36-462/6652 Spring 2022
8 February 2022 (Lecture 7)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{r}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \newcommand{\Indicator}[1]{\mathbb{1}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \newcommand{\eqdist}{\stackrel{d}{=}} \newcommand{\OptDomain}{\Theta} \newcommand{\OptDim}{p} \newcommand{\optimand}{\theta} \newcommand{\altoptimand}{\optimand^{\prime}} \newcommand{\ObjFunc}{M} \newcommand{\outputoptimand}{\optimand_{\mathrm{out}}} \newcommand{\optimum}{\optimand^*} \newcommand{\Hessian}{\mathbf{h}} \newcommand{\Penalty}{\Omega} \newcommand{\Lagrangian}{\mathcal{L}} \]
\[ \hat{\beta} = (\mathbf{x}^T\mathbf{x})^{-1} \mathbf{x}^T \mathbf{y} \]
\(\lambda=1/4\)
\(\lambda=4\)
glmnet
package does this very efficiently, using convex programming algorithms (see below)
Lagrange multipliers turns constrained optimization into penalized optimization
glmnet
included, will do the standardization “internally”, and report back the corresponding un-standardized coefficientsGneezy, Uri, and Aldo Rustichini. 2000. “A Fine Is a Price.” Journal of Legal Studies 29:1–17. https://doi.org/10.1086/468061.
Kantorovich, L. V. 1965. The Best Use of Economic Resources. Cambrdige, Massachusetts: Harvard University Press.
Robert Dorfman, Paul A. Samuelson, and Robert M. Solow. 1958. Linear Programming and Economic Analysis. New York: McGraw-Hill.
Spufford, Francis. 2010. Red Plenty. London: Faber; Faber.