
k-Nearest Neighbors

36-462/662, Spring 2022

22 February 2022 (Lecture 11)

Contents
1 Setting: Prediction, including both classification and regression 2

1.1 Prediction quality, risk, optimal risk and optimal predictors 2

2 Nearest neighbors as a predictor 3

3 Analysis of 1-Nearest-Neighbors for Learning Noise-Free Functions 7
3.1 Convergence of the nearest neighbor . 7
3.2 1NN is consistent for noise-free functions . 11

4 Putting the noise back in for 1NN 12

5 Two, three, many nearest neighbors 13

6 Selecting k 15
6.1 Risk minimization . 15
6.2 Empirical risk minimization . 15
6.3 True validation set . 17
6.4 Data splitting (“roll your own validation set”) . 18
6.5 Cross-validation . 19

7 Computational aspects 22
7.1 Using fewer than n data points . 22
7.2 Faster distance computation: the random projection trick . 23
7.3 Pre-selecting possible neighbors . 23

8 R aspects: FNN 26
8.1 No model objects . 26
8.2 Making predictions . 26

9 Extensions and complements 29
9.1 Nearest neighbors for other decision problems . 29
9.2 Additional optional exercises . 30

10 Further reading and historical notes 31

References 31

1

1 Setting: Prediction, including both classification and regression

Let’s fix our setting. We have a data set of n data-points, items, cases or units. Each item is represented
by a vector of variables or features, which we have somehow decided are the important information we
want to keep track of about the item, generally in numerical form. There are p of these features we want to
use as predictors. Following the usual notation for regression courses, we’ll write this as an n× p matrix
x; the vector for data-point or item i will be ~xi. Beyond these features, we have an additional variable for
each item that we want to predict, based on the features. We’ll write it yi for data-point i, compiled into
the n× 1 matrix y (again, this is regression notation). This variable is called the label, outcome, target,
output or (oddly) dependent variable (sometimes the predictand [“thing to be predicted” in Latin] or
regressand).

A prediction here is going to be a function of the features which outputs a guess (“point prediction”) about
the outcome or label.

• Regression: Y is a continuous numerical variable, so the regression function should map ~x0 to a
number.

• Classification: Y is binary, so the classification rule should map ~x0 to 0 or 1.
– Multi-class classification works similarly but with more notation, which I don’t feel like getting

into.
– You can always reduce binary classification to regression: use your favorite regression method,

and then threshold the prediction for Y , saying “1” if the prediction is ≥ 0.5 and saying “0”
otherwise. (This is basically what k-nearest-neighbor classification will do for us.) This may be
less efficient than using some method directly built for classification, especially if your regression
method doesn’t realize that probabilities should be between 0 and 1, but it’s always an option.

1.1 Prediction quality, risk, optimal risk and optimal predictors

How good is the guess?1

• Regression: we usually pick the squared error loss function, so we usually measure the quality of a
regression with expected squared error. That is, E

[
(Y −m(~X))2

]
indicates how bad the function

m is.
• Classification: we often pick the 0-1 loss function, so we usually measure the quality of a classifier with

its inaccuracy or error rate. That is, Pr
(
Y 6= m(~X)

)
indicates how bad the function m is.

This expected loss on new data is called the risk. In predictive modeling, we want to learn functions with
low risk.

There’s an optimal function, i.e., one which has a lower risk than any other function.

• Regression: The optimal function is µ(~x) = E
[
Y | ~X = ~x

]
. This is called the true regression function,

or sometimes the optimal regression function.
• Classification: The optimal function depends on the conditional probability Pr

(
Y = 1| ~X = ~x

)
≡ p(~x).

The function is c(~x) = 1 if p(~x) ≥ 0.5 and c(~x) = 0 otherwise. (Or, as we know from the homework,
c(~x) = 1 if p(~x > 0.5 and c(~x) = 0 otherwise.) This is called the optimal classifier2.

Even the optimal function will not, in general, have zero risk.
1We have gone over a lot of this in lecture 3 and homework 2, but it doesn’t hurt to have reminders, especially in this

particular context.
2Some people call the optimum prediction function or prediction rule the Bayes rule, even though it has nothing to

do with Bayesian inference, or with Thomas Bayes, and only the most tenuous connection to Bayes’s rule (the fact that
Pr (A|B) = Pr (B|A) Pr (A) /Pr (B)). (The name goes back to the early days of statistical decision theory, where some of the
pioneers were also partisans of “Bayesian statistics”, the idea that all statistical inference should be done by using Bayes’s rule.)

2

https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/04/lecture-04.html
https://www.stat.cmu.edu/~cshalizi/dm/22/hw/02/hw-02.pdf

• Regression: Suppose Y = µ(~X) + ε, where the noise ε has E
[
ε| ~X

]
= 0, Var

[
ε| ~X = ~x

]
= σ2(~x). (In

your linear-regression class, you would have assumed this, plus that σ2 is constant, and much else
besides.) Then the risk of the true regression function is E

[
σ2(~X)

]
> 0. (Why?)

• Classification: Suppose p(~x) isn’t either 0 or 1 everywhere. Then the probability of mis-classifying at
~x is p(~x) if p(~x) < 0.5 (because there c(~x) = 0), and 1 − p(~x) if p(~x) ≥ 0.5. A little thought shows
that we can write the conditional probability in a unified way3 as min {p(~x), 1− p(~x)}. The risk of the
optimal classifier is then E

[
min

{
p(~X), 1− p(~X)

}]
. This minimal risk will be > 0 unless p(~x) = 0 or

= 1 almost everywhere. (We saw this in homework 2.)

Unfortunately, the optimal function depends on the true distribution generating the data. So does the risk
of the optimal function. What we want, then, is some way of estimating a function from the data which
can learn what the true function is, or at least learn to predict almost as well as the true function, without
having to know in advance too much about that function.

2 Nearest neighbors as a predictor

This is where nearest neighbors comes in.

In this context, “distance” always refers to distances between the p-dimensional feature vectors. The nearest
neighbor of a vector ~x0 is the ~xi closest to it. The k nearest neighbors are the k vectors ~xi closest to ~x0.
(Notice that these definitions make sense whether or not ~x0 is also one of the ~xi.) We will often need a way
of keeping track of the indices of the neighbors, so we’ll write NN(~x0, j) for the index of the jth nearest
neighbor of ~x0. Thus NN(~x0, 1) is a number between 1 and n, but ~xNN(~x0,1) is a p-dimensional vector.

The k-nearest-neighbor estimate of the regression function is then the average value of the response over the
k nearest neighbors:

µ̂(~x0) = 1
k

k∑
j=1

yNN(~x0,j) (1)

For classification, we similarly average the labels of neighbors to estimate p(~x0),

p̂(~x0) = 1
k

k∑
j=1

yNN(~x0,j) (2)

and then threshold it:
ĉ(~x0) = 1(p̂(~x0) ≥ 0.5) (3)

3An alternative expression would be 1
2 −
∣∣p(~x)− 1

2

∣∣, but this will be less useful later on.

3

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
0.

0
0.

2
0.

4

Data for the running example (regression version)

x

y

Figure 1: Simulation data for the regression version of our running example. Can you guess the true regression
function, without looking at the code?

4

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data for the running example (classification version)

x

z

Figure 2: Simulation data for the classification version of our running example. Can you guess the rule
assigning the class labels, without looking at the code?

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
0.

0
0.

2
0.

4

Running example with kNN regression

x

y

k = 1
k = 2
k = 3
k = 4
µ

Figure 3: Our running example data, together with four different kNN estimates of the regression function
and the true regression function (µ).

5

−0.4 0.0 0.2 0.4

−
0.

4
0.

0
0.

2
0.

4

Predicted versus actual values

Predicted response

A
ct

ua
l r

es
po

ns
e

k = 1
k = 2
k = 3
k = 4
µ

Figure 4: Predicted versus actual responses for kNN regression, k ∈ 1 : 4, plus the true regression function
(µ), and a diagonal line as a guide to the eye.

6

3 Analysis of 1-Nearest-Neighbors for Learning Noise-Free Func-
tions

There are lots of estimation methods we could use. To decide on using this one, nearest neighbors, we should
have some reason to think it will predict well. This is where theory comes in.

Start with the simplest, most extreme setting, to build ideas. We’ll assume that there is no noise in the
outcomes (responses, labels). This means for regression that yi = µ(~xi), and for classification that yi = c(~xi).
If nearest neighbors can’t learn to predict here, it’s got to be toast; if it can, we’ll add noise back in. Let’s
also make our lives simple by only looking at 1-nearest-neighbors, k = 1. To simplify notation, I’ll write NN
as the index for the nearest neighbor of ~x0, leaving the dependence on ~x0 implicit.

In this setting — no noise, k = 1 — the error nearest neighbors will make for regression at ~x0 will be

µ(~x0)− yNN = µ(~x0)− µ(xNN) (4)

so the risk will be
E
[
(µ(~X)− µ(~XNN))2

]
(5)

Similarly, for classification, the risk will be

Pr
(
c(~X) 6= c(~XNN)

)
(6)

We’d like these risks to go to 0 as n → ∞ (because here the optimal risk is zero). The equations above
suggests that for regression we want the true function to be continuous, but for classification we want it to be
piecewise constant. (In fact, piecewise continuity is usually enough for regression.) But even with this, we
need to see that ~xNN → ~x0, otherwise continuity won’t help.

3.1 Convergence of the nearest neighbor

Requiring ~xNN → ~x0 is the same as requiring that ‖~xNN − ~x0‖ → 0. When will this happen?

Well, pick some positive distance d > 0. What is the probability that ‖~xNN − ~x0‖ > d? Ideally, we’d like this
to go to zero as n→∞, no matter how small that d might be; that would indicate that the nearest neighbor
is approaching the point of interest.

A little thought should convince you that the nearest neighbor is more than d away from ~x0 if and only if
every ~xi is more than d away. So

Pr (‖~xNN − ~x0‖ > d) = Pr (∀i, ‖~xi − ~x0‖ > d) (7)

At this point, we need to make an assumption about the feature vectors. We’ll assume they’re IID. Then the
probability of all the feature vectors doing the same thing (being far from ~x0) turns into the product of each
of them doing that thing:

Pr
(
‖ ~XNN − ~x0‖ > d

)
= Pr

(
∀i, ‖ ~Xi − ~x0‖ > d

)
(8)

=
n∏
i=1

Pr
(
‖ ~Xi − ~x0‖ > d

)
(9)

=
(

Pr
(
‖ ~X − ~x0‖ > d

))n
(10)

This has got to go to zero as n → ∞ (which is what we want), unless the probability we’re raising to the
power n is exactly 1. To get a handle on that, let’s re-write it a bit more:

Pr
(
‖ ~XNN − ~x0‖ > d

)
=

(
Pr
(
‖ ~X − ~x0‖ > d

))n
(11)

=
(

1− Pr
(
‖ ~X − ~x0‖ ≤ d

))n
(12)

7

So all we need is for there to be some probability of being within d of ~x0. If we’re asking for a prediction at a
point in the middle of a region of zero probability, nearest neighbors is not a great idea, but otherwise, we’re
set.

We can be a little bit more detailed by approximating the probability in question. Assume ~X follows a pdf
f(~u). Then we get the probability by integrating the pdf f over the radius-d ball centered on ~x0,

Pr
(
‖ ~X − ~x0‖ ≤ d

)
=
∫
~u:‖~u−~x0‖≤d

f(~u)d~u (13)

Let’s assume d is small. (Ultimately we want it to shrink towards zero, after all.) Over a small enough ball,
f(~u) will be nearly constant, and equal to f(~x0). So

Pr
(
‖ ~X − ~x0‖ ≤ d

)
≈ cpdpf(~x0) (14)

where cp is a constant, geometrical factor (c2 = π, c3 = 4
3π, etc.). That is, the probability of a small ball

centered around ~x0 is about f(~x0) times the volume of the ball.

Putting all this together,
Pr
(
‖ ~XNN − ~x0‖ > d

)
≈ (1− cpdpf(~x0))n (15)

Let’s make use of one last approximation, that (1 + h)b ≈ 1 + bh when |h| � 1. (Use the binomial theorem if
you don’t believe me.) Then we get

Pr
(
‖ ~XNN − ~x0‖ > d

)
≈ 1− ncpdpf(~x0) (16)

This is going to zero for each fixed d. If we want this to be constant — say, if we want to find an d which
bounds the distance to the nearest neighbor with 50% confidence, the median nearest-neighbor distance —
we’d need to say

1− ncpdpf(~x0) = δ (17)

or

d = n−1/p
(

(1− δ)
cpf(~x0)

)1/p
(18)

So the typical distance to the nearest neighbor is shrinking to 0, at rate n−1/p. This → 0 as n → ∞, as
desired.

8

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

Convergence of nearest neighbor to the origin

x

0

n = 5
n = 50

n = 500
n = 5000

Figure 5: Visualizing the convergence of the nearest neighbor to the origin with increasing sample size

9

1 5 10 50 100 500 5000

1e
−

04
1e

−
02

1e
+

00

Convergence of the nearest neighbor to the origin

n

D
is

ta
nc

e
to

 n
ea

re
st

 n
ei

gh
bo

r
of

 o
rig

in

Figure 6: Plotting the distance from the origin to its nearest neighbor as we increase the sample size. If
we re-ran the simulation, the exact distances and jumps would change, but the general pattern would not.
Notice the log scale for both the horizontal axis (sample size) and the vertical axis (distance to the nearest
neighbor).

10

3.2 1NN is consistent for noise-free functions

To recap, because ‖~xNN − ~x0‖ → 0 as n→∞, if the true function is (piecewise) continuous, then 1NN will
approximate it arbitrarily well given enough data. When an estimator converges on the truth as n→∞, it’s
called “consistent”, so we’ve just shown that nearest neighbors is consistent for learning noise-free functions.

11

4 Putting the noise back in for 1NN

What happens if we add in noise, but still use 1NN? In the regression case, Y = µ(X) + ε, so

µ̂(~x0) = yNN (19)
= µ(~XNN) + εNN (20)

The error in predicting a new response at ~x0, Ynew, is thus

Ynew − µ̂(~x0) = µ(~x0) + εnew − µ(~XNN)− εNN (21)
= (µ(~x0)− µ(~XNN)) + εnew − εNN (22)

As n→∞, the µ term in parentheses → 0, since µ is continuous (by assumption) and the nearest neighbor
converges on the point. So the error approaches εnew− εNN . Squaring, taking expectations, and remembering
that the noises are uncorrelated, we get that the risk of 1NN regression at ~x0 approaches

Var
[
ε| ~X = ~x0

]
+ (−1)2Var

[
−ε| ~X = ~x0

]
= 2σ2(~x0) (23)

The over-all risk of 1NN regression thus approaches

2E
[
σ2(~X)

]
(24)

as n→∞. But the risk of the true regression function is already E
[
σ2(~X)

]
, so we’ve come within a factor

of two of the optimum risk.4

For classification, the risk at a particular point ~x0 is

Pr (Ynew 6= ĉ(~x0)) = Pr (Ynew 6= YNN) (25)
= Pr (Ynew = 1, YNN = 0) + Pr (Ynew = 0, YNN = 1) (26)
= p(~x0)(1− p(~xNN)) + (1− p(~x0))p(~xNN) (27)

As ~xNN → ~x0, this approaches
2p(~x0)(1− p(~x0)) (28)

provided p is a continuous function (or at least piecewise continuous). Recall from earlier that the conditional
risk of the optimal classification function is min {p(~x0), 1− p(~x0)}, say q(~x0). So the conditional risk of 1NN
approaches 2q(~x0)(1− q(~x0)) ≤ 2q(~x0). The over-all risk will thus approach

2E
[
p(~X)(1− p(~X))

]
(29)

which is at most twice the risk of the optimal classifier.

4If the noise variance is constant, σ2(~x) = σ2, this simplifes: the risk of 1NN regression approach 2σ2, while the risk of the
true regression function is just σ2.

12

5 Two, three, many nearest neighbors

Recall how we defined the predictions for k-nearest-neighbor regression5:

µ̂(~x0) = 1
k

k∑
j=1

YNN(~x0,j) (30)

For every data point, Y = µ(~X) + ε, where quite generally E
[
ε| ~X = ~x

]
= 0. So we can write

µ̂(~x0) = 1
k

k∑
j=1

µ(~xNN(~x0,j) + 1
k

k∑
j=1

εNN(~x0,j) (31)

What we’d like the prediction to be is of course µ(~x0), as before.

The last equation makes it clear that the error in kNN-regression has two sources:

1. Evaluating the true regression function at the nearest neighbors. That is, we’re approximating the quan-
tity we want (µ(~x0)) by something else, namely 1

k

∑k
j=1 µ(~xNN(~x0,j)). We’ll call this the approximation

error6.
2. The noise in the response values for the nearest neighbors

(
1
k

∑k
j=1 εNN(~x0,j)

)
. This is pure noise.

For 1NN, we controlled the approximation error by realizing that it goes to zero as ~x0’s nearest neighbor
converges on ~x0. You7 can extend the argument to show that the kth nearest neighbor does too, for any
fixed k. If the kth nearest neighbor is within ε of ~x0, then all of k nearest neighbors must be too. And then
continuity of µ says that the approximation error → 0 as n→∞.

As for the noise, it’s the average of k noise terms. If we assume the εs are uncorrelated across data points, we
can say that

Var

1
k

k∑
j=1

εNN(~x0,j)

 = 1
k

k2∑
j=1

Var
[
εNN(~x0,j)

]
(32)

If Var
[
ε| ~X = ~u

]
= σ2(~u), then all of those variances are converging on σ2(~x0), and we get

σ2(~x0)
k

(33)

for the variance of the noise.

The over-all risk of kNN-regression at ~x0 will thus tend, as n→∞, to

(system noise)+(approximation error)+(estimation noise)→ σ2(~x0)+0+ σ2(~x0)
k

=
(

1 + 1
k

)
σ2(~x0) (34)

That is, rather than having twice the optimum risk with k = 1, kNN regression gets only 1 + 1/k of the
optimum risk — at least as n→∞.

5The analysis for kNN-classification is very similar and comes to the same conclusion, but I don’t feel like writing everything
out twice.

6If we think of the locations of the nearest neighbors as fixed, and only the responses Y as random, then we can call this
“bias” in the technical sense, as the expected difference between the estimate µ̂(~x0) and the truth µ(~x0). If we treat the locations

of the nearest neighbors as random, then the bias would be E
[

1
k

∑k

j=1 µ(~XNN(~x0,j))− µ(~x0)
]
, which is a bit of a mess, though

fortunately not something we’ll need to know in detail, as the next paragraph will explain.
7“You”, meaning “not me, at least not now”. The trick is however to realize that if the kth neighbor is more than ε away

from ~x0, at least n− k + 1 of the data points must be more than ε away. (Said differently, if the kth neighbor is within ε, then
at least k − 1 other data points must also be within ε.) The probability of this happening is something we can calculate from a
binomial distribution, with n trials and a success probability depending on the probability of a random point being in the ε-ball
around ~x0.

13

That last phrase, “as n→∞”, is of course why we don’t just automatically set k to be as large as possible.
At any finite n, we face a trade-off:

• Increasing k means averaging over more data points for each prediction, which reduces the variance by
averaging together more noise terms (i.e., big k means less variance);

• Decreasing k means averaging over fewer data points for each prediction, which reduces the approximation
error by averaging over points closer to where we want a prediction (i.e., small k means less bias).

This is a manifestation of one of the fundamental issues in statistics, the bias-variance tradeoff. When
we are doing prediction, we don’t (usually) care about whether our errors come from bias or from variance,
just about the over-all magnitude of the error. We will usually find that we want methods with some bias,
because the error added by the bias is more than compensated for by the reduction in variance. We need
some practical way of deciding how much bias we want to trade for less variance. It is important to recognize
though that the trade-off will depend on n. For fixed k, the approximation error / bias contribution is going
to shrink as n grows, because the k nearest neighbors will get closer and closer to ~x0. But the noise / variance
contribution will have the same (expected) size, because we’ll only be averaging k terms. So what would
be ideal is if k could somehow grow as n grows, but not so fast that we fall back in to doing a constant or
nearly-constant prediction.

14

6 Selecting k

To recap: When we predict with k-nearest-neighbors, our prediction is always an average (or vote, which is a
kind of average) over k data points. We must however pick k. If we increase k, we average over more data
points, which is good, because averaging reduces noise and improves precision. But as we decrease k, we
average over fewer data points, which is good, because we’re focusing our attention only on points close to
where we want to make a prediction, which reduces approximation error and improves accuracy. This is a
fundamental tradeoff which has many names: bias vs. variance (low k has small bias but large variance),
approximation vs. estimation error, accuracy vs. precision. How do we actually make this trade-off?

6.1 Risk minimization

What we want to do is to pick the k which will do best on new data. For regression8, this means we want to
pick the k which will minimize

r(k) = E
[
(Y − µ̂k(~X))2

]
(35)

where µ̂k is our estimate of the true regression function µ obtained by using k nearest neighbors. Unfortunately,
r(k) involves the true joint distribution of the features ~X and the outcomes Y , so we can’t calculate it.

6.2 Empirical risk minimization

The obvious approach is to replace the true risk r(k) with a “plug-in” estimate,

R̂(k) ≡ 1
n

n∑
i=1

(yi − µ̂k(~xi))2 (36)

and select the k with the smallest R̂k. The quantity on the RHS of this equation is called the empirical
risk of k-NN regression. Picking the model which makes the empirical risk as small as possible is called
empirical risk minimzation, or ERM. For regression, it’s equivalent to minimizing the sum of squares, or
the mean squared error, or (under one definition) maximizing R2.

This is a perfectly reasonable way of picking the parameters within a parametric model. (It doesn’t always
work, but it’s a reasonable starting point.) Unfortunately, it’s a horrible way of comparing model specifications.
To see that it’s awful for kNN, think about what it will tell us to do for nearest-neighbor regression. The
nearest neighbor of ~xi is, obviously, ~xi. Hence the mean-squared-error of 1-nearest-neighbor regression is
always exactly 0. Thus, ERM tells us that the optimal value of k = 1, no matter what the data look like.

8Everything will apply equally to classification, but I don’t want to introduce the extra notation that would go along with
being that general. You can make the obvious substitutions for yourself.

15

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Emprical risk for kNN regression

k

M
S

E

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

Empirical risk for kNN classification

k

M
is

cl
as

si
fic

at
io

n
ra

te

To sum up, ERM can be a good way of setting parameters within a model, but it’s a horrible way of comparing
models.

16

6.3 True validation set

Since what we’d really like is to minimize E
[
(Y − µ̂k(X))2], in many ways our best option would be to have

a large, separate, independent validation set of data points (x′i, y′i), i ∈ 1 : m, drawn independent from the
same distribution as the data we use to develop our models. Then, by the law of large numbers,

1
m

m∑
i=1

(y′i − µ̂k(x′i))2 ≈ E
[
(Y − µ̂k(X))2] (37)

and similarly for the misclassification rate.

It’s very important here that the validation data (with primes) be totally independent of the data used to fit
the models, since that ensures that µ̂ is independent of the validation data. That in turn guarantees that
error on the validation set is an unbiased and consistent estimate of the generalization error on new data.

This is a great approach when you can make it happen; the problem is that waiting for genuinely new,
independent data from the relevant distribution to appear is often very slow and/or expensive, and that
makes it extremely tempting to include it in the data you use to fit and develop the model.

— For our running simulation example, we can just simulate much more data from the same process, and see
how well models trained on the limited initial data generalize to this validation set.

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Empirical vs. true risk for regression

k

M
S

E

Empirical
True

17

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Empirical vs. true risk for classification

k

M
is

cl
as

si
fic

at
io

n
ra

te

Empirical
True

6.4 Data splitting (“roll your own validation set”)

Rather than waiting for a genuinely-independent validation set to accumulate, a common alternative tactic
is to split your data into two parts, conventionally called the “training set” and the “testing set” (or “test
set”). Their sizes are ntrain and ntest respectively, with ntest = n− n− train. We typically insist that the
division into two parts be totally random; e.g., we might decide that ntrain = n/2, randomly select exactly
that number of rows to belong to the training set, and declare everything else to be in the testing set.

The fundamental rule in data splitting is that all models can only use the training set to generate predictions.
For parametric models, this means that parameters are estimate entirely on the basis of training points. For
kNN, it means that nearest neighbors are sought only among the training points. Whether the place where
we are making a prediction is one of the training points or not is irrelevant; only training points go in to
making the prediction.

Contrarily, we only care about how well we can predict points in the testing set. For each i in the testing
set, we try to predict yi on the basis of ~xi, where each model gets estimated using only the training set. We
average the (squared) prediction errors, and pick the k with the smallest error when generalizing to unseen
data. So: fit on the training set, evaluate on the testing set.

Because we’ve randomly split the data into two parts, the training and the testing set follow the same
distribution, and are independent. Because the models are estimated using only the training set, their
predictions on the testing set aren’t influenced by what we’re trying to predict. (More exactly, of course we
want µ̂(Xtest) to be correlated with Ytest, but we want µ̂(Xtest) to be independent of Ytest, conditional
on Xtest. This is why it’s important that the model is only estimated using the training data.) This lack of
influence means we can appeal to the law of large numbers again, as in the genuine-validation-set idea, to say
that average performance on the testing set gives us a good estimate of how well we can generalize to future
data.

Because you’ve done this a couple of times in the homework already, I won’t include illustrative code.

18

6.4.1 Drawbacks of data splitting

There are two big drawbacks to simple data splitting, as I’ve presented it.

1. We need to divide the data into training and testing sets completely at random, but that means that
which model (e.g., which value of k) we select is also somewhat random. We can hope that it’s not very
random, if both ntrain and ntest are big, but we’re still just making one random split.

2. We have reason to think that the right (best-predicting) model can change with n. Specifically for
nearest neighbors: We know that bigger values of k are ultimately better as n grows. But we’re seeing
which value of k predicts best at size ntrain, which might be different from the best one to use on the
full data, of size n.

We could ameliorate the second issue by making ntrain close to n, and so much bigger than ntest. But now
we’re picking only a small number of points out of the whole data set, and using them to decide on the model
(or on k), and so the first problem, of randomness, is amplified. Can we do something about both issues at
once?

6.5 Cross-validation

This is where cross-validation comes in. The basic idea is to repeat data splitting multiple times, averaging
across different splits into training and testing.

6.5.1 V-Fold Cross-Validation

The most common form is what’s called “v-fold cross-validation”9. This goes as follows:

1. Randomly divide the n data points into v different, non-overlapping sets, the folds.
2. For each fold f ∈ 1 : v

a. The points in fold f are, temporarily, the testing set. The points in the other v − 1 folds, taken
together, are the training set.

b. For each model m (e.g., possible value of k)
i. Estimate m using the temporary training set.
ii. Compute the prediction, and the prediction error, for each point in the temporary testing set

(i.e., each point in fold f)
iii. Record the average prediction error.

3. Average prediction errors for each model across folds. This is the VFCV estimate of the generalization
error.

4. Report the VFCV scores, and pick the model with the best score.

Because we don’t just make one random split into training and testing sets, but many (or v splits at any rate),
we reduce the noise in our estimate, compared to simple data splitting. On the other hand, each training set
contains a fraction v−1

v of the complete data, so we’re seeing what generalizes best at a sample size close to
that of the full data.

(In passing, notice that we’ve ensured that each data point appears once, and only once, in a testing set,
and gets used in exactly v − 1 training sets. You could imagine just doing v random training/testing splits,
but this leads to [slightly] more variance in our estimate of generalization performance, because it randomly
over-emphasizes some data points compared to others.)

(Also in passing, observe that the estimates of generalization error we get from each fold are correlated. This
is because when we consider the models we test against fold 1 to those we test against fold 2, they still had
nv−2

v training data points in common. This means that the variance of the estimate of generalization error
isn’t reduced quite as much as if we were averaging v uncorrelated random variables.)

9Actually, people usually call it “k-fold”, but here k is pre-empted by the number of nearest neighbors, and it is sometimes
called “v-fold” (Arlot and Celisse 2010).

19

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Empirical, true, 5−fold CV risk for regression

k

M
S

E

In−sample
True
5−fold CV

6.5.2 Leave-one-out cross-validation (LOOCV)

The extreme of v-fold cross-validation is to set v = n, so that each point is put in its own “fold”, with a
testing set of size of 1. Each training set thus contains n − 1 data points. This is called “leave one out”
cross-validation, because each data point is, in turn, “left out” (made the testing set), and we try to predict
it from a model trained with all the other points.

20

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Empirical, true, LOOCV risk for regression

k

M
S

E

In−sample
True
LOOCV

6.5.3 Which cross-validation?

V-fold CV can be much faster computationally than LOOCV; we re-fit each model v times, instead of n times.
Moreover, if we’re using CV to select among models of different complexity, LOOCV tends to “overfit”, in
the sense that it tends to pick a model with all of the right terms and extra, superfluous ones as well, even
as n→∞. For this reason, 5- or 10- fold CV is pretty much the “industry standard”. There are two issues
which complicate this, however.

1. The strictly predictive performance of LOOCV can be better than that of v-fold cross-validation. In
particular, if there’s no true model, but we just want to predict as well as possible (which is the situation
with k-nearest-neighbors), LOOCV will tend (as n→∞) to select the best-predicting model among
those we compare (Azadkia 2019).

2. If we’re doing regression and using a linear smoother, there is a short-cut formula which lets us calculate
the LOOCV score from the fit to the full data and its weight matrix (Wahba 1990, Theorem 4.2.1,
p. 51). This short-cut applies to kNN regression, but not to classification.

21

7 Computational aspects

There are two (main) costs to any computational procedure: the time it takes to run (measured in elementary
operations of the computer), and the memory it needs to run (sometimes referred to as “space”).

The memory cost of kNN is pretty demanding. We need to keep around the entire data set, which means p
features plus 1 label per data point, for a total memory cost of O(n(p+ 1)) = O(np). Admittedly, we don’t
need all of this in memory at once. But there’s no extra memory needed for the model itself.

The time complexity is more interesting. The most straightforward way to implement kNN is to compute the
distance between the new point ~x0 where we’re making a prediction, and every data point with a label. The
time to compute one distance with p features is going to be O(p), so computing all the distances will take
O(np) time. The time to find the k smallest distances, from a list of n distances, will be O(n) (regardless of
p). Once we find those k nearest neighbors, averaging their labels will take O(k) time (regardless of n and p).
So the total time will be O(np+ n+ k) = O(np+ k). Now, a theoretical computer scientist will tell you that
anything which is sub-exponential in n is “tractable”, but if n = 109 or 1012, that’s a bit delusional. . .

There are two parts of the straightforward implementation which take O(n) time: computing all the distances,
and finding the k smallest distances. Since k � n, most of the distances we compute end up being useless.
This suggests some lines of inquiry for speeding up kNN:

1. Do we need all n data points?
2. Can we be faster about computing each distance? Can we compute approximate distances quickly?
3. Can we rule out some points as potential nearest neighbors, without examining them?

7.1 Using fewer than n data points

If our algorithm slows down with n, one obvious approach is to try to make n smaller. One reason this may
not be hopeless is that there are diminishing returns, predictively, to increasing n: the risk shrinks as n
grows, but more and more slowly. To understand this, remember that the distance to the nearest neighbor is
O(n−1/p). The bias will be on the order of the distance (Taylor expand µ), and it’s the squared bias that
matters for regression risk, so the bias’s contribution to the risk is O(n−2/p). Against this, for fixed k, the
variance’s contribution to the risk is O(1/k), which is constant in n. Thus if p = 10, doubling n doubles
computing time, but the bias is stil ≈ 0.87 of what it was before, and the variance hasn’t gone down. Past
some size n, the extra risk reduction just isn’t worth the extra computing time.

This idea leads to sampling strategies: we pick a random subset of n′ � n data points, and ignore the
others. This can keep the computing time small, at an acceptable level of extra prediction risk. Picking
n′ in a principled way needs a price at which we can trade risk against computing time. (Alternately, we
could impose a hard constraint on either time or risk, but then a Lagrange multiplier will give us the implied
price, the “shadow price”, at which these trade off against each other.) Sampling leads to an extra element of
randomness, but, by design, we’re no worse off in terms of risk than if we really did just have n′ data points.

Beyond random sampling, there are some strategies for trying to select data points to keep in the training
sample. Details get complicated, but the basic idea is usually to identify points whose removal will do the
least to change the predictions, and drop them. (For instance, if some data point is never the nearest neighbor
of any other point, it’s a good candidate for deletion.) Relatedly, if there are multiple points which are near
each other with the same or very similar labels, we might try “condensing” them into one point. But random
sampling is often competitive with these more complicated procedures.

The drawback of using fewer points is that it seems wasteful to collect the data, and then ignore most of it!

22

http://www.stat.cmu.edu/~cshalizi/dm/22/lectures/07-regularization/lecture-07.html#(27)
http://www.stat.cmu.edu/~cshalizi/dm/22/lectures/07-regularization/lecture-07.html#(27)

7.2 Faster distance computation: the random projection trick

Our naive implementation of nearest neighbors involves calculating the distances between our test point and
n different p-dimensional vectors; this is the O(np) part of the over-all time. One way to speed this up is to
use the following remarkable mathematical fact about vectors10:

Take any n different p-dimensional vectors, and consider projecting them on to q different random
directions. If q = O(logn

ε2), then, with high probability, the distances between the projected vectors
are within a factor of 1± ε of the distances between the original vectors.

In other words, if we take our p-dimensional data, and randomly project it down to O(logn) dimensions, we
nonetheless preserve distances (to within a factor of 1± ε). The time to do one of these projections is O(p),
so the time to do all of the projections for all the data points is O(np logn), but we only have to do this
once, regardless of how many predictions we make. We can then find (approximate) nearest neighbors in time
O(n logn+ p logn+ k):

• O(p logn) to project the new vector on to the O(logn) random vectors;
• O(n logn) to find distances between the projected vectors;
• O(n) to find the smallest projected distance (absorbed in the O(n logn);
• O(k) to average the nearest neighbors’ labels

This random projection trick will help when p � logn, which can easily be the case in modern data (say
p = 105 while n = 106). But it doesn’t get us away from scaling badly with n.

7.3 Pre-selecting possible neighbors

There are two ways to avoid having to look at every data point. One is to use clever, deterministic data
structures. The other is to use random summaries of the data.

7.3.1 Data structures: k − d trees

Algorithm designers have spent decades devising clever data structures for finding nearest neighbors, and I
won’t pretend to survey the state of the art. But it is worth understanding one of the classic approaches to
this, k− d trees (or k-dimensional trees). Partly this is because it’s a very neat approach, and partly this
is because it’s the default in the FNN package.

k − d trees are sorting or search trees, where each of the n original data points is located at a leaf. Each
internal node is labeled by a feature, and a possible value of that feature11. Generally, all the internal nodes
at the same level use the same feature12. One searches through the tree for neighbors to a new point by
“dropping the point down the tree”: starting at the root, go to either the left child node or the right node
depending on whether the new point’s value for the current node’s feature is above or below the current
node’s threshold. We continue going down the tree until there are only k leaf nodes below us: those are the
neighbors.

To see why k − d trees find neighbors quickly, assume that the number of points we could be matched to gets
cut in half at each node, so there are n leaf nodes under the root, n/2 leaf nodes under each child of the root,
etc. (We’ll see how to make sure this assumption holds in a moment.) How many levels d do we need to go
down to reach k candidate neighbors? Set $ 2ˆ{-d}$ to k and solve:

n2−d = k (38)
log2 n− d = log2 k (39)

d = log2 n/k (40)
10This fact is called the Johnson-Lindenstrauss lemma, and we’ll revisit it in the context of dimension reduction.
11This is like the CART trees which we’ll soon learn to use for classification and regression.
12This is unlike CART.

23

So the time needed to find k approximate nearest neighbors, using a k − d tree, is O(logn), not O(n)!

Now, this might not work at finding the nearest neighbors. (There might be nearer neighbors on the other
side of one of the splits we’ve taken.) There are more sophisticated tricks which will guarantee finding the
nearest neighbors with the k − d tree, which you can find in standard references on algorithms and data
structures (like Cormen et al. (2001)). Using those tricks, finding the nearest neighbors take O(logn) steps
on average, though the worst-case time is O(n).

I still haven’t said how to actually build the k − d tree. Here’s the procedure:

• Put the features in some fixed order from 1 to p
• At step i, we’ll be dividing on feature i mod p
• Initially, all points sit under the root node; divide at the median on feature 1

– Finding a median takes O(n) time
– sometimes randomly select a fixed small set of n′ � n points and take their median

• Within each child node, split on the median of the associated points
• Recurse until there is only one data point within each node; those are the leaves

Because we’ve used the median, we’ve ensured that each child contains 1/2 of the points of its parents, which
is what we wanted to ensure that finding (approximate) neighbors would be fast.

7.3.2 Clustering

Here is a very different approach to finding (approximate) nearest neighbors quickly (Paulevé, Jégou, and
Amsaleg 2010):

• Randomly pick q data points, q � n, and label them with the numbers from 1 to q.
• Until nothing changes:

– Set the cluster center vector ~cj to be the average of all data points labeled j
– Label each of the n data points according to the cluster center ~ci which it’s closest to, i.e.,
Li = argminj∈1:q ‖~xi − ~cj‖

• To find neighbors for a new point ~x0, assign it to the cluster j whose center ~cj is closest to ~x0, and only
look for neighbors among other points assigned to that cluster

If q =
√
n, then it takes O(p

√
n) to find the right cluster in which to look for neighbors, and O(pn/q) = O(p

√
n)

to search for neighbors within that cluster. So the over-all time to run kNN, using clusters to search for
approximate neighbors, is O(p

√
n+ k), which will be a lot faster than the naive implementation. (You could

also combine this with, say, the random projection trick to speed up calculating distances.)

This division of the data points in to clusters is an example of what we will see later as k-means clustering
(because the number of clusters is usually called k; I wrote it as q here to avoid confusion with the number of
nearest neighbors averaged for predictions.) When we look at it in more detail, we’ll see that it tends to
produce compact clusters of near-by points, with (roughly) similar numbers of points in each cluster. This is
precisely what we want for finding (approximate) nearest neighbors, whether or not the data really fall into
well-separated clumps or clusters.

This use of clustering is an example of a broader family of methods for quickly and randomly dividing the
data points into bins or buckets, with a guarantee that points placed in the same bucket are probably similar
in some respect. This means that once we find which bucket our test point belongs to, the other points in
that bucket are good candidates for being its nearest neighbors. These methods are known, for convoluted
historical reasons, as locality sensitive hashing (LSH)13 techniques, and have been extensively developed

13In computer science, a “hash function” is one which takes inputs in some domain, say strings of text characters, and maps
them to numbers, thought of as “bins” or “buckets”, or more generally as categories. Good hash functions have two properties:
(i) the distribution of the output is uniform over the categories, and (ii) changing the input puts the output in a different
category, at least with high probability. If we want to approximately compare two inputs, without actually looking at them,
we can compare their hashed values: if those are different, the inputs were probably different. So hash functions are used to
check for data-entry errors, for tampering in files, etc. A “locality sensitive hash function” is one with the extra property (iii) if
two inputs do get hashed to the same bin, then they are probably similar (in some specified respect). As for the origin of the

24

in the literature on database systems; see further reading for more details.

name “hash function” itself, that seems to come from the fact that the symbol #, sometimes called the number sign or the pound
sign, is also called the “hash sign” or “hash mark”, and a hash function is thought of as assigning inputs to cells in a grid. The
word “hash” itself meant something chopped up with an axe or cleaver (as in “hash browned potatoes”, or “make a hash of
something”), and the hash mark looks like what you’d see looking down on some hashed-up vegetables. The English “hash”
comes from the old French hache, an axe (also the root of “hatchet”) and the corresponding verb hacher, to cut up with an
axe. So locality sensitive hash functions are, at the root, ways of cutting the data up into small bits with an axe, while keeping
near-by things together.

25

8 R aspects: FNN

There are many R packages which implement kNN, sometimes just for classification, sometimes for classification
and regression, sometimes even more flexibly. Any list I gave here would quickly be obsolete, so I won’t
try. What I will do is recommend the FNN package (Beygelzimer et al. 2013), which I have found robust,
well-documented, and (as the first letter suggests) fast, because it contains good implementations of several
of the standard tricks for speeding up nearest neighbors described in the previous section. All the places
where I’ve actually computed nearest-neighbor predictions in these notes have used FNN, so when you look at
the code in the .Rmd file, you’ll see more examples of it in use.

8.1 No model objects

Many (most) pieces of R code for making predictions from models return a model object, which stores the
results of the fitting procedure and can then be passed to other functions like predict(), coefficients(),
summary(), etc. This is how lm() works, and glm() and glmnet(). It’s also how other packages we’ll look
at do it. One peculiarity of FNN is that it doesn’t do this. The reason the designers wrote it that way is that
there really isn’t much to store, beyond the data set!

8.2 Making predictions

Instead, the basic functions in FNN are all about making predictions. Here, for instance, is how to make
regression predictions with k = 5:

library(FNN)
knn.reg(train = training.x.matrix, test = testing.x.matrix, y = training.y.matrix,

k = 5)

Some notes:

• The return value of knn.reg() is a list. The most important part of that list is the $pred component,
which is the vector of predicted values.

– All of the predictions are averages of values in y.
• train and y should have the same number of rows; test can have as many rows as it likes.
• train and test should have the same number of columns.

– Also, the columns should be in the same order.
• When we use lm() or glm(), with named variables in the formula, the predict() function will look for

the corresponding variables in newdata by those names, so the column order doesn’t actually matter.
knn.reg() is more finicky this way (but faster).

• As I’ve indicated with the names I’ve given to the train and test arguments, knn.reg() likes those
arguments to be matrices; if you’ve stored the appropriate values as something else, like a data frame
(or selected columns of a data frame), the as.matrix() function is handy for making the connection.

• We do not need to give values of Y on the testing set. (If we’re genuinely making predictions, we don’t
know those values yet!)
– Do not include a column in train which corresponds to the target variable Y .

If we omit the test argument, and do something like this

then knn.reg() will do leave-one-out cross-validation. The return value will then include components
$residuals (the vector of residuals) and $PRESS, the “PREdictive Sum of Squares”, i.e., the sum of the
squared residuals14. The leave-one-out CV estimate of the risk would thus be $PRESS divided by the number
of rows of train (which the output of knn.reg() stores as $n).

If we want to do classification instead of regression, we do this:
14The acronym goes back to Geisser and Eddy (1979).

26

knn(train = training.x.matrix, test = testing.x.matrix, cl = training.class.labels,
k = 137)

This would do 137-nearest-neighbor classification. If we want to do leave-one-out CV, that’s

knn.cv(train = training.x.matrix, cl = training, class.labels, k = 137)

There is no equivalent to $residuals or $PRESS for knn.cv().

8.2.0.1 How not to do cross-validation

If I do

knn.reg(train = train.x.matrix, test = train.x.matrix, y = y.vector, k = 1)

I will not get the correct results for leave-one-out cross-validation with k = 1. Instead, I will get a perfect
(though meaningless) fit. Similarly,

knn(train = train.x.matrix, test = train.x.matrix, cl = the.classes, k = 1)

will give me perfect classification every time.

You could write code to do leave-one-out cross-validation in either case, using just knn.reg() or knn(). It
would look something like this:

my.knn.reg.cv <- function(train, y, k, ...) {
n <- nrow(train)
loo <- vector(length = n)
for (leave.out in 1:n) {

prediction <- knn.reg(train = train[-leave.out,], test = train[leave, out,
], y = y[-leave.out,], k = k, ...)$pred

loo[leave.out] <- y[leave.out] - prediction
}
return(c(residuals = loo, PRESS = sum(loo^2), loocv = mean(loo^2)))

}

(I’ll leave writing the corresponding my.knn.cv() as an exercise.) But because this is a really common thing
to want to do, the FNN package comes with tools to do it. v-fold CV is less common for nearest-neighbor
methods, so you’ll find my code for doing it above (in the .Rmd file).

8.2.1 Conditional probabilities

In addition to predicted class labels, the knn() function can return some information about the probability of
the predicted class. This is stored in the return value of knn() as what R calls an attribute, which can be
accessed using the attr() function. To do so, it’s generally convenient to save the output:

class.out <- knn(train = train.x.matrix, test = test.x.matrix, cl = training.class.labels,
k = 137, prob = TRUE)

(The default with knn() is prob=FALSE.)

Now

attr(class.out, "prob")

will be a vector, with one row for each row in test, giving the conditional probability of the “winning” class
for each test point.

Notes:

• This is always a vector, even if there are more than 2 classes, because it’s always the estimated
conditional probability for the winning class.

27

• It’s always the estimated conditional probability for the winning class, not the positive class, or the
actual class. So if we want to use this to (for instance) calculate the average log loss, we’ll need to do a
little bit of coding.

8.2.2 Just finding the nearest neighbors and/or the distances

If we just want to find the nearest neighbors, and/or the distances to the nearest neighbors, the best approach
is to use the underlying functions in the FNN package15.

If I make a.matrix a matrix with n rows, then

get.knn(data = a.matrix, k = 5)

will return a list. $nn.index will be n× 5 matrix, giving the indices (numbers from 1 to n) for the 5 nearest
neighbors, in data, of each row of data. Similarly, $nn.dist will be the n × 5 matrix of distances to the
nearest neighbors. (If I change k, the number of columns of these matrices will of course change.) Notice that
the argument is called data and not, say, train.

get.knnx(data = a.matrix, query = another.matrix, k = 5)

will tell us the same things about the nearest neighbors, among the rows of data, for each row of query.
(Again, notice, data and query, not train and test.)

8.2.3 Changing how nearest neighbors are searched for

All four of knn(), knn.reg(), get.knn() and get.knnx take an optional argument, algorithm, which
controls the procedure used to search for nearest neighbors. The default is to use kd_tree, i.e., the k-d
tree approach described above. Other options are described in help(get.knn). I strongly advise against
using algorithm=brute, which calculates all n distances and sorts the list to find the the k smallest. This is
guaranteed to find the nearest neighbors, but is needlessly slow for all but very small datasets.

15An alternative would be to use the fact that the output of knn(), and knn.cv(), always has attributes (in the sense of the
previous sub-sub-section) named nn.index and nn.dist, which do what I’m about to describe. So we could always run knn()
with cl set to whatever we like (because cl doesn’t change which points are neighbors), and then examine the attributes. While
I’ve seen people code things up this way, that’s just needless overhead, compared to the approach I’m about to describe.

28

9 Extensions and complements

You can skip these without hurting your ability to do the homework, but they’re interesting.

9.1 Nearest neighbors for other decision problems

In general, when the real state of the world is y and we take action a, we incur a loss `(y, a). We’d like to
choose a, based on information X, to minimize this, but since the state of world is a random variable Y , we
can’t always minimize. Instead, we try to minimize the risk, r(s) = E [`(Y, s(X))].

We can ask what action would minimize the risk conditional on X = x. The risk of the action a is

E [`(Y, a)|X = x] =
∫
`(y, a)p(y|X = x)dx (41)

or =
∑
y

`(y, a)p(y|X = x) (42)

depending on whether Y is discrete or continuous. The risk of any particular action a is clearly going to
change with x, so the risk-minimizing action will be a function of x:

σ(x) ≡ argmin
a

E [`(Y, a)|X = x] (43)

The definitions of the optimal regression function and of the optimal classifier are special cases of this, when
the loss functions are squared error and 0-1 loss, respectively. If we used the log loss, then (as you saw in HW
3) the possible “actions” are really possible probability distributions for Y , and the optimal prediction is the
conditional distribution of Y , p(y|X = x).

So far this is just the general decision theory of Lecture 4. What is the kNN approach? When we are
interested in making a decision, with the information that X = ~x0, we look at the k distinct (X,Y) pairs
whose X values are closest to ~x0. We then ask what action would minimize the average loss for those k data
points. We take that action. In symbols,

ŝk(~x0) ≡ argmin
a

1
k

k∑
j=1

`(YNN(~x0,j), a) (44)

Note that:

• The X coordinates only matter for finding the nearest neighbors and so the yi values. The average loss
we’re trying to minimize doesn’t involve them.

• The pattern is perfectly general and can be applied to any loss function.
– For some loss functions, the minimizer might not be unique; pick one at random.
– kNN regression, and kNN classification, as defined above, are special cases of this general pattern,

for the squared error loss and for the 0-1 loss, respectively.
– If we wanted to make a distributional prediction for Y , and use the log loss, what we should

do is predict the sample distribution of the yis among the k nearest neighbors. This is also the
maximum likelihood estimate from those observations. (Cf. Hand, Mannila, and Smyth (2001),
p.348.)

9.1.1 Asymptotic risk of nearest neighbors

ŝk is random, and changes with n. We can ask what will happen as the sample size n→∞. Long ago, Cover
(1968a), sec. III, p. 53, made some weak continuity assumptions about ` and p(y|x), and proves that

lim
n→∞

E [`(Y, ŝ1(s))|X = x] ≤ 2E [`(Y, σ(x))|X = x] (45)

29

https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/04/lecture-04.html

That is, the conditional risk of 1-nearest-neighbor is within a factor of 2 of the best possible risk. In fact16,

lim
n→∞

r(ŝ1) ≤ 2r(σ) (46)

9.2 Additional optional exercises

1. Using leave-one-out CV, create a plot of estimated risk versus k for classification, using the running
example data.

2. Re-write the v-fold CV code to work with classification. Create a plot of the risk for different k for
classification, using the running example data.

3. Prove that for fixed k > 1, the distance to the kth nearest neighbor of x0 goes to 0 as n→∞, provided
that f(x0) > 0. Specifically, prove that the probability that this distance is ≥ ε is going to zero. Can
you say how much slower this convergence gets as k grows?

4. Using get.knnx(), write a function which will use k nearest neighbors to get the conditional distribution
of Y given X = x, assuming Y is categorical. (How would you handle the possibility that not every
class is represented among the k nearest neighbors of every point?)

16This is immediate if the loss is bounded (Cover 1968a, Corollary 1, p. 52), and still true under an additional weak assumption
if the loss is unbounded (Cover 1968a, Corollary 2, p. 52).

30

10 Further reading and historical notes

The pioneering theoretical analysis of nearest neighbors, covering both regression and classification as special
cases of prediction-in-general, was done by Cover in the 1960s (Cover and Hart 1967; Cover 1968a, 1968b).
What I’ve done above is basically “Cover made (even) simpler”. For more refined analyses of kNN classification
and regression, see the appropriate chapters of Devroye, Györfi, and Lugosi (1996) and Györfi et al. (2002),
respectively.

Historical note on nearest neighbors: “Find the most similar case with a known outcome, and guess
that a new case will be similar” is such a natural idea that it’s almost impossible to trace its earliest history.
The recognition that this idea could be a general, explicit statistical method, along with the name “nearest
neighbors”, seems to go back to the 1950s (see Cover (1968a) for references). But because it’s such a natural
idea that it keeps getting re-invented in different subjects: in nonlinear dynamics and the physics of chaotic
systems, for instance, it was introduced in the 1980s as the “method of analogs” (see Kantz and Schreiber
(1997) for references).

k-d trees were introduced by Bentley (1975) (a very clear paper). Gershenfeld (1999), sec. 14.1, gives
a brief introduction, and explains how to use them to do density estimation. Cormen et al. (2001) is a
deservedly-standard textbook on algorithms and data structures, including efficiently working with search
trees.

Combining clustering with kNN, and locality-sensitive hashing: Locality-sensitive hashing is due
to Gionis, Indyk, and Motwani (1999). There are good explanations of the idea, and its uses in data mining
(beyond just fast nearest neighbors) in Leskovec, Rajaraman, and Ullman (2014), chapter 3. The specific
procedure for using k-means clustering as a locality-sensitive hash I sketched above comes from Paulevé,
Jégou, and Amsaleg (2010). The general idea of using clustering to speed up finding approximate nearest
neighbors in large datasets is however much older (Hand, Mannila, and Smyth 2001, sec. 10.6, p. 352, with
references given on p. 365).

References

Arlot, Sylvain, and Alain Celisse. 2010. “A Survey of Cross-Validation Procedures for Model Selection.”
Statistics Surveys 4:40–79. https://doi.org/10.1214/09-SS054.

Azadkia, Mona. 2019. “Optimal Choice of k for k-Nearest Neighbor Regression.” E-print, arxiv:1909.05495.
http://arxiv.org/abs/1909.05495.

Bentley, Jon Louis. 1975. “Multidimensional Binary Search Trees Used for Associative Searching.” Commu-
nications of the ACM 18:508–17. https://doi.org/10.1145/361002.361007.

Beygelzimer, Alina, Sham Kakade, John Langford, Sunil Arya, David Mount, and Shengqiao Li. 2013. FNN:
Fast Nearest Neighbor Search Algorithms and Applications. http://CRAN.R-project.org/package=FNN.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001. Introduction to
Algorithms. Second. Cambridge, Massachusetts: MIT Press.

Cover, Thomas M. 1968a. “Estimation by the Nearest Neighbor Rule.” IEEE Transactions on Information
Theory 14:50–55. http://www-isl.stanford.edu/~cover/papers/transIT/0050cove.pdf.

———. 1968b. “Rates of Convergence for Nearest Neighbor Procedures.” In Proceedings of the Hawaii
International Conference on Systems Sciences, edited by B. K. Kinariwala and F. F. Kuo, 413–15. Honolulu:
University of Hawaii Press. http://www-isl.stanford.edu/~cover/papers/paper009.pdf.

Cover, Thomas M., and P. E. Hart. 1967. “Nearest Neighbor Pattern Classification.” IEEE Transactions on
Information Theory 13:21–27. http://www-isl.stanford.edu/~cover/papers/transIT/0021cove.pdf.

Devroye, Luc, László Györfi, and Gábor Lugosi. 1996. A Probabilistic Theory of Pattern Recognition. Berlin:
Springer-Verlag.

31

https://doi.org/10.1214/09-SS054
http://arxiv.org/abs/1909.05495
https://doi.org/10.1145/361002.361007
http://CRAN.R-project.org/package=FNN
http://www-isl.stanford.edu/~cover/papers/transIT/0050cove.pdf
http://www-isl.stanford.edu/~cover/papers/paper009.pdf
http://www-isl.stanford.edu/~cover/papers/transIT/0021cove.pdf

Geisser, Seymour, and William F. Eddy. 1979. “A Predictive Approach to Model Selection.” Journal of the
American Statistical Association 74:153–60. https://doi.org/10.1080/01621459.1979.10481632.

Gershenfeld, Neil. 1999. The Nature of Mathematical Modeling. Cambridge, England: Cambridge University
Press.

Gionis, Aristides, Piotr Indyk, and Rajeev Motwani. 1999. “Similarity Search in High Dimensions via
Hashing.” In Proceedings of the 25th International Conference on Very Large Data Bases [Vldb ’99], edited
by Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie,
518–29. San Francisco: Morgan Kaufmann.

Györfi, László, Michael Kohler, Adam Krzyżak, and Harro Walk. 2002. A Distribution-Free Theory of
Nonparametric Regression. New York: Springer-Verlag.

Hand, David, Heikki Mannila, and Padhraic Smyth. 2001. Principles of Data Mining. Cambridge, Mas-
sachusetts: MIT Press.

Kantz, Holger, and Thomas Schreiber. 1997. Nonlinear Time Series Analysis. Cambridge, England:
Cambridge University Press.

Leskovec, Jure, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of Massive Datasets. Second.
Cambridge, England: Cambridge University Press. http://www.mmds.org.

Paulevé, Loïc, Hervé Jégou, and Laurent Amsaleg. 2010. “Locality Sensitive Hashing: A Comparison
of Hash Function Types and Querying Mechanisms.” Pattern Recognition Letters 31:1348–58. https:
//doi.org/10.1016/j.patrec.2010.04.004.

Wahba, Grace. 1990. Spline Models for Observational Data. Philadelphia: Society for Industrial; Applied
Mathematics.

32

https://doi.org/10.1080/01621459.1979.10481632
http://www.mmds.org
https://doi.org/10.1016/j.patrec.2010.04.004
https://doi.org/10.1016/j.patrec.2010.04.004

	Setting: Prediction, including both classification and regression
	Prediction quality, risk, optimal risk and optimal predictors

	Nearest neighbors as a predictor
	Analysis of 1-Nearest-Neighbors for Learning Noise-Free Functions
	Convergence of the nearest neighbor
	1NN is consistent for noise-free functions

	Putting the noise back in for 1NN
	Two, three, many nearest neighbors
	Selecting k
	Risk minimization
	Empirical risk minimization
	True validation set
	Data splitting (``roll your own validation set'')
	Cross-validation

	Computational aspects
	Using fewer than n data points
	Faster distance computation: the random projection trick
	Pre-selecting possible neighbors

	R aspects: FNN
	No model objects
	Making predictions

	Extensions and complements
	Nearest neighbors for other decision problems
	Additional optional exercises

	Further reading and historical notes
	References

