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Previously

• What we really want is the risk-minimizing strategy,

s∗ ≡ argmin
s∈S

E [`(Y, s(X))] = argmin
s∈S

r(s)

• We often settle instead for the empirical risk minimizer

ŝn ≡ argmin
s∈S

1
n

n∑
i=1

`(yi, s(xi)) = argmin
s∈S

r̂(s)

• Finding the minimizers means doing optimization
– Objective function M , variable being optimized θ
– Local vs. global optima
– Location of optimum θ∗, value of optimum M(θ∗) (argmin vs. min)
– First-order condition: the function is flat at the minimum, dMdθ (θ∗) = 0
– Second-order condition: the function curves upwards at the minimum, d

2M
dθ2 (θ∗) > 0

Today

• What if θ has more than one dimension?
– First order condition: “the gradient vanishes”
– Second order condition: “the Hessian is positive-definite”

• What about actual algorithms for computing θ∗?
– Solving the first-order condition equations
– Using the first derivatives
– Using the first and second derivatives
– Adapting to big data

• How hard should we try to optimize anyway?
• “What do I type in R?”

What about more than one dimension?

• Usually θ is a vector of p > 1 dimensions
• We usually can’t optimize each coordinate separately
• What should happen at an interior minimum θ∗?
• M should have no slope at θ∗ in every direction
• M should increase as we move away from θ∗ in every direction
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No slope in any direction: the first-order condition

• Pick any direction ~v, a vector of length 1, say (v1, v2, . . . vp)
• The slope of M in that direction, at θ, is (chain rule)

p∑
i=1

vi
∂M

∂θi
(θ) = ~v · ∇M(θ)

• Here ∇M(θ) is the gradient of M at θ, the vector of partial derivatives

∇M(θ) ≡
[

∂M
∂θ1

(θ) . . . ∂M
∂θp

(θ)
]

• No slope in any direction at θ∗ means: ~v · ∇M(θ∗) = 0 for all ~v 6= 0
• And that means: ∇M(θ∗) = 0
• The first-order condition is: “the gradient vanishes at the optimum”

No slope in any direction
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First-order condition or first-order conditions?

• We have one vector equation ∇M(θ∗) = 0
• This is the same as a system of p equations for the partial derivatives:

∂M

∂θ1
(θ∗) = 0

...
∂M

∂θp
(θ∗) = 0

• We also have p unknowns, θ∗ =
[
θ∗1 . . . θ∗p

]
• p equations for p unknowns ⇒ typically a solution

– Typically a unique solution if all the equations are linear in θ∗
– Often not unique because nonlinear in θ∗
– But still, there are solutions!
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The function increases in every direction: the second-order condition

• Second-order Taylor series for vectors:

M(θ) ≈M(θ∗) + (θ − θ∗) · ∇M(θ∗) + 1
2(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗)

• Here ∇∇M(θ∗) is the matrix of second partial derivatives, ∂2M
∂θi∂θj

, a.k.a. the Hessian1, or h
• First-order condition says the gradient term is zero at θ∗, so

M(θ) ≈M(θ∗) + 1
2(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗)

– “Typically, functions look quadratic near their minima”
• θ∗ is a minimum means:

(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗) > 0

Positive-definite matrices

• A square matrix h is positive-definite when, for any non-zero vector ~v,

~v · h~v > 0

– If we only have ~v · h~v ≥ 0 then h is only non-negative-definite (or positive semi-definite)
• Not the same as h only having positive entries!

– E.g., p =
[

1 −0.5
−0.5 1

]
is positive-definite

– E.g., n =
[

0.5 1
1 0.5

]
is not positive-definite

• We write this as h � 0
– Non-negative-definite is h � 0

• For symmetric matrices: h is positive definite ⇔ all eigenvalues of h are > 0
– The Hessian matrix ∇∇M is always symmetric (why?)
– We’ll do a refresher on eigenvalues in a few weeks before we really need them

The first- and second- order conditions for minima

For θ∗ to be a local minimum,

• First-order condition: “The gradient must vanish”, ∇M(θ∗) = 0
– Necessary, except at a boundary

• Second-order condition: “The Hessian should be positive-definite”, ∇∇M(θ∗) � 0
– Sufficient; minima where it’s violated are weird and a-typical
– Necessary: ∇∇M(θ∗) � 0, “the Hessian must be non-negative-definite”

Near a minimum, nice functions look quadratic

• Taylor approximation again: if θ∗ is a local minimum, so ∇M(θ∗) = 0, then

M(θ) ≈M(θ∗) + 1
2(θ − θ∗) · (∇∇M(θ∗)) (θ − θ∗)

1After L. O. Hesse, 1811–1874
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• Consequence: if we come close to the location of minimum, so ‖θ − θ∗‖ = δ � 1, then

M(θ) ≈M(θ∗) +O(δ2)

• If we can get δ-close to the location of the optimum, we get O(δ2)-close to the value of the
optimum (and δ2 � δ � 1)

• To get within ε of the value of the optimum, we need to only get within O(
√
ε) of the location

of the optimum (and
√
ε� ε if ε� 1)

Minimizing risk vs. minimizing empirical risk

• We want to minimize risk,

θ∗ = argmin
θ∈Θ

r(θ) = argmin
θ∈Θ

E [`(Y, s(X))]

• We can minimize empirical risk,

θ̂ = argmin
θ∈Θ

r̂(θ) = argmin
θ∈Θ

1
n

n∑
i=1

`(yi, s(xi))

• We’re going to see later that
‖θ̂ − θ∗‖ = O(

√
1/n)

– Basically: because of the law of large numbers
– Assuming θ has finite dimension p not changing with n

• Consequence:
r(θ̂) ≈ r(θ∗) +O(p/n)

– Factor of p comes from the Hessian (basically)
• ⇒ Minimizing the empirical risk comes closer and closer to minimizing the true risk

Finding the minimum: optimization algorithms

• An optimization algorithm starts from M and Θ, and (usually) a starting guess θ(0), and finds an
approximation to argminθ∈ΘM(θ), say θout

• We care about approximating the value, not the location: the algorithm gets ε-close when

M(θout) ≤ ε+ min
θ∈Θ

M(θ)

• Usually, the longer we let the algorithm run, the better the approximation
– How many steps does the algorithm need to get ε-close to the optium?

∗ O(1/ε) or O(ε−d) steps is polynomial (tolerable, depending on d)
∗ O(log 1/ε) is logarithmic (very nice)
∗ exp (O(1/ε)) is exponential (bad)

How do we build an optimization algorithm?

• Remember our first and second order conditions:

∇M(θ∗) = 0 (1)
∇∇M(θ∗) � 0 (2)

• Two big approaches at this point:
1. Solve the equations
2. Keep moving until the gradient ∇M goes to 0
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Optimizing by equation-solving

• Use the first-order condition to get a system of equations

∇M(θ∗) = 0

– One equation per coordinate of θ (as we saw)
– When M is empirical risk r̂, sometimes called the estimting equations or even normal equa-
tions

• Solve the system of equations for θ∗
• If there’s more than one solution, check the second-order conditions
• We did this for ordinary least squares, weighted least squares. . .

Pros and cons of the solve-the-equations approach

• Con: You need to set up the system of equations, and often finding ∇M would itself be a
pain
– Pro: Numerical differentiation is a thing, however

• ?: You need to solve a system of equations: good if there are good solvers for that type of
system of equations, not so good otherwise
– Pro: 200+ years of work have given us very good solvers for linear systems

∗ Pro: For linear systems, even very old-fashioned methods that go back to Gauss
around 1800 get ε approximations with O(log 1/ε) iterations

– Con: General-purpose nonlinear equation-solving is still much harder
∗ ?: sometimes works by using Taylor expansion to linearize
∗ Con: sometimes works by turning the solve-the-equations into “minimize the differ-
ence between the left and the right hand side of the equation”

Go back to the calculus

• Start with a guess θ(0)

• Find ∇M(θ(0))
• Move in the opposite direction:

θ(1) = θ(0) − a0∇M(θ(0))

• Repeat:
θ(t+1) = θ(t) − at∇M(θ(t))

• First-order condition means: a local optimum will be a fixed point!
• Issue: how big are the step sizes at?

– (Sometimes called the learning rate, confusingly enough)

Constant-step-size gradient descent

• Inputs: objective function M , step size a, initial guess θ(0)

while ((not too tired) and (making adequate progress)) {
Find ∇M(θ(t))
Set θ(t+1) ← θ(t) − a∇M(θ(t))

}
return (final θ)

• “not too tired”: Set a maximum number of iterations

5



• “making adequate progress”:
– M isn’t changing by too little to bother with
– θ isn’t changing by too little to bother with
– ∇M isn’t too close to zero

Constant-step-size gradient descent

• Pick an a > 0 that’s small and use it at each step
• Each iteration of gradient descent takes O(p) operations

– Find p derivatives, multiply by a, add to θ(t−1)

• If M is nice, θ(t) is an ε-approximation of the optimum after t = O(ε−2) iterations
– i.e. at that point M(θ(t)) ≤ ε+ minM(θ)
– “Nice” here means: convex and second-differentiable

• If M is very nice, θ(t) is an ε-approximation after only t = O(log 1/ε) iterations
– “nice” plus strictly convex

Gradient descent is basic, but powerful

• Gradient descent works well when there’s a single global minimum, no flat parts to the function, and
the step size is small enough to not over-shoot or zig-zag

• It’s actually been re-invented a number of times under different names
– e.g., “back-propagation” (Rumelhart, Hinton, and Williams 1986)

• It’s the work-horse for large-scale industrial applications in modern machine learning
– especially as stochastic gradient descent

• It’s still a bit mysterious why it works so well for those applications, which actually have lots of local
minima!

Beyond gradient descent: Newton’s method

• Needing to pick the step-size at is annoying
• We’d like to take big steps, but ∇M is a local quantity and might be mis-leading far away
• ⇒ We’d like to take bigger steps when the gradient doesn’t change much
• This is Newton’s method:

θ(t+1) = θ(t) −
(

h(θ(t))
)−1
∇M(θ(t))

– One route to this: pretend M is quadratic, as justified by a Taylor expansion around
the true minimum

• This is like gradient descent, but using the inverse Hessian to give the step size
– And possibly a bit of rotation away from the gradient

Pros of Newton’s method

• Adaptively-chosen step size makes it harder to zig-zag, over-shoot, etc.
• Generally needs many fewer iterations than gradient descent

– Need O(ε−2) steps to get an ε approximation to the minimum for nice functions
– For very nice functions, only need O(log (log (1/ε))) iterations
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Cons of Newton’s method

• Hopeless if the Hessian doesn’t exist or isn’t invertible
• Need to take O(p2) second derivatives and p first derivatives, total O(p2)
• Need to find θ(t+1)

– Seems straightforward, it’s θ(t+1) = θ(t) −
(
h(θ(t))

)−1∇M(θ(t))
– But inverting a [p× p] matrix takes O(p3) operations in general, so this would be an O(p3) step

• Alternative: solve hθ(t+1) = hθ(t) −∇M(θ(t)) for θ(t+1) for the unknown θ(t+1)

– (Take the basic update equation for Newton’s method and multiply both sides by h from the left)
– Solving a system of p linear equations for a particular RHS can be done faster than inverting a

matrix (which’d give the solution for any RHS)
– Lots of variants to use approximate Hessians rather than the full deal (BFGS, built in to R’s

optim(), is one of these)
• So each iteration is O(p2), much slower than gradient descent’s O(p)

– O(p2) to get Hessian and gradient plus O(p2) to solve for update = O(p2)

Gradient methods with big data

r̂(θ) = 1
n

n∑
i=1

`(yi, s(xi; θ))

• Getting a value of r̂ at a particular θ is O(n), getting ∇r̂ is O(np), getting h is O(np2)
– And that’s assuming calculating s(xi; θ) doesn’t slow down with n

• Maybe OK when n = 100 or n = 104, but with n = 109 or n = 1012, we really don’t know which way to
move

A way out: sampling is an unbiased estimate

• Pick one data point I at random, uniform on 1 : n
• `(yI , s(xI ; θ)) is random, but

E [`(yI , s(xI ; θ))] = r̂(θ)

• Re-brand `(yI , s(xI ; θ)) as r̂I(θ)

E [r̂I(θ)] = r̂(θ) (3)
E [∇r̂I(θ)] = ∇r̂(θ) (4)

E [∇∇r̂I(θ)] = h(θ) (5)

• ⇒ Don’t optimize with all the data, optimize with random samples

Stochastic gradient descent

• Draw lots of random one-point samples and let their noise cancel out:

0. Start with initial guess θ(0), adjustment rate a
1. While (not too tired) and (making adequate progress))

a. At tth iteration, pick random I uniformly on 1 : n
b. Set θ(t+1) ← θ(t) − a

t∇r̂I(θ
(t))

2. Return final θ

• Shrinking step-sizes by 1/t ensures noise in each gradient dies down
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Stochastic gradient descent (2)

• Tons of variants:
– Put the data points 1 : n in a random order and then cycle through them
– Don’t check the “making adequate progress” condition too often
– Adjust the 1/t step-size to some other function
– Stochastic Newton’s method: Use the sample to also calculate the Hessian and take a Newton’s

method step
– Mini-batch: Sample a few of random data points at once
– Mini-batch stochastic Newton’s method, etc.

Pros and cons of stochastic gradient methods

• Pro: Each iteration is (or at least constant in n)
• Pro: Never need to hold all the data in memory at once
• Pro: Does converge eventually (at least if the non-stochastic method would)
• Cons: sampling noise increases optimization error

– That is: more iterations to come within the same ε of the optimum as non-stochastic GD or
Newton

• Over-all pro: often low computational cost to make the optimzation error small compared to the
estimation error

More optimization algorithms

• Ones which play more tricks with derivatives than just gradient descent and Newton (“conjugate
gradient”, etc., etc.)

• Ones which avoid derivatives (“simplex” or “Nelder-Mead”)
• Ones which avoid derivatives and try random changes (“simulated annealing”)
• Ones which use natural-selection-with-random-variation to evolve a whole population of approximate

optima (“genetic algorithms”)

Estimation error vs. optimization error

• Remember our approximation error vs. estimation error decomposition:

r(ŝ) = r(σ) + (r(s∗)− r(σ)) + (r(ŝ)− r(s∗)) (6)
= (true minimum risk) + (approximation error from limited strategy set) (7)

+(estimation error from not knowing the best-in-class set) (8)

• Now we don’t even have ŝ = argmin r̂(s), we have ŝout, the output of some algorithm

r(ŝout) = r(σ) + (r(s∗)− r(σ)) + (r(ŝ)− r(s∗)) + (r(ŝout)− r(ŝ)) (9)
= (optimal risk) + (approximation error) + (estimation error) + (optimization error)(10)

• Optimization error ≈ what I’ve been calling ε
– only ≈ because of r vs. r̂ issue

Estimation error vs. optimization error (2)

risk = minimal risk + approximation error + estimation error + optimization error
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• Minimal risk and approximation error don’t change with n or with how we optimize
• Estimation error shrinks with n: for large n, typically O(p/n)

– Possibly more slowly converging in n for some families, or if p grows with n
• Optimization error shrinks as we do more computational work
• There’s no point to making the optimization error much smaller than the estimation error

– More exactly: lots of work for little real benefit
• So: don’t try to make the optimization error much smaller than O(p/n)

Don’t bother optimizing more precisely than the noise in the data will support

What do we do in R?

• The basic function for optimization in R is optim()

optim(par, fn, gr, method, ...)

• par = Initial guess at the “parameters” = a vector, our θ(0)

• fn = Function to be minimized, our M(θ)
– Should take a single vector as input and return a single numeric value
– R lets functions be arguments to other functions without any fuss

• gr = Function to calculate the gradient, our ∇M(θ)
– Should take a vector and return a vector of the same length
– Optional, not used by all methods, if missing R will try numerical differentiation

∗ Numerical differentiation can be very slow so your doing some math to work this out can be
very useful

• method = Which optimization algorithm?
– Default is Nelder-Mead a.k.a. simplex method, doesn’t use derivatives, can be good for dis-

continuous functions but inefficient for smooth ones
– BFGS is a Newton-type method, but with clever tricks to not spend quite so much time computing

and inverting Hessians
• ...: lots of extra settings, including things like the “tolerance” (how small an improvement in fn / M

to bother with)

No, really, what do we do in R?

my.fn <- function(t) {
- exp(-0.25*sqrt(t[1]^2+t[2]^2))*cos(sqrt(t[1]^2+t[2]^2))

}
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No, really, what do we do in R?

my.fit <- optim(par=c(1,1), fn=my.fn, method="BFGS") # Starting here is dumb!
str(my.fit)

## List of 5
## $ par : num [1:2] 4.96e-10 4.96e-10
## $ value : num -1
## $ counts : Named int [1:2] 41 13
## ..- attr(*, "names")= chr [1:2] "function" "gradient"
## $ convergence: int 0
## $ message : NULL

my.fit$par # Location of the minimum

## [1] 4.956205e-10 4.956205e-10

my.fit$value # Value at the minimum

## [1] -1

What if optim() isn’t enough?

• We’ll look briefly at doing constrained optimization in R next time
• [https://cran.r-project.org/web/views/Optimization.html] is your friend

Summing up

• When optimizing multiple variables at once, we still want all the derivatives to be zero (first-
order condition, ∇M(θ∗) = 0), and the second derivative to be positive in every direction
(second order condition, ∇∇M(θ∗) � 0)

• With real data and real computers, finding the empirical-risk-minimizer means using an
algorithm to solve an optimization problem

• These algorithms almost never give the exact optimum but just an approximation
• Usually, the longer an algorithm is allowed to work, the closer it can get to the true optimum
• This adds optimization error on to estimation error
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• For many statistical learning problems, gradient descent and Newton’s method work really
well
– With sampling to make them more computationally efficient for big data

• Don’t bother reducing the optimization error much beyond the estimation error
• No one algorithm is best for all problems

Backup: More about second-order conditions

• I’ve been writing ∇∇M � 0, which is a sufficient condition for a local minimum (if the first-order
condition also holds)

• ∇∇M � 0 is a necessary condition for a local minimum
– There can’t be any directions in which the function curves down

• Again, think of θ4 in one dimension
• Again, the typical local minimum of a smooth function has a positive-definite Hessian, cases where it’s

only non-negative-definite are fragile
– See backup slides to lecture 5 for more, including an illustration

Backup: Representation vs. Reality

• Optimization algorithms don’t really start with M , Θ and θ(0)

• They start with digital representations of all these things
• Different representations can be easier or harder to work with
• Digital representations of continuous things always have limited detail, which can lead to extra error
• The late Joseph Traub, of our CS department, developed an interesting theory about how much detail

the representations had to have, to achieve a certain accuracy
– See Traub and Werschulz (1998) if that sounds interesting

Backup: Why are there so many different optimization algorithms?

• “Come up with a new algorithm” is a way to make a mark. . .
• No one algorithm works well on every problem

– Sometimes obvious: don’t use Newton’s method if Θ is discrete
• Fundamental limit: no algorithm is universally better than others on every problem, shown by the no

free lunch theorem of Wolpert and Macready (1997)
– In fact: For every problem where your favorite algorithm does better than mine, I can design a

new problem where my algorithm leads yours by just as much (Culberson 1998)
• We need to know something about the problem to select a good optimizer
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