/stable/2345635

	Housekeeping
	In our previous episode
	Today: classification
	Classification
	Classification accuracy and error rate
	Even the optimal classifier will make mistakes
	A baseline: the constant classifier
	The prototypical case for the prototype method
	The prototype method
	The prototype method in action
	The prototype method in action
	The prototype method in action
	The prototype method…
	The boundary
	The boundary, with algebra
	Linear classifiers
	Margin
	Estimating a linear classifier
	Working probabilities back in
	First try: linear probability models
	Second try: find a transformation of the probability that's linear
	Think about the likelihood
	Logistic regression
	The logistic curve
	Thinking through logistic regression
	How do we estimate logistic regression?
	How do we estimate logistic regression?
	Why logistic regression?
	Summing up
	Going beyond linear classification
	Backup: Why ``logistic''?
	References

