36-462/662, Spring 2022
1 February 2022 (Lecture 5)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{\Risk}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \newcommand{\Indicator}[1]{\mathbb{I}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \newcommand{\eqdist}{\stackrel{d}{=}} \newcommand{\OptDomain}{\Theta} \newcommand{\OptDim}{p} \newcommand{\optimand}{\theta} \newcommand{\altoptimand}{\optimand^{\prime}} \newcommand{\ObjFunc}{{M}} \newcommand{\optimum}{\optimand^*} \newcommand{\Hessian}{\mathbf{h}} \]
The tangent line to \(\ObjFunc\) is flat at the minimum \(\optimum\)
The minimum on this domain is at the right-hand boundary, and the tangent line is not flat
\(\ObjFunc(\optimand)\) (solid) vs. \(\ObjFunc(\optimum) + \frac{1}{2}(\optimand - \optimum)^2 \frac{d^2 \ObjFunc}{d\optimand^2}(\optimum)\) (dashed) around the local minimum \(\optimum\)
Suppose \[ \ObjFunc(\optimand) = -q\log{\optimand} - (1-q)\log{(1-\optimand)} \] with \(0 < q< 1\), \(\OptDomain = [0,1]\)
For \(\optimum\) to be a local minimum,