
Optimization — Basics from Calculus

36-462/662, Spring 2022

1 February 2022 (Lecture 5)

Previously

• Risk of a strategy s is r = E [`(Y, s(X))], expected loss on new data
• Empirical risk of strategy s is r̂(s) = n−1∑n

i=1 `(Yi, s(Xi)), average loss on old data
• We want to find the empirical risk minimizer ŝ,

ŝ ≡ argmin
s∈S

r̂(s)

• We’re now going to start opening up the black box of argmin

Optimization: some jargon

• The function we’re trying to optimize is the objective function, let’s say M today
• The argument to M is (say) θ

– Some people call this the optimand
• The possible values of θ is Θ, the domain or feasible set, whose dimension is (say) p
• Optimization can be minimization or maximization, as we like; we’ll stick with minimizing

Local vs. global minima

• θ is a global minimum when θ′ 6= θ ⇒ M(θ′) ≥M(θ)
– Not necessarily unique!

• θ is a local minimum when M(θ) ≤M(θ′) whenever θ′ is close enough to θ
– Every global minimum is also a local minimum
– If there’s only one local minimum anywhere, it’s the global minimum

• Lots of local minima tend to make it harder to find the global minimum
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Local vs. global minima
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“The” minimum: value vs. location

• If θ∗ is a global minimum, then M(θ∗) is the value of the minimum or minimal value, in symbols

min
θ∈Θ

M(θ)

• But θ∗ itself is the location of the global minimum, in symbols

argmin
θ∈Θ

M(θ)

• Example: the minimal value of (x− 1)2 is 0, but the location of the minimum is x = 1
• Transformations: If L is an increasing function, then L(M(θ)) has the same location for its minimum,

but a different value
– Example: log-likelihood vs. likelihood

• Both value and location can change with Θ
– important later, when we look at constraints

Finding the optimum: calculus basics

• Assume for now that θ is a continuous variable, and M is a nice, continuous function
– We’ll talk about not-so-nice situations later

• In fact, assume for now that θ is just a single real number
• Some things you probably remember from calculus about minima

– Isn’t dM
dθ = 0?

– Isn’t d2M
dθ2 > 0?

• Yes, pretty much
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The first order condition

• At an interior, minimum θ∗, dMdθ (θ∗) = 0
– If M had a slope, we could keep decreasing M by moving past θ∗ in one direction or the other

The first order condition
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The tangent line to M is flat at the minimum θ∗

The first order condition and boundary optima

• At an interior, minimum θ∗, dMdθ (θ∗) = 0
– If M had a slope, we could keep decreasing M by moving past θ∗ in one direction or the other

• This reasoning fails at the boundaries of Θ
– Easy example: Θ = [0, 1], M(θ) = 1− θ
– Boundary optima can have zero slope though
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The first order condition and boundary optima
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The minimum on this domain is at the right-hand boundary, and the tangent line is not flat

The first order condition and boundary optima

• At an interior, minimum θ∗, dMdθ (θ∗) = 0
– If M had a slope, we could keep decreasing M by moving past θ∗ in one direction or the other

• This reasoning fails at the boundaries of Θ
– Easy example: Θ = [0, 1], M(θ) = 1− θ

• But, except at boundaries, we need dM
dθ (θ∗) = 0

• This is called the first-order condition for a minimum

The second order condition

• Maxima as well as minima also have zero derivatives, so do inflection points
• A sufficient condition for a point with dM/dθ = 0 to be a minimum: d2M/dθ2 > 0

– This is called the second order condition
– Sufficient, but not necessary: θ4 has a minimum at θ = 0, even though d2M/dθ2 = 12θ2 = 0 there
– Minima which don’t meet the second-order condition tend to be weird and fragile, like this

• Generally, we can find local minima in one dimension by using the first- and second- order conditions
together:
– Find all the solutions to dM

dθ (θ∗) = 0
– Keep those with d2M

dθ2 (θ∗) > 0

A bit more insight into the second-order condition

• Remember the definition of a derivative:
df

dx
(x0) ≡ lim

x→x0
f(x)− f(x0)x− x0
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• Turn this around: for x ≈ x0,
f(x) ≈ f(x0) + (x− x0) df

dx
(x0)

• This is a first-order Taylor approximation
• Second-order Taylor approximation: for x ≈ x0,

f(x) ≈ f(x0) + (x− x0) df
dx

(x0) + 1
2(x− x0)2 d

2f

dx2 (x0)

• First-order condition says: dM
dθ (θ∗) = 0

• So, near θ∗,

M(θ) ≈M(θ∗) + 1
2(θ − θ∗)2 d

2M

dθ2 (θ∗)

• “Generic minima look, locally, like parabolas”

Generic minima look, locally, like parabolas
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M(θ) (solid) vs. M(θ∗) + 1
2 (θ − θ∗)2 d2M

dθ2 (θ∗) (dashed) around the local minimum θ∗

What about more than one dimension?

• Usually θ is a vector of p > 1 dimensions
• We can’t, usually, do a separate optimization on each dimension
• What should happen at an interior minimum θ∗?
• M should have no slope at θ∗ in every direction

– Otherwise, we could lower the value of the function by moving
• M should increase as we move away from θ∗ in every direction
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No slope in any direction: the first-order condition

• Pick your favorite direction ~v, a vector of length 1, say (v1, v2, . . . vp)
• The slope of M in that direction, at θ, is (chain rule)

p∑
i=1

vi
∂M

∂θi
(θ) = ~v · ∇M(θ)

• Here ∇M(θ) is the gradient of M at θ, the vector of partial derivatives

∇M(θ) =
[

∂M
∂θ1

(θ) . . . ∂M
∂θp

(θ)
]

• No slope in any direction at θ∗ means: ~v · ∇M(θ∗) = 0 for all ~v 6= 0
• And that means: ∇M(θ∗) = 0
• The first-order condition is: “the gradient vanishes at the optimum”

First-order condition or first-order conditions?

• We have one vector equation ∇M(θ∗) = 0
• This is the same as a system of p equations for the partial derivatives:

∂M

∂θ1
(θ∗) = 0

...
∂M

∂θp
(θ∗) = 0

• This is good because we also have p unknowns, θ∗ =
[
θ∗1 . . . θ∗p

]
• p equations for p unknowns ⇒ typically a solution

– Typically a unique solution if all the equations are linear in θ∗
– Often not unique because nonlinear in θ∗
– But still, there are solutions!

The function increases in every direction: the second-order condition

• Second-order Taylor series for vectors:

M(θ) ≈M(θ∗) + (θ − θ∗) · ∇M(θ∗) + 1
2(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗)

• Here ∇∇M(θ∗) is the matrix of second partial derivatives, ∂2M
∂θi∂θj

, a.k.a. the Hessian
• First-order condition says the gradient term is zero at θ∗, so

M(θ) ≈M(θ∗) + 1
2(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗)

• θ∗ is a minimum means:
(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗) > 0

Positive-definite matrices

• A square matrix h is positive-definite when, for any non-zero vector ~v,

~v · h~v > 0
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– If we only have ~v · h~v ≥ 0 then h is only non-negative-definite (or positive semi-definite)
• Not the same as h only having positive entries!

– E.g., p =
[

1 −0.5
−0.5 1

]
is positive-definite

– E.g., n =
[

0.5 1
1 0.5

]
is not positive-definite

• We write this as h � 0
– Non-negative-definite is h � 0

• For symmetric matrices: h is positive definite ⇔ all eigenvalues of h are > 0
– The Hessian matrix ∇∇M is always symmetric (why?)
– We’ll do a refresher on eigenvalues in a few weeks before we really need them

The first- and second- order conditions for minima

For θ∗ to be a local minimum,

• First-order condition: “The gradient must vanish”, ∇M(θ∗) = 0
– Necessary, except at a boundary

• Second-order condition: “The Hessian should be positive-definite”, ∇∇M(θ∗) � 0
– Sufficient; minima where it’s violated are weird and a-typical

Near a minimum, nice functions look quadratic

• Go back to the Taylor approximation: if θ∗ is a local minimum, so ∇M(θ∗) = 0, then

M(θ) ≈M(θ∗) + 1
2(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗)

• Consequence: if we come close to the minimum, so ‖θ − θ∗‖ = ε� 1, then

M(θ) ≈M(θ∗) +O(ε2)

• If we can get ε-close to the location of the optimum, we get O(ε2)-close to the value of the optimum
(and ε2 � ε� 1)

– Turned around, to get within δ of the value of the optimum, we need to only get with O(
√
δ) of

the location (and δ �
√
δ � 1)

Minimizing risk vs. minimizing empirical risk

• We want to minimize risk,

θ∗ = argmin
θ∈Θ

r(θ) = argmin
θ∈Θ

E [`(Y, s(X))]

• We can minimize empirical risk,

θ̂ = argmin
θ∈Θ

r̂(θ) = argmin
θ∈Θ

1
n

n∑
i=1

`(yi, s(xi))

• We’re going to see later that
‖θ̂ − θ∗‖ = O(1/

√
n)

– Basically: because of the law of large numbers
– Assuming θ has finite dimensions which don’t change with n
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• Consequence:
r(θ̂) ≈ r(θ∗) +O(1/n)

with factors from the Hessian buried inside the big O
• ⇒ Minimizing the empirical risk comes closer and closer to minimizing the true risk

Morals to remember, about minimizing smooth functions

• Local vs. global minima
• First-order condition: “the gradient vanishes”, ∇M(θ∗) = 0

– Except at boundaries
• Second-order condition: “the Hessian is positive-definite”, ∇∇M(θ∗) � 0

– Except for weird, a-typical situations
• “Near a minimum, nice functions look quadratic”
• ⇒ Coming within O(ε) of the location of the minimum puts us within O(ε2) of the value of the minimum

Next time: actual algorithms

• How do we get the computer to actually use all this calculus?
– Algorithms for optimization based on these and related ideas

• What happens because the computer can’t do calculus exactly?
– Optimization error and its consequences

Backup: What if ∇∇M � 0?

• What if the Hessian is only non-negative-definite, or positive-semi-definite?
• Then there’s (at least) one direction ~v where

~v · ∇∇M~v = 0

• This suggests that if we start at θ∗ and take a small enough step in the direction ~v, we don’t (necessarily)
increase M

• We can have this when there is a continuous set of minima
– Imagine a bowl where the base is raised in the middle — there’s a ring of minima around the

center
• This is a weird and delicate situation

x

y

z
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Backup: Big-O notation

• f(x) = O(g(x)) as x→∞ means: there’s some C > 0 so |f(x)| ≤ Cg(x) for all sufficiently big x
– E.g., 10000000 + e−x = O(1)$
– E.g., 37x2 + 42x+ 1421 = O(x2)
– “Is at most of the order of”, sometimes abbreviated “is of the order of”
– For relevance, typically try to give the tightest bound we can, 37x2 = O(x4) but that’s not
informative

– Use the same notation for limits x→ 0
• Small o notation: f(x) = o(g(x)) means: lim f(x)

g(x) = 0

Backup: What do I mean when I say “weird, a-typical”?

• The set D is dense in another set A when there’s a point in D arbitrarily close to every point in A
– E.g., the rationals are dense in [0, 1]

• The set N is nowhere dense in A when it’s not dense in any open subset of A
– Open intervals: think of say (1/4, 3/4), as opposed to [1/4, 3/4]
– On the line, open sets are, roughly, unions of a countable number of open intervals; similarly in Rd

• The set M is meager if it’s a countable union of nowhere-dense sets
– The rational numbers are meager, because there’s only (!) a countable infinity of them, and each

of them is nowhere-dense
• A set is typical if its complement is meager

– Alternately: a set is typical if it’s both open and dense
– The irrational numbers in [0, 1] are typical

• Local minima of smooth functions with positive second derivatives are typical, those with zero second
derivatives are not typical
– If you start from a minimum which does have a positive second derivative, you can continuously

adjust it by arbitrarily small amounts and it still has a minimum at the same location with a
positive second derivative (set is open and sense)

– If you find a function with a zero second derivative, there are arbitrarily small tweaks to the
function where you now have the same minimum but a positive second derivative

∗ e.g., x4 vs x4 + εx2, for ε > 0 as small as you like
• These notions come from topology, which started by asking what properties of shapes stay the same

under smooth transformations
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