36-462/662, Spring 2022
27 January 2022 (Lecture 4)
The risk of a strategy is its expected loss, averaging over \(X\) and \(Y\) \[ r(s) = \mathbb{E}\left[ \ell(Y, s(X)) \right] \]
We know the answer to this one: \[\begin{eqnarray} s^*(x) & = & \mathbb{E}\left[ Y \right] + \frac{\mathrm{Cov}\left[ X,Y \right]}{\mathrm{Var}\left[ X \right]}(x - \mathbb{E}\left[ X \right]) \end{eqnarray}\] The expected squared error is \[ \mathbb{E}\left[ (Y-s^*(X))^2 \right] = \mathrm{Var}\left[ Y \right] - \frac{(\mathrm{Cov}\left[ X,Y \right])^2}{\mathrm{Var}\left[ X \right]} = r(s^*) \]
(Similarly for multivariate \(X\) but more linear algebra)