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Previously

e What we really want is the risk-minimizing strategy,

s* = argmin E [¢{(Y, s(X))] = argmin r(s)
s€S s€S

o We often settle instead for the empirical risk minimizer

1 n
§, = argmin — Zé(yi, s(z;)) = argmin 7(s)
seS i—1 ses

e Finding the minimizers means doing optimization
— Objective function M, variable being optimized 6
— Local vs. global optima
— Location of optimum 6*, value of optimum M (6*) (argmin vs. min)

— First-order condition: the function is flat at the minimum, %(9*) =0

— Second-order condition: the function curves upwards at the minimum, ‘ﬁTA{[(G*) >0

Today

e What if # has more than one dimension?
— First order condition: “the gradient vanishes”
— Second order condition: “the Hessian is positive-definite”
e What about actual algorithms for computing 6*7
— Solving the first-order condition equations
— Using the first derivatives
— Using the first and second derivatives
— Adapting to big data
e How hard should we try to optimize anyway?
e “What do I type in R?”

What about more than one dimension?

e Usually 6 is a vector of p > 1 dimensions

e We usually can’t optimize each coordinate separately

e What should happen at an interior minimum 6*?

e M should have no slope at 8* in every direction

e M should increase as we move away from 6* in every direction



No slope in any direction: the first-order condition

o Pick any direction ¥, a vector of length 1, say (v1,v2,...vp)
e The slope of M in that direction, at 6, is (chain rule)

E.OM .

o Here VM(0) is the gradient of M at 6, the vector of partial derivatives

vM@) =] GO ... GO

e No slope in any direction at 8* means: ¥- VM (6*) = 0 for all ¥ # 0

o And that means: VM (6*) =0

e The first-order condition is: “the gradient vanishes at the optimum”
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First-order condition or first-order conditions?

o We have one vector equation VM (6*) =0

e This is the same as a system of p equations for the partial derivatives:

oM

T 0Y) =

a6, ") 0

oM

2 0Y) =

5, 0) = 0
o We also have p unknowns, 6* = [ o7 ... 6, ]

e p equations for p unknowns = typically a solution
— Typically a unique solution if all the equations are linear in 6*
— Often not unique because nonlinear in 6*
— But still, there are solutions!



The function increases in every direction: the second-order condition

e Second-order Taylor series for vectors:
1
M) =~ M(6*)+ (6 —0") - VM (6*) + 5(9 —60%)- (VVM(6%)) (6 —07)

o Here VVM(6*) is the matrix of second partial derivatives, %, a.k.a. the Hessian!, or h
e First-order condition says the gradient term is zero at 6*, so

M(0) ~ M(0*) + %(9 —0%)- (VVM(0%)) (6 — 6%)

— “Typically, functions look quadratic near their minima”
e 0* is a minimum means:

(6 —0%) - (VVM(6)) (0 — 6°) >0

Positive-definite matrices

e A square matrix h is positive-definite when, for any non-zero vector v,
v-hi >0

— If we only have ¥- hv' > 0 then h is only non-negative-definite (or positive semi-definite)

e Not the same as h only having positive entries!

—Eg,p= [ 7(1).5 _(1)'5 ] is positive-definite

—Eg,n= { Oi5 0%5 } is not positive-definite
e We write this as h > 0
— Non-negative-definite is h > 0
e For symmetric matrices: h is positive definite < all eigenvalues of h are > 0
— The Hessian matrix VV M is always symmetric (why?)
— We'll do a refresher on eigenvalues in a few weeks before we really need them

The first- and second- order conditions for minima

For 6* to be a local minimum,

o First-order condition: “The gradient must vanish”, VM (6*) =0
— Necessary, except at a boundary

o Second-order condition: “The Hessian should be positive-definite”, VV M (6*) > 0
— Sufficient; minima where it’s violated are weird and a-typical
— Necessary: VVM(0*) = 0, “the Hessian must be non-negative-definite”

Near a minimum, nice functions look quadratic
o Taylor approximation again: if #* is a local minimum, so VM (6*) = 0, then

M(6) ~ M(8") + %(9 _ ) (VVM(0%) (0 — 6)

LAfter L. O. Hesse, 18111874



o Consequence: if we come close to the location of minimum, so ||§ — 6*|| = § < 1, then
M(0) = M(0*) + O(5?)

o If we can get d-close to the location of the optimum, we get O(62)-close to the value of the
optimum (and §2 < § < 1)

o To get within e of the value of the optimum, we need to only get within O(+/€) of the location
of the optimum (and /e > € if € < 1)

Minimizing risk vs. minimizing empirical risk

e We want to minimize risk,

0" = argminr(f) = argmin E [{(Y, s(X))]
C) €O

e We can minimize empirical risk,

~ 1 —
0 = argmin #(f) = argmin — Zﬁ(yi, s(x;))
gco peo N —

o We'’re going to see later that R
18- 61l = O(\/1/m)
— Basically: because of the law of large numbers
— Assuming 6 has finite dimension p not changing with n
o Consequence: R
r(0) = (") + O(p/n)

— Factor of p comes from the Hessian (basically)
e = Minimizing the empirical risk comes closer and closer to minimizing the true risk

Finding the minimum: optimization algorithms

+ An optimization algorithm starts from M and ©, and (usually) a starting guess #(*), and finds an
approximation to argming.g M (8), say Oout
o We care about approximating the value, not the location: the algorithm gets e-close when
M (Bowe) < €+ min M(0)
e Usually, the longer we let the algorithm run, the better the approximation
— How many steps does the algorithm need to get e-close to the optium?

* O(1/€) or O(e~?) steps is polynomial (tolerable, depending on d)

* O(log1/e) is logarithmic (very nice)

% exp (O(1/¢€)) is exponential (bad)

How do we build an optimization algorithm?

¢« Remember our first and second order conditions:

VM@®*) = 0
VVM@@*) = 0
e Two big approaches at this point:

1. Solve the equations
2. Keep moving until the gradient VM goes to 0



Optimizing by equation-solving

e Use the first-order condition to get a system of equations
VM(#*)=0

— One equation per coordinate of 6 (as we saw)
— When M is empirical risk 7, sometimes called the estimting equations or even normal equa-
tions
e Solve the system of equations for 6*
o If there’s more than one solution, check the second-order conditions
o We did this for ordinary least squares, weighted least squares. . .

Pros and cons of the solve-the-equations approach

e Con: You need to set up the system of equations, and often finding VM would itself be a
pain
— Pro: Numerical differentiation is a thing, however
e 7. You need to solve a system of equations: good if there are good solvers for that type of
system of equations, not so good otherwise
— Pro: 200+ years of work have given us very good solvers for linear systems
x Pro: For linear systems, even very old-fashioned methods that go back to Gauss
around 1800 get € approximations with O(log1/¢) iterations
— Con: General-purpose nonlinear equation-solving is still much harder
x 7: sometimes works by using Taylor expansion to linearize
* Con: sometimes works by turning the solve-the-equations into “minimize the differ-
ence between the left and the right hand side of the equation”

Go back to the calculus

« Start with a guess 6(%)
o Find VM (6()
e Move in the opposite direction:

oL =90 — gV M ()

¢ Repeat:
O+ — ) _ 0, VM (9D)

o First-order condition means: a local optimum will be a fixed point!
o Issue: how big are the step sizes a;?
— (Sometimes called the learning rate, confusingly enough)

Constant-step-size gradient descent

« Inputs: objective function M, step size a, initial guess 6(°)
while ((not too tired) and (making adequate progress)) {
Find VM (6®)
Set 0D 9O _ gy M (60
return (final 6)

e “not too tired”: Set a maximum number of iterations



e “making adequate progress”:
— M isn’t changing by too little to bother with
— 6 isn’t changing by too little to bother with
— VM isn’t too close to zero

Constant-step-size gradient descent

e Pick an a > 0 that’s small and use it at each step
o Each iteration of gradient descent takes O(p) operations
— Find p derivatives, multiply by a, add to =1
o If M is nice, #) is an e-approximation of the optimum after t = O(e~2) iterations
— i.e. at that point M (A®)) < e + min M ()
— “Nice” here means: convex and second-differentiable
o If M is very nice, () is an e-approximation after only ¢ = O(log 1/€) iterations
— “nice” plus strictly convex

Gradient descent is basic, but powerful

e Gradient descent works well when there’s a single global minimum, no flat parts to the function, and
the step size is small enough to not over-shoot or zig-zag
o It’s actually been re-invented a number of times under different names
— e.g., “back-propagation” (Rumelhart, Hinton, and Williams 1986)
e It’s the work-horse for large-scale industrial applications in modern machine learning
— especially as stochastic gradient descent
o It’s still a bit mysterious why it works so well for those applications, which actually have lots of local
minimal

Beyond gradient descent: Newton’s method

e Needing to pick the step-size a; is annoying

o We’d like to take big steps, but VM is a local quantity and might be mis-leading far away
e = We’d like to take bigger steps when the gradient doesn’t change much

o This is Newton’s method:

U+ _ p(t) _ (h(g(t))> ~vMe®)

— One route to this: pretend M is quadratic, as justified by a Taylor expansion around
the true minimum
o This is like gradient descent, but using the inverse Hessian to give the step size
— And possibly a bit of rotation away from the gradient

Pros of Newton’s method

o Adaptively-chosen step size makes it harder to zig-zag, over-shoot, etc.

e Generally needs many fewer iterations than gradient descent
— Need O(e2) steps to get an e approximation to the minimum for nice functions
— For very nice functions, only need O(log (log (1/€))) iterations



Cons of Newton’s method

Hopeless if the Hessian doesn’t exist or isn’t invertible
Need to take O(p?) second derivatives and p first derivatives, total O(p?)
Need to find #¢+1)
— Seems straightforward, it’s §¢+1) = g(*) — (h(9(’5)))71 VM)
— But inverting a [p X p] matrix takes O(p?) operations in general, so this would be an O(p?) step
Alternative: solve h*t1) = he®) — VA1(6*) for #¢+1) for the unknown *+1)
— (Take the basic update equation for Newton’s method and multiply both sides by h from the left)
— Solving a system of p linear equations for a particular RHS can be done faster than inverting a
matrix (which’d give the solution for any RHS)
— Lots of variants to use approximate Hessians rather than the full deal (BFGS, built in to R’s

optim(), is one of these)

¢ So each iteration is O(p?), much slower than gradient descent’s O(p)
— O(p?) to get Hessian and gradient plus O(p?) to solve for update = O(p?)

Gradient methods with big data

#(0) =

SRS

Zé(yms(ﬂ?i;@))

o Getting a value of # at a particular @ is O(n), getting V# is O(np), getting h is O(np?)
— And that’s assuming calculating s(z;;6) doesn’t slow down with n
« Maybe OK when n = 100 or n = 10*, but with n = 10? or n = 10'2, we really don’t know which way to

move

A way out: sampling is an unbiased estimate

e Pick one data point I at random, uniform on 1:n

o Uyr,s(xy;0)) is random, but

o Re-brand £(yr, s(xr;0)) as 77(0)

El(0) = #(0) (3)
E[VF(6)] = V#6) 4)
E[VV#(6) = h() (5

e = Don’t optimize with all the data, optimize with random samples

Stochastic gradient descent

e Draw lots of random one-point samples and let their noise cancel out:

0. Start with initial guess #(?), adjustment rate a

1. While (not too tired) and (making adequate progress))
a. At t*" iteration, pick random I uniformly on 1:n

b. Set #FD « g — 2y (91))
2. Return final 0

o Shrinking step-sizes by 1/t ensures noise in each gradient dies down



Stochastic gradient descent (2)

o Tons of variants:
— Put the data points 1 : n in a random order and then cycle through them
Don’t check the “making adequate progress” condition too often
Adjust the 1/t step-size to some other function
— Stochastic Newton’s method: Use the sample to also calculate the Hessian and take a Newton’s
method step
— Mini-batch: Sample a few of random data points at once
— Mini-batch stochastic Newton’s method, etc.

Pros and cons of stochastic gradient methods

o Pro: Each iteration is (or at least constant in n)
e Pro: Never need to hold all the data in memory at once
o Pro: Does converge eventually (at least if the non-stochastic method would)
e Cons: sampling noise increases optimization error
— That is: more iterations to come within the same € of the optimum as non-stochastic GD or
Newton
e Over-all pro: often low computational cost to make the optimzation error small compared to the
estimation error

More optimization algorithms

e Ones which play more tricks with derivatives than just gradient descent and Newton (“conjugate
gradient”, etc., etc.)

o Ones which avoid derivatives (“simplex” or “Nelder-Mead”)

o Ones which avoid derivatives and try random changes (“simulated annealing”)

e Ones which use natural-selection-with-random-variation to evolve a whole population of approximate
optima (“genetic algorithms”)

Estimation error vs. optimization error

o Remember our approximation error vs. estimation error decomposition:

r(8) = r(o) + (r(s") =r(9)) + (r(3) = r(s")) (6)

= (true minimum risk) 4+ (approximation error from limited strategy set) (

—~~
0 3 O
Z —

+(estimation error from not knowing the best-in-class set)

o Now we don’t even have § = argmin #(s), we have §,,t, the output of some algorithm

m(Sout) = 7(0)+ (r(s*) —7r(0)) + (r(8) —r(s™)) + (r(Sous) — 7(8)) (9)
= (optimal risk) + (approximation error) + (estimation error) + (optimization error)10)

e Optimization error &~ what I’ve been calling e
— only =~ because of r vs. 7 issue

Estimation error vs. optimization error (2)

risk = minimal risk 4+ approximation error + estimation error + optimization error



e Minimal risk and approximation error don’t change with n or with how we optimize
 Estimation error shrinks with n: for large n, typically O(p/n)
— Possibly more slowly converging in n for some families, or if p grows with n
e Optimization error shrinks as we do more computational work
e There’s no point to making the optimization error much smaller than the estimation error
— More exactly: lots of work for little real benefit
e So: don’t try to make the optimization error much smaller than O(p/n)

Don’t bother optimizing more precisely than the noise in the data will support

What do we do in R?

e The basic function for optimization in R is optim()
optim(par, fn, gr, method, ...)

o par = Initial guess at the “parameters” = a vector, our #(°)
o fn = Function to be minimized, our M (0)
— Should take a single vector as input and return a single numeric value
— R lets functions be arguments to other functions without any fuss
o gr = Function to calculate the gradient, our VM (6)
— Should take a vector and return a vector of the same length
— Optional, not used by all methods, if missing R will try numerical differentiation
* Numerical differentiation can be very slow so your doing some math to work this out can be
very useful
e method = Which optimization algorithm?
— Default is Nelder-Mead a.k.a. simplex method, doesn’t use derivatives, can be good for dis-
continuous functions but inefficient for smooth ones
— BFGS is a Newton-type method, but with clever tricks to not spend quite so much time computing
and inverting Hessians
o ...: lots of extra settings, including things like the “tolerance” (how small an improvement in fn / M
to bother with)

No, really, what do we do in R?

my.fn <- function(t) {
- exp(-0.25*sqrt (t[1] 72+t [2] "2)) *cos(sqrt (t [1] "2+t [2]"2))
}
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No, really, what do we do in R?

my.fit <- optim(par=c(1,1), fn=my.fn, method="BFGS") # Starting here is dumb!
str(my.fit)

## List of 5

## § par : num [1:2] 4.96e-10 4.96e-10

## $ value : num -1

## § counts : Named int [1:2] 41 13

##  ..- attr(*, "names")= chr [1:2] "function" "gradient"
## $ convergence: int O

## $ message : NULL

my.fit$par # Location of the minimum

## [1] 4.956205e-10 4.956205e-10

my.fit$value # Value at the minimum

## [1] -1

What if optim() isn’t enough?

o We'll look briefly at doing constrained optimization in R next time
o [https://cran.r-project.org/web/views/Optimization.html] is your friend

Summing up

o When optimizing multiple variables at once, we still want all the derivatives to be zero (first-
order condition, VM (6*) = 0), and the second derivative to be positive in every direction
(second order condition, VV M (6*) > 0)

o With real data and real computers, finding the empirical-risk-minimizer means using an
algorithm to solve an optimization problem

e These algorithms almost never give the exact optimum but just an approximation

o Usually, the longer an algorithm is allowed to work, the closer it can get to the true optimum

e This adds optimization error on to estimation error

10


https://cran.r-project.org/web/views/Optimization.html

o For many statistical learning problems, gradient descent and Newton’s method work really
well
— With sampling to make them more computationally efficient for big data
e Don’t bother reducing the optimization error much beyond the estimation error
¢ No one algorithm is best for all problems

Backup: More about second-order conditions

o T've been writing VVM > 0, which is a sufficient condition for a local minimum (if the first-order
condition also holds)
e VVM * 0 is a necessary condition for a local minimum
— There can’t be any directions in which the function curves down
o Again, think of #* in one dimension
e Again, the typical local minimum of a smooth function has a positive-definite Hessian, cases where it’s
only non-negative-definite are fragile
— See backup slides to lecture 5 for more, including an illustration

Backup: Representation vs. Reality

« Optimization algorithms don’t really start with M, © and 6(*)
e They start with digital representations of all these things
o Different representations can be easier or harder to work with
e Digital representations of continuous things always have limited detail, which can lead to extra error
e The late Joseph Traub, of our CS department, developed an interesting theory about how much detail
the representations had to have, to achieve a certain accuracy
— See Traub and Werschulz (1998) if that sounds interesting

Backup: Why are there so many different optimization algorithms?

e “Come up with a new algorithm” is a way to make a mark. ..
e No one algorithm works well on every problem
— Sometimes obvious: don’t use Newton’s method if © is discrete
e Fundamental limit: no algorithm is universally better than others on every problem, shown by the no
free lunch theorem of Wolpert and Macready (1997)
— In fact: For every problem where your favorite algorithm does better than mine, I can design a
new problem where my algorithm leads yours by just as much (Culberson 1998)
e We need to know something about the problem to select a good optimizer
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