
Predictions and Decision Theory

36-462/662, Spring 2022

27 January 2022 (Lecture 4)

Housekeeping

• Back on campus starting next week
• Homework 0: tonight at 6 pm via Canvas
• Homework 1: tonight at 6 pm via Gradescope
• Homework 2: releasing tomorrow morning (if not before)

Previously

• We’ve looked at linear regression, linear classifiers and logistic regression as predictive methods
• In general: We want to use data to learn rules which we can be confident will predict well on average

on new cases
• All the terms in that phrase have to be made precise
• Today we’re going to focus on “rules” and “predict well on average”

Prediction

• Prediction is a guess about some event we haven’t seen yet, but could see
– Inference, but to an observable, not a parameter of the distribution
– “The next roll of these 3 dice will be 18” vs. “The variance of rolling 3d6 is 8.75”

• We’re interested in predictions done according to rules
• Rules are functions from inputs to outputs

– We don’t need to presume the actual target is a function of the inputs

Good and bad predictions

• We need a way of saying whether a rule is working well or not
• Predictions that come true are better than those that don’t
• But are all mistakes equally bad?

– Predicting 6 inches of snow when the reality is 5 seems better than predicting 10 inches, or 0 inches
– Predicting someone’s healthy when they’re sick seems worse than the other way around

• This is where decision theory comes in

The elements of a decision problem

1. Possible actions A
2. Information X, which we get to see before taking an action
3. States Y picked by Nature
4. A strategy s is a function from X (information) to A (action)
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• There is usually some class of strategies S available
5. A loss function `(y, a): how much it hurts to take action a when the state is y

• The loss function is crucial but not enough on its own

The risk of a strategy

• The risk of a strategy is its expected loss, averaging over X and Y

r(s) = E [`(Y, s(X))]

• This assumes that X and Y are both random variables with a joint distribution, say P (X,Y )

– For now, our actions and strategy don’t change P
– We’ll come back to decisions where our actions matter later in the course

Risk minimization

• Loss is bad, risk is expected loss ⇒ try to minimize risk
• Use the law of total expectations:

E [`(Y, s(X))] = E [E [`(Y, s(X))|X]]

– Inner expectation is the conditional risk
• Now define

σ(x) ≡ argmin
a∈A

E [`(Y, a)|X = x]

– Take the action that minimizes the conditional expected loss
– “Do what’s best, given what you know”

Minimizing the conditional risk really is optimal

• Minimizing the conditional risk everywhere minimizes the over-all risk:

σ = argmin
s:X 7→A

E [`(Y, s(X))]

• This is worth proving
• It’s enough to show that for any other strategy s, r(s)− r(σ) ≥ 0 (why?)

r(s)− r(σ) = E [`(Y, s(X))− `(Y, σ(X))] (1)
= E [E [`(Y, s(X))− `(Y, σ(X))|X]] (2)

• So for each x,
E [`(Y, s(x))|X = x] ≥ E [`(Y, σ(x))|X = x]

• Write r0 for the minimal risk r(σ)
– Generally not 0 (as we’ve seen with regression and classification)

Minimizing the risk in a class of strategies

• Remember S is the strategies we can actually use
• Typically doesn’t contain σ so we do the best we can:

s∗ = argmin
s∈S

r(s)

• r(s∗) ≥ r0, maybe much larger, maybe only a little
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The approximation-estimation trade-off

• A basic decomposition: for any strategy s,

r(s) = r0 + (r(s∗)− r0) + (r(s)− r(s∗))

• r0 = true minimum risk
• r(s∗)− r0 = approximation error (due to using S)
• r(s)− r(s∗) = estimation error (due to not using s∗)
• Generally:

– Making S larger reduces approximation error (better optimum)
– Making S larger increases estimation error (harder to find the optimum)

• We will come back to this over and over through the course

Back to prediction problems

1. Actions = predictions
2. Information = covariates, regressors, features (etc.)
3. States = the target variable we’re trying to predict
4. Strategy = prediction rule = function from information to actions
5. Loss function = ?

• Different loss functions will give us different risks for the same strategy
• Different loss functions will lead to different optimal prediction rules

Regression, for example

1. Actions = predictions = real numbers = guesses at the regressand
2. Information = vectors of real numbers = covariates, regressors (“independent variables”)
3. States = “dependent variable”, “regressand”
4. Strategy = prediction rule = regression function
5. Loss function = ?

• The usual loss function is squared error, `(y, a) = (a− y)2

• Risk then is expected squared error
• The minimizer of E

[
(Y − a)2] is a = E [Y ]

• The minimizer of E
[
(Y − a)2|X = x

]
is a = E [Y |X = x]

• The true or optimal regression function is µ(x) = E [Y |X = x], the conditional mean function

Linear regression, for example

• Generally the conditional mean function is very nonlinear in x

• What if we’re only allowed to use linear functions of x?

• We know the answer to this one:

s∗(x) = E [Y ] + Cov [X,Y ]
Var [X] (x− E [X]) (3)

The expected squared error is

E
[
(Y − s∗(X))2] = Var [Y ]− (Cov [X,Y ])2

Var [X] = r(s∗)

• (Similarly for multivariate X but more linear algebra)
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Alternative loss functions for regression

• Remember all this is with squared error as the loss function
• Absolute error, `(y, a) = |y − a|

– Risk minimized with median, not mean
• 0-1 or Hamming error: 0 if y = a, 1 if y 6= a

– Risk minimized with the mode
• Huber’s robust error, continuously switch over from absolute error to squared error

– No closed form for the optimal action
• Tolerance region: zero error if |y − a| ≤ ε, then growing (say) linearly in |y − a|

– Also no closed form
• Asymmetric errors if over-shooting is better (or worse) than under-shooting
• Some of these are easier to work with than others, but that doesn’t make them application-

appropriate

Some losses for classification

• Classification = predicting a categorical variable
• 0-1 loss: `(y, a) = 0 if a = y, `(y, a) = 1 if y 6= a

– Makes sense when the actions are class labels
– Minimized by predicting the most probable class

• Weighted losses: `(y, a) = Lya for some matrix, says how bad it is to predict a when the
reality is y
– e.g. “you said this person didn’t have cancer when they really did” vs. “you made this

person go in for additional tests when they were fine”
– also makes sense when the actions are class labels

• Maybe we predict the probability that Y = 1 (rather than Y = 0) so A = [0, 1]
• Log loss: `(y, a) = −y log a− (1− y) log (1− a)
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0-1 loss vs. log loss
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• 0-1 loss just cares if your probability is on the correct side of 1/2
• Log loss wants you to get the probability just right, gets more upset when you’re confident and wrong
• Smooth functions (like log loss) are often easier to work with theoretically and computationally, but 0-1

is more forgiving of getting the distribution wrong. . .
• Choosing a loss function is not something decision theory helps us with. . .

Other possible loss functions

• “How long did the user stay on our site”?
• “Did the user click on an ad?”
• “How much money did we make from this transaction?”
• “Did the patient live?”
• “How much did treating this patient cost us?” -(Some of these are good things, so “loss”

= − good thing)

Connecting to data

• I promised we’d focus on the “rules” and “predict well on average” parts of “learn rules from data that
will predict well, on average, on new cases”

• Rules are strategies
• “predict well on average” = low risk
• Risk is defined as an expectation using the true distribution, E [`(Y, s(X))] =

∫
`(y, s(x))p(x, y)dxdy

• We don’t know the true distribution p(x, y)
• We just have limited data
• How can we minimize risk?
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Connecting to data

• Natural idea: minimize the average risk on the data

r̂n(s) ≡ 1
n

n∑
i=1

`(yi, s(xi))

– Often called the empirical risk
• By law of large numbers, r̂n(s)→ r(s) as n→∞, for any fixed s
• Empirical risk minimization: Pick the rule/strategy that minimizes the empirical risk

ŝ ≡ argmin
s∈S

r̂n(s)

– “Pick the rule that did best, on average, on the data you have”
– Least squares and maximum likelihood are both examples of ERM

• To understand when this works, how it works,. and what else we might do, we’re going to have to know
understand a bit more about optimization. . .

Back-up: Alternatives to minimizing risk

• Risk is expected loss
• Other things we could minimize:

– Median loss
– 95th (99th, 99.9999th) percentile of loss (≈ “value at risk” in fiance)
– Maximum loss (minimax)
– Probability of one specific type of error (false negative, false positive)

• We could not minimize at all:
– Any strategy with a risk (median loss, etc.) below some threshold is OK (“satisficing” instead of

optimizing)
– Any strategy where P (`(Y, s(X)) > ε) < δ is OK

• But risk is traditional:
– It makes sense if you’re working “actuarially”, looking for rules that will be OK applied across a

large population
– Minimax can get pretty paranoid (what if the Moon is really an alien trap?)
– The math is clean
– Preferences that meet some axioms can be “rationalized” as minimizing risk nn * Some of the

axioms are hard to swallow
– There’s a lot of tradition to draw on

Back-up: Why decision theory?

• Jerzy Neyman (2nd greatest statistician of the 20th century): forget about inductive inference, study
rules of inductive behavior

• Abraham Wald: reformulates inference as decision problems, shows how to connect to practical things
like quality control and how to fight WWII

• Statistical theorists everywhere after the war: yes! use decision theory to find optimal procedures for
all the inference problems!

• Statistical learning: inherited decision theory from theoretical statistics
– The people coming from computer science were, at least to begin with, fixated on what we’d call

0-1 loss for classification, and situations where the minimum risk was exactly 0
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Back-up: Loss vs. utility, “risk” vs. “risk”

• Statisticians like to work with loss functions, and minimize expected loss
• Economists like to work with utility functions, and maximize expected utility
• Insert a minus sign to turn one into the other
• In business and finance, they like to maximize returns in dollars (or yuan, etc.)

– Economists would say that the utility of each extra unit of money is declining, so maximizing
expected profit is not necessarily maximizing expected utility

∗ And taxing the rich at higher rates than the poor is straightforwardly better, in terms of
utility, than a flat tax. . .

• In business and finance, “risk” is (basically) defined as the variance of the monetary returns
– Occasionally leads to confusion
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