
Extending Linear Methods with Nonlinear Features (Lectures 15
and 16)

Kernel Methods, Support Vector Machines, and Random Features / Random Kitchen Sinks

36-462/662, Spring 2022

15 and 17 March 2022

Contents
1 Notation 2

2 Linear classifiers (recap) 2

3 We want to use many nonlinear features, but don’t actually want to calculate them all 3

4 Dual Representation and Support Vectors 7

5 The Kernel Trick 8
5.0.1 An Example: The Gaussian/Radial Kernel . 9

5.1 Kernelization . 9
5.2 Kernelized regression, especially kernel ridge regression . 10

6 Margin Bounds 11
6.1 Generalization error for classifiers with zero in-sample error in terms of margin 11
6.2 Classifiers with non-zero in-sample error: “soft margin” and “slack” 12
6.3 Hinge loss . 12
6.4 Being able to ignore some training points while still classifying perfectly 14
6.5 Error bounds for kernel classifiers . 14

7 Support Vector Machines 15
7.1 Maximum Margin SVMs . 15
7.2 Soft Margin Maximization . 15
7.3 Hinge loss minimization . 16

8 R 17
8.1 Other SVM packages in R . 18
8.2 A kernel ridge regression example in R . 18

9 Random Features 22
9.1 In R . 22

10 Further Reading 26

11 Kernel machines vs. Nadaraya-Watson smoothing 26

References 28

1

1 Notation

~X will be the p-dimensional vector of features we’re using for our predictions.

R (for “radius”) will be the maximum magnitude of the n training vectors, R ≡ max1≤i≤n ‖~xi‖.

Y will be the class we want to predict, usually by not always binary, 0/1.

When we are dealing with binary classes, Z = 2Y − 1. That is Z = +1 when Y = 1, but Z = −1 when Y = 0.
The Z variable is of course redundant when we have Y , but it simplify a lot of the formulas.

I {A} is 1 when the expression A is true, and 0 otherwise. Similarly, sgn a is +1 when a > 0, −1 when a < 0,
and 0 when a = 0.

2 Linear classifiers (recap)

We say that we have a linear classifier, with feature-weights ~w and offset b, when we predict

Ŷ (~x0) = I {b+ ~w · ~x0 ≥ 0}

or equivalently
Ẑ(~x0) = sgn (b+ ~w · ~x0)

As usual, ~x0 is a totally arbitrary point in the feature space. It may or may not have been one of the training
points, where we observed the corresponding class.

2

3 We want to use many nonlinear features, but don’t actually
want to calculate them all

We’ve seen some examples of building linear classifiers, and seen that they can work well. But there are also
situations where they just don’t work at all. For example, looking at the data in the next figure1.

+

−

+

−

+
− +

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−
+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+−
+

−

+

−

+

−

+

−

+

−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+
−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+ −
+

−

+

− +

−

+

−

+

−

+

−

+

−

+

−

+
−+

−

+

−
+

−

+−
+

−

+
−

+

−

+

−

+

−

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

If we use the given features x1 and x2, classifying points as + or − is a bit hard. There is no linear classifier
here which will work perfectly.2 The prototype method will fail dismally here, doing no better than guessing
at random3. You can find a line which does better than guessing at random4, but not much better.

Now of course separating these two classes is trivial if we can use a nonlinear boundary, like a circle:
1I realize, no one cares about classifying two-dimensional data that looks like a badly drawn bulls-eye. But think of it as a

cartoon for a situation like “healthy patients have all their features near some normal values, while sick patients can depart from
the normal range in many different directions”.

2Either all of the − points are on the same side of the line, or there are some − points on both sides of the line. But the −
points enclose the + points, so if all the − points are on one side of the line, all of the + points are on the same side of the line,
and the line doesn’t separate them. If some − points are on one side of the line and other − points are on the opposite side,
then the line cannot perfectly separate the + points from the − points.

3Where are the prototypes? Why does their location tell us that the prototype method won’t work?
4Can you draw one, without doing any calculations? (How do you know it does better than random?)

3

+

−

+

−

+
− +

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−
+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+−
+

−

+

−

+

−

+

−

+

−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+
−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+ −
+

−

+

− +

−

+

−

+

−

+

−

+

−

+

−

+
−+

−

+

−
+

−

+−
+

−

+
−

+

−

+

−

+

−

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

We could start thinking about how we would start drawing such boundaries directly, but an alternative
strategy has proved more useful. This is to transform the original features, nonlinearly, and then do linear
classification in the new, transformed or derived features. To see how this can work, suppose we did the
very simple thing of looking at the squares of the original features, x2

1 and x2
2.

+

−

+

−

+ −+

−

+

−

+

−

+

−

+ −
+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+
−+ −+

−

+ −+

−

+
−

+

−

+
−

+

−

+ −
+

−

+

−

+

−

+

−

+
−

+

−
+

−
+

−

+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−
+ −+

−

+

−

+

−

+

−

+ −+

−

+

−

+

−

+

−

+

−
+

−

+

−

+

−

+
−

+

−

+

−

+

−

+ −+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+ −+

−

+ −+

−

+ −+

−

+
−+

−

+

−

+

−

+

−

+

−
+

−

+ −+

−

+ −
+

−

+ −+

−

+
−

+

−

+

−

+

−

0 5 10 15

0
5

10
15

x1
2

x 22

(Of course, the squares of the original features aren’t the only derived features we could use. Switching to
polar coordinates (ρ =

√
x2

1 + x2
2 and θ = arctan x2/x1) would do just as nicely.)

In this example, we kept the number of features the same, but it’s often useful to create more new features
than we had originally. This next figure shows a one-dimensional classification problem which also has no
linear solution, since the class is negative if x is below one threshold, or above another.

4

++ ++ + − −+− ++− +−− + +− + −+ −− + ++ +− ++ + −+++ + −++ ++ −+ −− − + +− +− ++++ ++ + + −++ + − −−− −+− − −+++ +− ++ −+−− + +++ ++ ++ −+ ++− +− +− +− + + −+ +− ++ ++ −+ + −++ −− +−− + +− +− + ++ ++− + −+− ++ ++− −− ++−− +− −+ +++ + −− −+ +− −++− + ++ −−+− + ++− − ++− − −+ ++ ++− + + −+− + −+++

0 1 2 3 4 5

x

Problems like this, where one of the original features must be either in one range or another (“exclusive-or”
or “XOR” problems) cannot be solved exactly by any linear method5.

Adding a second feature like x2 makes it easy to linearly separate the classes:

+

+

+

+

+

−

−

+

−

+

+
−

+
−−

+

+

−

+

−

+

−

−

+

+

+
+

−

+

+

+

−

+

+

+

+

−

+

+

+

+

−

+

−

− −
+

+

−
+

−

+

+
++

+

+ + +

−

+

+

+

−

−−

−

−

+

− −

−

+

+

+
+

−

++

−

+

−−

+

+

++

++
++

−

+

+

+

−

+

−

+

−
+

−

+
+

−

+

+

−

+
+

+

+

−

+

+

−

+

+

−

− +
−−

+

+

−

+

−
+

+
+

++

−

+

−

+

−

+

+

+

+

−

−

−

++

−−

+

−

−

+

+

+

+ +

−

−

−

+
+

−

−

+
+

−
+

+
+

−
−

+
−

+

+

+

− −

+

+

−

−

−

+

+

+

+

+
−

+

+

−

+

−

+

−

+

+

+

0 1 2 3 4 5

0
5

10
15

20
25

x

x2

The moral we derive from these examples (and from many others like them) is that, in order to predict well,
5This fact was discovered by the pioneering AI researchers Marvin Minsky and Seymour Papert in the 1960s (Minsky and

Papert 1969). This effectively killed off the field of neural networks (or, as it was called, “perceptrons”) for several decades,
because the two-layer networks commonly used then could only learn to do linear classification. This is an interesting example of
brilliant scientists doing sound research, and a field paying attention to the results, with, arguably, highly counter-productive
consequences: it took a long time for anyone to investigate whether neural networks with more than two layers could solve XOR
problems by (implicitly) creating new features. (When that work did happen, in the 1980s, a lot of it was done in the CMU
psychology department.)

5

we’d like to make use of lots and lots of nonlinear features. But we would also like to calculate quickly, and
to not overfit all the time, and both of these are hard when there are many features.

Support vector machines are ways of getting the advantages of many nonlinear features without some of
the pain pains. They rest on three ideas: the dual representation of linear classifiers; the kernel trick; and
margin bounds on generalization. The dual representation is a way of writing a linear classifier not in
terms of weights over features, wj , j ∈ 1 : p, but rather in terms of weights over training vectors, αi, i ∈ 1 : n.
The kernel trick is a way of implicitly using many, even infinitely many, new, nonlinear features without
actually having to calculate them. Finally, margin bounds guarantee that kernel-based classifiers with large
margins will continue to classify with low error on new data, and so give as an excuse for optimizing the
margin, which is easy.

6

4 Dual Representation and Support Vectors

Recall that a linear classifier predicts Ŷ (~x) = I {b+ ~x · ~w ≥ 0}. That is, it hopes that the data can be
separated by the plane with normal (perpendicular) vector ~w, offset a distance b from the origin. We have
been looking at the problem of learning linear classifiers as the problem of selecting good weights ~w for input
features. This is called the primal representation, and we’ve seen several ways to do it — the prototype
method, logistic regression, etc.

The weights ~w in the primal representation are weights on the features, and functions of the training vectors
~xi. A dual representation gives weights to the training vectors. That is, the classifier predicts

Ŷ (~x) = I

{
b+

n∑
i=1

αi (~xi · ~x) ≥ 0
}

where αi are now weights over the training data. We can always find such dual representations when ~w is a
linear function of the vectors, as in the prototype method or the perceptron algorithm6, or if we have more
data points than features7. But we could also search for those weights directly. We would typically expect
αi to be > 0 if i is in the positive class, and < 0 if i is in the negative class. It’s sometimes convenient to
incorporate this into the definition, so that we say

Ẑ(~x) = sgn
(
b+

n∑
i=1

αizi (~xi · ~x)
)

and insist that αi > 0.

There are a couple of things to notice about dual representations.

1. We need to learn the n weights in ~α, not the p weights in ~w. This can help when p ≥ n.
2. The training vector ~xi appears in the prediction function only in the form of its inner product with the

text vector ~x, ~xi · ~x =
∑p
j=1 xijxj .

3. We can have αi = 0 for some i. If αi 6= 0, then ~xi is a support vector. The fewer support vectors
there are, the more sparse the solution is.

The first two attributes of the dual representation play in to the kernel trick. The third, unsurprisingly, turns
up in the support vector machine.

6To run the perceptron algorithm in the “dual” representation, start with b = 0, and αi = 0 for all i ∈ 1 : n. Go over the
training vectors in order; if data point i is correctly classified, change nothing and go on to the next point; if i is mis-classified, add
zi to αi, and set b← b+ ziR

2. If any training point was mis-classified, repeat the loop; exit when there are no mis-classifications.
7If n = p, then we can use the training vectors as a basis for the vector space, so any vector ~v could be written as a weighted

sum of the training vectors, ~v =
∑n

i=1 ci~xi. (This presumes that the training vectors “are in general position”, i.e., not all in a
lower-dimensional linear subspace.) In fact, we did this in class in lecture 16. If n > p, we can usually express an arbitrary
vector ~v as a weighted sum of the training vectors in multiple different ways. We are about to consider cases where p is very
large and even infinite, however, so that won’t apply.

7

5 The Kernel Trick

I’ve mentioned several times that linear models can get more power if instead of working directly with the
input features ~x, one first calculates new, nonlinear features φ1(~x), φ2(~x), . . . φq(~x) from the input. Together,
these features form a vector, φ(~x). One then uses linear methods on the derived feature-vector φ(~x). To do
polynomial classification, for example, we’d make the functions all the powers and combinations of powers of
the input features up to some maximum order d, which would involve q =

(
p+d
d

)
derived features. Once we

have them, though, we can do linear classification in terms of the new features.

There are three difficulties with this approach; the kernel trick solves two of them.

1. We need to construct useful features.
2. The number of features may be very large. (With order-d polynomials, the number of features goes

roughly as dp.) Even just calculating all the new features can take a long time, as can doing anything
with them.

3. In the primal representation, each derived feature has a new weight we need to estimate, so we seem
doomed to over-fit.

The only thing to be done for (1) is to actually study the problem at hand, use what’s known about it, and
experiment. Items (2) and (3) however have a computational solution.

Remember, in the dual representation, training vectors only appear via their inner products with the test
vector. If we are working with the new features, this means that the classifier can be written

Ẑ(~x0) = sgn
(
b+

n∑
i=1

αiziφ(~xi) · φ(~x0)
)

(1)

= sgn

b+
n∑
i=1

αizi

q∑
j=1

φj(~xi)φj(~x0)

 (2)

= sgn
(
b+

n∑
i=1

αiziKφ(~xi, ~x0)
)

(3)

where the last line defines K, a (nonlinear) function of ~xi and ~x:

Kφ(~xi, ~x) ≡
q∑
j=1

φj(~xi)φj(~x) (4)

Kφ is the kernel8 corresponding to the features φ.

Any classifier of the form

Ẑ(~x0) = sgn
(
b+

n∑
i=1

αiziKφ(~xi, ~x0)
)

is a kernel classifier.

The thing to notice about kernel classifiers is that the actual features matter for the prediction only to the
extent that they go into computing the kernel Kφ. If we can find a short-cut to get Kφ without computing
all the features, we don’t actually need the features.

To see that this is possible, consider the expression (~x · ~x′ + 1/
√

2)2 − 1/2. A little algebra shows that

(~x · ~x′ + 1/
√

2)2 − 1
2 =

p∑
j=1

p∑
k=1

(xjxk)(x′jx′k) +
p∑
j=1

xjx
′
j

8This sense of the word “kernel” is distinct from the one used in “kernel smoothing” and “kernel density estimation”. See the
last section.

8

This says that the left-hand side is the kernel for the φ which maps the input features to all quadratic
(second-order polynomial) functions of the input features. By taking (~x · ~x′ + c)d, we can evaluate the kernel
for polynomials of order d, without having to actually compute all the polynomials. (Changing the constant
c changes the weights assigned to higher-order versus lower-order derived features.)

In fact, we do not even have to define the features explicitly. The kernel is the dot product (a.k.a. inner
product) on the derived feature space, which says how similar two feature vectors are. We really only care
about similarities, so we can get away with any function K which is a reasonable similarity measure. The
following theorem will not be proved here, but justifies just thinking about the kernel, and leaving the features
implicit.

Mercer’s Theorem If Kφ(~x, ~x′) is the kernel for a feature mapping φ, then for any finite set of
vectors ~x1, . . . ~xm, the m×m matrix Kij = Kφ(~xi, ~xj) is symmetric, and all its eigenvalues are
non-negative. Conversely, if for any set of vectors ~x1, . . . ~xm, the matrix formed from K(~xi, ~xj)
is symmetric and has non-negative eigenvalues, then there is some feature mapping φ for which
K(~x, ~x′) = φ(~x) · φ(~x′).

So long as a kernel function K behaves like an inner product should, it is an inner product on some feature
space, albeit possibly a weird one. (Sometimes the feature space guaranteed by Mercer’s theorem is an
infinite-dimensional one.) The moral is thus to worry about K, rather than φ. Insight into the problem and
background knowledge should go into building the kernel. The fundamental job of the kernel is to say how
similar two different data points are;

This can be simplified by the fact (which we also will not prove) that sums and products of kernel functions
are also kernel functions.

5.0.1 An Example: The Gaussian/Radial Kernel

The Gaussian density function 1√
2πσ2 e

−‖~x−~x‖2/2σ2 is a valid kernel. In fact, from the series expansion
eu =

∑∞
n=0

un

n! , we can see that the implicit feature space of the Gaussian kernel includes polynomials of all
orders. This means that even though we’re just using one kernel function, we’re implicitly using infinitely
many transformed features!

When working with kernel methods, we typically9 write K(~x, ~x′) = exp−γ‖~x− ~x′‖2, so that the normalizing
constant of the Gaussian density is absorbed into the dual weights, and γ = 1/2σ2. This is sometimes also
called the radial (or radial basis or radial basis function) kernel. The scale factor γ is a control setting.
A typical default is γ is the median of ‖~xi − ~xj‖2 over the training data (after first scaling the raw features
to unit variance). If you are worried that it matters, you can always tune it by cross-validation.

5.1 Kernelization

The advantages of the kernel trick are that:

1. we get to implicitly use many nonlinear features of the data, without wasting time having to compute
them; and

2. by combining the kernel with the dual representation, we need to learn only n weights, rather than one
weight for each new feature. We can even hope that the weights are sparse, so that we really only have
to learn a few of them.

Closely examining linear regression models shows that almost everything they do with training vectors
involves only inner products, ~xi · ~x or ~xi · ~xj . These inner products can be replaced by kernels, K(~xi, ~x) or
K(~xi, ~xj). Making this substitution throughout gives the kernelized version of the linear procedure. Thus in

9Writing the (inverse) scale factor as γ is very common, but it should not be confused with using γ for the margin, which
is also very common. Unfortunately, the second most common symbol for the inverse scale factor is σ; this σ is almost the
reciprocal of the usual σ2 =variance convention of statistics (except for a factor of 2).

9

addition to kernel classifiers (= kernelized linear classifiers), there is kernelized regression, kernelized principal
components, etc.

5.2 Kernelized regression, especially kernel ridge regression

If we want to do linear regression using the features, the prediction is (as I’ve said ad nauseam) given by

s(x;β) =
d∑
j=1

βjφj(x)

If we want to do ridge regression using the features, we’d pick the coefficients β to solve the penalized
least-squares problem

β̂ = argmin
β∈Rd

1
n

n∑
i=1

(yi − s(x;β))2 + βTβ

In the dual view, the predictions are

s(x;α) =
n∑
i=1

αiK(x, xi)

and the corresponding optimization problem is

α̂ = argmin
α∈Rn

1
n

n∑
i=1

(yi − s(xi;α))2 + λαTKα

(You will show this in HW 8.) That is, we are picking the weights on individual training points so as to
balance a small MSE against the weights being too big. (Notice that since K is positive-definite, the penalty
term is ≥ 0.)

The solution, which is called kernel ridge regression, is

α̂ = (K + λI)−1y

where y is, in the usual regression notation, the [n× 1] matrix of yi values. (Again, you will show this in HW
8.) If you want to see an example of this in action, look at the section on R below.

If you are curious as to how this kind of “kernel regression” compares to what you might have learned as
“kernel smoothing” or “kernel regression” in other courses, see the last section of these notes.

10

6 Margin Bounds

To recap, once we fix a kernel function K, our kernel classifier has the form

Ẑ(~x) = sgn
(
b+

n∑
i=1

αiziK(~xi, ~x)
)

and the learning problem is just finding the n dual weights αi and the off-set b. There are several ways we
could do this.

1. Kernelize/steal a linear algorithm: Take any learning procedure for linear classifiers; write it so it only
involves inner products; then run it, substituting K for the inner product throughout. This would give
us a kernelized perceptron algorithm, for instance.

2. Direct optimization: Treat the in-sample error rate, or maybe the cross-validated error rate, as an
objective function, and try to optimize the αi by means of some general-purpose optimization method.
This is tricky, since the indicator function means that the error rate depend discontinuously on the
α’s, and changing predictions on one training point may mess up other points. This sort of discrete,
inter-dependent optimization problem is generically very hard, and best avoided.

3. Optimize something else: Since what we really care about is the generalization to new data, find a
formula which tells us how well the classifier will generalize, and optimize that. Or, less ambitiously,
find a formula which puts an upper bound on the generalization error, and make that upper bound as
small as possible.

The margin-bounds idea consists of variations on the third approach.

Recall that for a classifier, the margin of data-point i is its distance to the boundary of the classifier. For a
(primal-form) linear classifier (b, ~w), this is

γi = zi

(
b

‖~w‖
+ ~xi ·

~w

‖~w‖

)
This quantity is positive if the point is correctly classified. It shows the “margin of safety” in the classification,
i.e., how far the input vector would have to move before the predicted classification flipped. The over-all
margin of the classifier is γ = mini∈1:n γi.

6.1 Generalization error for classifiers with zero in-sample error in terms of
margin

Large-margin linear classifiers tend to generalize well to new data (from the same source). The basic reason is
that there just aren’t many linear surfaces which manage to separate the classes with a large margin. As we
demand a higher and higher margin, the range of linear surfaces that can deliver it shrinks. The margin thus
effectively controls the capacity for over-fitting: high margin means small capacity, and low risk of over-fitting.
I will now quote three specific results for linear classifiers, presented without proof10.

Margin bound for perfect separation (Cristianini and Shawe-Taylor 2000, Theorem 4.18):
Suppose the data come from a distribution where ‖ ~X‖ ≤ R. Fix any number γ > 0. If a linear
classifier correct classifies all n training examples, with a margin of at least γ, then with probability
at least 1− δ, its error rate on new data from the same distribution is at most

ε = 2
n

(
64R2

γ2 ln enγ

8R2 ln 32n
γ2 + ln 4

δ

)
if n > min 64R2/γ2, 2/ε.

Notice that the promised error rate gets larger and larger as the margin shrinks. This suggests that what we
want to do is maximize the margin (since R2, n, 64, etc., are beyond our control).

10The detailed forms of the bounds are complicated, and not worth memorizing, but I give them to convey something of the
flavor of results in this area.

11

6.2 Classifiers with non-zero in-sample error: “soft margin” and “slack”

The next result applies to imperfect classifiers. Fix a minimum margin γ0, and define the slack ζi of each
data point as

hi(γ0) = max {0, γ0 − γi}

That is, the slack is the amount by which the margin falls short of γ0, if it does. If the separation is imperfect,
some of the γi will be negative, and the slack variables at those points will be > γ0. In particular, we can say
that a classifier “has margin γ with slacks h1, . . . hn” if the minimum margin on the correctly classified points
is γ, and we use that in to calculate the slacks needed to accommodate the mis-classified points.

Soft margin bound/slack bound for imperfect separation (Cristianini and Shawe-Taylor
2000, Theorem 4.22): Suppose a linear classifier achieves a margin γ on n samples, if allowed
slacks ~h(γ) = (h1(γ), h2(γ), . . . hn(γ)). Then there’s a constant c > 0 such that, with probability
at least 1− δ, its error rate on new data from the same source is at most

ε = c

n

(
R2 + ‖~h(γ)‖2

γ2 ln2 n− ln δ
)

(Notice that if we can set all the slacks to zero, because there’s perfect classification with some positive
margin, then we get a bound that looks like, but isn’t quite, the perfect-separation bound again.)

This suggests that the quantity to optimize is the ratio R2+‖~h‖2

γ2 . There is a trade-off here: adjusting the
boundary to move it away from points we already correctly classify will increase γ, but usually at the cost of
increasing the slacks (and so increasing ‖~h‖2). It could even move the boundary enough so that a point we
used to get right is now mis-classified, moving one of the slacks from zero to positive.

6.3 Hinge loss

The notion of hinge loss is closely related to that of slack. If our classifier is

Ẑ(~x) = sgn s(~x)

e.g., s(~x) = b+
∑n
i=1 αizi (~xi · ~x), then the hinge loss at the point ~xi, zi is

hi = max {0, 1− zis(~xi)}

To see what this does, look at a plot, say for when Y = Z = 1.

12

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Hinge loss when true class is positive

s(x)

h

This says that if our prediction has the right sign and is at least 1, the hinge loss is 0. We get no bonus for
being extra sure that a positive point is positive. But we are penalized for not being sure that a positive
point is positive, and we get increasingly large penalties when we’re mis-classifying. Similarly in the other
direction, when Y = 0, Z = −1:

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Hinge loss when true class is negative

s(x)

h

13

The over-all hinge loss is just the average over the training data:

h = 1
n

n∑
i=1

hi = 1
n

n∑
i=1

max {0, 1− zis(~xi)}

Zero hinge loss means that all our training points are correctly classified. Perfect linear classification almost
implies that the hinge loss is zero11. So hinge loss is yet another “proxy” for classification error, which, unlike
classification error, changes gradually as we change the parameters of the classifier, whether we think of those
as the primal weights on the features, or the dual weights on the training points.

6.4 Being able to ignore some training points while still classifying perfectly

A final result does not assume we are using linear classifiers, but rather relies on being able to ignore part of
the data.

Compression/sparseness bound (Cristianini and Shawe-Taylor 2000, Theorem 4.25): Take
any classifier-learning algorithm which is trained on a set of n data points. Suppose that the
same classifier would be returned on a sub-set of the training data with only m data points. If
this classifies the n training points perfectly, then with probability at least 1− δ, the error rate
on new data is at most

ε = 1
n−m

(
m ln en

m
+ ln n

δ

)
The argument here is simple enough to sketch12. The learning algorithm really only uses m data points, but
still manages to get the remaining n−m training points right. If the actual error rate is ε (or more), then
the probability of doing this would be at most (1 − ε)n−m ≤ e−ε(n−m). However, there is more than one
way of picking m points out of a training set of size n, so we need to be sure we didn’t just get lucky. The
number of subset choices is

(
n
m

)
, so the probability that the generalization error rate is ε or more is at most(

n
m

)
e−ε(n−m). Set this equal to δ and solve for ε.

6.5 Error bounds for kernel classifiers

All of this carries over to kernel classifiers, since they are just linear classifiers in a new feature space13. We
simply have to re-define the margins of the training points in terms of the kernel and the dual representation:

γi = zi

 b√∑n
i=1 αi

+ 1√∑n
i=1 αi

n∑
j=1

αjK(~xj , ~xi)

11If we have perfect classification, but some points have |s(~xi)| < 1, the hinge loss will be positive. Let ri = 1/|s(~xi)|, and
r = max ri. Then multiplying all the weights going in to calculating t by r will ensure that all of the new |s(~xi)| ≥ 1, and, since
they all had the right signs before, we’ll still have perfect classification. So if we can find a linear classifier which gets all the
training data right, we can find another which has got zero hinge loss.

12The argument can be extended to handle situations where the training data aren’t perfectly classified, but it becomes more
complicated. You need to use something like Hoeffding’s inequality to control the probability that the actual error rate is much
larger than the observed error rate when n−m is large.

13It’s important that the kernel K be fixed in advance of looking at the data. If instead it was found by some kind of adaptive
search over possible kernels, that would increase the capacity, and we’d need different bounds.

14

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

7 Support Vector Machines

The three bounds suggest three strategies for learning kernel classifiers:

1. Maximize the margin γ.
2. Minimize the soft margin bound (R2 + ‖~h‖2)/γ2.
3. Minimize the number of support vectors.

Generally speaking, if we follow strategies (1) or (2), we will get solutions where lots of the αi = 0, which is
what (3) would aims for. But directly aiming at (3) moves us back towards hard, discrete, combinatorial
optimization problems, rather than easy, continuous, smooth optimization problems.

7.1 Maximum Margin SVMs

Maximizing the margin directly turns out to be less than favorable, computationally, than maximizing a
related function. (I will not go into the details, but see Cristianini and Shawe-Taylor (2000).) In brief, the
procedure is to maximize

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

zizjαiαjK(~xi, ~xj) (5)

with the constraints that αi ≥ 0 and that
∑n
i=1 ziαi = 0. (We enforce these constraints through Lagrange

multipliers.) Having found the maximizing αi, the off-set constant b comes from

b = −1
2

 max
i: yi=0

 n∑
j=1

zjαjK(~xj , ~xi)

+ min
i: yi=+1

 n∑
j=1

zjαjK(~xj , ~xi)

 (6)

In other words, b is chosen to balance mid-way between the most nearly positive negative points and the most
nearly negative positive points, thereby maximizing the margin in the implicit feature space. The geometric
margin in the feature space is γ = 1/

√∑n
i=1 αi.

If the maximum margin classifier correctly separates the training data, we can apply the first margin bound
on the generalization error.

Generally speaking, αi will be zero for most training points; the ones for which it isn’t are (again) the
support vectors. These turn out to be the only points which matter: notice that if αi = 0, we could remove
that data point altogether without affecting the minimum-value solution of (5). This means that we can also
apply the sparseness/compression bound on generalization error, with m = the number of support vectors.
Because maximum margin solutions are typically quite sparse, it is not common to try to minimize the
number of support vectors directly. (Attempting to do so moves us back to difficult discrete optimization
problems, rather than easy, smooth continuous optimization.)

7.2 Soft Margin Maximization

We fix a positive constant λ and maximize
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

zizjαiαj (K(~xi, ~xj) + λδij) (7)

with the constraints αi ≥ 0,
∑n
i=1 ziαi = 0. The off-set constant b has to solve

zib+ zi

n∑
j=1

zjαjK(~xj , ~xi) = 1− λαi (8)

15

for each i where αi 6= 0. Pick one of them and solve for b:

b = 1− λαi
zi

−
n∑
j=1

zjαjK(~xj , ~xi) (9)

The geometric margin is γ = 1/
√∑

i=1 nαi − λ‖~α‖2, and the slacks are hi = λαi.

The constant λ here is a tuning parameter, basically controlling the trade-off between wanting a large margin
and wanting small slacks. Typically, it would be chosen by cross-validation.

7.3 Hinge loss minimization

Finally, it’s worth mentioning that one can also numerically tackle minimizing the hinge loss. Typically, what
one does is minimize

1
n

n∑
i=1

hi = 1
n

n∑
i=1

max {0, 1− zis(~xi)}+ λ‖~w‖

16

8 R

There are several packages which can implement SVMs. The most friendly may be kernlab, which also
provides functions for lots of different kernelized methods, and for direct calculation and manipulation of
kernel matrices. The main function for fitting SVMs in this package is ksvm. It takes a formula argument,
like lm() or tree(). If the response variable is a factor, it does classification, though you can change that;
by default, it uses a Gaussian / radial basis function kernel, and guesses the appropriate scale factor based
on the data, though again you can change that. (The package even includes a kernel for strings.) Here’s how
it would work for the running-data example with the rings, which is stored in a data frame called df:

library(kernlab)
(df.svm <- ksvm(y ~ x1+x2, data=df))

Support Vector Machine object of class "ksvm"
##
SV type: C-svc (classification)
parameter : cost C = 1
##
Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 6.94181159580486
##
Number of Support Vectors : 68
##
Objective Function Value : -7.739
Training error : 0

The output tells us that this used a Gaussian kernel for classification, what the scale factor it picked, the
error rate on the training set, how many training points got non-zero weight, etc. There is also a plotting
function, which works OK when there are two “raw” features14:

plot(df.svm, data=df)

14If there are more than two features, you need to say which ones you want to vary; see help(plot.ksvm).

17

−1.0

−0.5

0.0

0.5

1.0

−2 0 2

−3

−2

−1

0

1

2

3

SVM classification plot

x2

x1

Including the data argument plots that data set, with the two classes distinguished by their plotting symbols,
which are filled in for the support vectors (while non-support vectors get hollow symbols). The colors indicate
which class we’d predict at each point, and with what margin. Notice from the plot that one class is coded
+1 and the other is coded −1, i.e., ksvm is computing what I’ve called Z rather than Y . The white band
where the prediction is 0 is thus the decision boundary.

8.1 Other SVM packages in R

The oddly-named e1071 library also has an svm() function, which works very much like the ksvm() function
in kernlab. (Both of them rely on a C++ library called libsvm.) Some people find the documentation for
e1071::svm more user-friendly. The svmpath library will actually fit SVMs over a whole range of λ values
simultaneously (hence the name); but you have to pick a particular λ for prediction. (It also doesn’t take a
formula argument or allow you to do regression.)

8.2 A kernel ridge regression example in R

Here is an example of working through kernel ridge regression, using the now-familiar COMPAS data. It is a
little sketchy to use a regression method to do classification, but we can hope to interpret the prediction as
an estimated probability of recidivism (why?).

Unfortunately, kernlab does not give a nicely pre-packaged function for kernel ridge regression. Fortunately,
there are a number of other add-on packages which rectify that, like CVST. Unfortunately, those add-on
packages themselves have complicated syntax. Fortunately, making everything work with kernlab is both
character-building and instructive about how the kernel matrix &c. actually work.

In this example, I’ll use the Gaussian kernel, a.k.a. the radial basis function kernel. This requires15 quantitative
input variables, so I’ll just use age and number of priors; we know from previous work with this data that

15While there are kernel functions for qualitative variables, and sums and products of kernels are themselves kernels, so it’s
perfectly possible to combine qualitative and quantitative regressors in a kernel ridge regression, I’m trying to keep this simple.

18

those are more important than the qualitative variables anyway.

20 30 40 50 60 70 80

0
10

20
30

age

pr
io

rs
Recidivist
Non−recidivist

Figure 1: Priors vs. age for the training set, color-coded for recidivism. Points are “jittered” so that multiple
individuals with equal features aren’t completely on top of each other. The “rugs” along the axes give a sense
of the marginal distributions of the two attributes for the two classes.

The first step is to build the kernel matrix for the training set, K:

Build the kernel matrix for the training set
kernlab parameterizes the Gaussian/RBF kernel by what, in ordinary
Gaussian terms, would be 1/2Var, and calls that sigma (!)

This is what I wrote as \gamma in the text above
see help(rbfdot), and try to think kindly of our non-statistician
colleagues

k.train <- kernelMatrix(rbfdot(sigma=1),
as.matrix(training.set[,c("age", "priors_count")]))

The second step is to get the weights on the training points. This needs a value of λ, and I’ll pick one
arbitrarily to get started. Once we have that, we’ve automatically got fitted values on the training points.

Set an initial value of lambda for exploratory purposes
lambda.initial <- 0.1
Find the weights on the training points

solve(a) returns the inverse of the matrix a
solve(a,b) returns a^{-1} b where b is a (conforming) vector

compas.krr.wts <- solve(k.train + lambda.initial*diag(nrow(training.set)),
matrix(training.set$two_year_recid, ncol=1))

With weights, we can get fitted values
compas.fits <- k.train %*% compas.krr.wts

To look at values on the testing set, we need to compute the output of the kernel machine for each new data
point. That is, for each point zj in the testing set, we want

∑n
i=1 αiK(zj , xi).

Find the matrix K(z_j, x_i) of every point z_j in the testing set with every
point x_i in the training set

19

20 30 40 50 60 70 80

0
10

20
30

age

pr
io

rs
Recidivist
Non−recidivist

Figure 2: Fits on the training set, with color indicating fitted value (darker being lower predictions of
recidivism, lighter higher predictions), and shape indicating actual outcome

the kernelMatrix() function has odd ideas about which argument should go
first here...

K.xz <- kernelMatrix(rbfdot(sigma=1),
y=as.matrix(training.set[,c("age", "priors_count")]),
x=as.matrix(testing.set[,c("age", "priors_count")]))

Find the prediction of the kernel ridge regression by matrix multiplication
oos.preds <- K.xz %*% compas.krr.wts

At this point, we can begin exploring the impact of changing λ and/or the bandwidth of the kernel (our γ,
kernlab’s σ), ideally through cross-validation within the training set (so that we’re not over-optimistic when
we come to the testing set).

20

20 30 40 50 60 70

0
5

10
15

20
25

age

pr
io

rs

Recidivist
Non−recidivist

Figure 3: As in the previous plot, but looking at the testing set.

21

9 Random Features

Before closing, it’s worth mentioning a surprisingly straightforward technique which can work extremely well.
This is to “random features” or “random kitchen sinks” technique, which in essence goes as follows:

• Define a big family or library of functions of your base features. (Usually these will be nonlinear functions;
I’ll give a concrete example below.) Each function will be described by one or more parameters ω, so
the function would be φ(~x;ω).

• Draw ω1, ω2, . . . ωq from some fixed distribution ρ, without looking at your data.
• Declare your new features to be φ(~x;ω1), . . . φ(~x;ωq).
• run a linear model (classifier, regression, etc.) using these features.

To get a sense of how this might work, it’s worth thinking about what are called “expansions” or “decom-
positions’ or even”analyses" of functions — breaking complicated functions up into combinations of more
elementary ones. The classic approach to this is what’s called Fourier decomposition or Fourier analysis.
In one dimension, it basically says that any reasonable16 function f(~x) can be written as a combination of
trigonometric functions:

f(x) =
∫
a(~ω) cos (~ω · ~x)d~ω +

∫
b(~ω) sin ~ω · ~x)dω =

∫
c(~ω)

cos (~ω · ~x+ β(~ω))d~ω

(The last equality implicitly defines c and β, using the trigonometric identity cos (a+ b) = cos a cos b −
sin a sin b.) On the other hand, if we pick ~ω according to some distribution ρ, in expectation we’ll get∫

ρ(~ω) cos (~ω · ~x)d~ω

and the law of large numbers says that for large q,

1
q

q∑
k=1

cos(~ωk · ~x) ≈
∫
ρ(ω) cos (~ω · ~x)d~ω

So if we want to approximate some function f , we just need to figure out what its Fourier transform c(~ω)
is, and use that as the distribution from which we draw a bunch of ~ω, and use those to define our new features.
If we don’t know exactly what function f we want, we can draw from some pretty broad distribution, and
then weight the random functions and use that to define our new (approximate) f . It turns out that in
practice, we don’t even need q to be that big, often somewhere between 30 and 1000 suffices.

Now, at this point, you might be raising a lot of doubts and objections. Don’t we need to draw random phases
β as well as frequencies ω? (Yes.) Does this work for approximating kernel K(~x, ~x′), which are functions of
two vectors? (Yes, take the inner product between the random features.) What if

∫
c(ω)dω 6= 1? (Scale it up

or down until it does; we’re using a linear method anyway in the end so that’s fine.) What if c(ω) < 0 for
some ω? (It turns out we don’t have to worry about this for kernel functions, because of Mercer’s theorem.)
What if we don’t want to use cosines as our basis functions, but something else? (Just about any basis will do,
so long as you can figure out a good ρ.) Suffice it to say that there is some non-trivial math in showing that
the random features technique works, but it has been done, and it leads to some very impressive, streamlined
results.

9.1 In R

I’ll illustrate with the expandFunctions package, which gives a lot of tools for expanding a data frame or
matrix with additional columns (features) calculated from the columns you start with. One of those tools
is the “Random Affine Projection Transformation” (RAPT). That is to say, if we start with an n× p data

16There are precise definitions of “reasonable”, which you can find in references on Fourier analysis, like the very user-friendly
Körner (1988).

22

matrix x, it generates a random p× q matrix W, and a random 1× q matrix B, and then calculates xW and
adds B to each row of the product. Here the columns of W play the role of the vectors ~ω, and the entries in
B play the role of the phases β(ω). The function raptMake() creates a persistent object containing the W
matrix and B vector, and the function rapt() applies such an object to a matrix,. Here, for example, we’ll
create random affine transformations mapping two-dimensional data to 30 dimensions:

library(expandFunctions)
raptObj <- raptMake(p=2, q=30, WdistOpt=list(sd=1),

bDistOpt=list(min=-pi, max=pi))

(The default distribution for the entries in W is Gaussian; the default distribution for the entries in B is
uniform. We want the latter to be phases, so I’ve adjusted the limits to make them sensible angles.) Now we
can apply this to our rings data:

dim(rapt(as.matrix(df[,c("x1","x2")]), raptObj))

[1] 200 30

This shows that we get 30-dimensional features out. The linear transformation done by rapt() isn’t super
useful for our purposes here. (We will see uses for random linear transformations later in the course.) What’s
more helpful is to take the cosine:

df.augmented <- data.frame(y=df$y, cos(rapt(as.matrix(df[,c("x1","x2")]), raptObj)))

We’ve now added on the new, nonlinear features.

Remember that before, it was basically impossible to do linear classification with the x1 and x2 features. For
instance, if we tried logistic regression, it would work badly:

rings.logistic <- glm(y ~ x1+x2, data=df, family="binomial")

+

−

+

−

+
− +

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−
+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+−
+

−

+

−

+

−

+

−

+

−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+
−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+ −
+

−

+

− +

−

+

−

+

−

+

−

+

−

+

−

+
−+

−

+

−
+

−

+−
+

−

+
−

+

−

+

−

+

−

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

(Most of the + points are below the line and most of the − points are above, but this is still pathetic.) But
with the extra features, we can get perfect linear separation of the classes in the expanded feature space:

glm.rks <- glm(y~., data=df.augmented, family="binomial")

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

23

table(predict(glm.rks, type="response") >= 0.5, df.augmented$y)

##
0 1
FALSE 100 0
TRUE 0 100

(Obviously I’m not going to show you the classification boundary in 30-dimensional space.) If we wanted to
make predictions on new data, we’d have to apply the same transformation to those new data points, which
is why raptMake() creates a persistent object. For instance, let’s make a grid for plotting over the region
where we have data:

plotting.grid <- with(df, expand.grid(x1=seq(from=min(x1),
to=max(x1),
length.out=100),

x2=seq(from=min(x2),
to=max(x2),
length.out=100)))

And now let’s see what predictions we get from the (linear) part of the logistic regression model:

featurized.grid <- cos(rapt(as.matrix(plotting.grid), raptObj))
logodds <- coefficients(glm.rks)[1] + featurized.grid %*% coefficients(glm.rks)[-1]

par(pty="s")
plot(x2 ~ x1, data=df,

pch=ifelse(y=="1", "+", "-"),
col=ifelse(y=="1", "red", "blue"),
xlab=expression(x[1]), ylab=expression(x[2]))

contour(x=seq(from=min(x1), to=max(x1), length.out=100),
y=seq(from=min(x2), to=max(x2), length.out=100),
z=matrix(logodds, ncol=100),
levels=pretty(range(logodds), 10),
nlevels=10,
add=TRUE)

Of course, if q is large compared to n, we might not get a very stable fit, so we might want to apply some
sort of penalization to the size of the coefficients on the new features (ridge regression or lasso, say), but
that’s a refinement.

24

+

−

+

−

+
− +

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−
+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+−
+

−

+

−

+

−

+

−

+

−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+

−

+

−

+
−+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+ −
+

−

+

− +

−

+

−

+

−

+

−

+

−

+

−

+
−+

−

+

−
+

−

+−
+

−

+
−

+

−

+

−

+

−

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

 −20

 −20
 −20

 −20

 −20

 0

 0

 0

 0

 20

 20

 20

Figure 4: Contour lines of predictions from our random-kitchen-sink logistic regression. The predictions here
are on the log-odds scale, so the classification boundary is the 0 contour between the outer ring and the inner
blob.

25

10 Further Reading

The best starting book on support vector machines, which I’ve ripped off / drawn on heavily is Cristianini
and Shawe-Taylor (2000). A more thorough account of SVMs and related methods can be had in Herbrich
(2002). Shawe-Taylor and Cristianini (2004) explores a broader range of kernel-based methods, and has an
extensive treatment of kernels for different data types (for instance, kernels for measuring similarity between
strings of text), and theory for combining kernels (for instance, if some features are categorical but others are
numerical).

SVMs were invented by Vapnik and collaborators, and are, so to speak, the poster-children for the value
of statistical learning theory in machine learning and data mining; Vapnik (2000) is strongly recommended,
even mind-expanding, but remember that you’re reading the pronouncements of an opinionated and irascible
genius.

The random kitchen sink technique (along with the name) was introduced by Rahimi and Recht (2008),
Rahimi and Recht (2009). I have specifically sketched how to use random features to approximate (Gaussian)
kernels; there are lots of other possibilities.

11 Kernel machines vs. Nadaraya-Watson smoothing

What we’ve just introduced as kernel machines are functions of the form

s(x) =
n∑
i=1

αiK(x, xi)

where the kernel function K has to meet the requirements of symmetry, the Cauchy-Schwarz inequality and
Mercer’s inequality; this makes sure that it’s a (weighted) inner product in some feature space. When we do
(unregularized) kernel regression in this sense, α̂ = K−1y, as you’ll prove in HW 8; more usefully, if we do
kernel ridge regression, α̂ = (K + λI)−1y.

From other statistics classes, you may be familiar with a technique variously called “kernel regression”, “kernel
smoothing”, “Nadaraya-Watson regression” or “Nadaraya-Watson smoothing” (after Nadaraya (1964) and
Watson (1964)), which is

m̂ux) =
n∑
i=1

yi
G(x, xi)∑n
j=1 G(x, xi)

(It’d be more usual to write K instead of G, but I’m trying to clear up confusion, not amplify it.) This kernel
G is usually of the form G(u, v) = G(u − v), and is a probability density function with mean 0 and finite
variance.

In a sane universe, we might hope that these two sets of models with the same name would turn out to
actually be different ways of writing the same thing, perhaps after some math just hard enough that we can
feel pleased with ourselves for grasping it. We do not live in such a universe. There are at least two distinct
reasons why these are actually two different sets of models:

1. Not every kernel in the first sense, what I wrote K, is a valid choice of a kernel in the second sense,
what I wrote as G. The Gaussian is, we can use K(x, x′) = 1√

2πσ2 e
−‖x−x′‖/2σ2 as both a (weighted)

inner product on the space of infinite-order polynomials and as a pdf. But not ever valid K is a valid
G, or vice versa. (There are valid K kernels which are sometimes negative, which doesn’t make sense
for G kernels.)

2. In kernel machines, the weights αi need to be independent of x, and K(x, xi) needs to be a function of
x and xi alone. If we try to set

n∑
i=1

αiK(x, xi) =
n∑
i=1

yi
G(x, xi)∑n
j=1 G(x, xj)

26

we can see we’re in trouble. If we say that αi = yi, we’d need a K function that changes depending on
all the other training points, not just xj . If on the other hand we set K(x, xi) = G(x, xi), we’ve got
a weight that isn’t constant but changes with x. There is (in general) no way to finesse this to make
these two expressions equal to each other.

So: kernel machines, even for regression, and Nadaraya-Watson smoothing, are just not the same. Why on
Earth, then are they both called “kernel regression” or “kernel methods”?

To answer this, we need to go back behind modern statistics to pure math. In functional analysis, we often
deal with “operators” or “transforms” on entire functions. In particular, a linear operator or a linear transform
is something we do to one function, say f , to produce another function, say Tf , which obeys linearity: if f
and g are two functions, and a and b are two scalars,

T (af + bg) = aTf + bTg

meaning, more particularly, that at all points x in the domain of f and g,

T (af + bg)(x) = a(Tf)(x) + b(Tg)(x)

where I’m using parentheses to be fussy/explicit about precedence of operations. Taking derivatives, for
instance, is a linear operation on functions in this sense.

Now, among linear operators, an especially important place is held by the “linear integral operators”, or
“linear integral transformations’, which are the ones that can be written as (unsurprisingly) integrals: T is a
linear integral operator when

(Tf)(x) =
∫
f(u)K(x, u)du

for some two-argument function K. This K is called the kernel of the linear integral operator, since”kernel"
literally means “seed”, and the metaphor was that K is the seed from which the entire transform grows.

We got the two meanings of “kernel regression” because people trained in this branch of math connected it to
statistics in two independent ways.

On the one hand, linear integral operators are linear operators, so we can ask about what corresponds to
their eigenvectors. Since they act on functions, those are going to be eigenfunctions, i.e., function φ where∫

φ(u)K(x, u)du = λφ(x)

for some eigenvalue λ. Kernels in the inner-product-in-feature-space sense turn out to be ones which lead to
especially nice eigenfunctions, because then it turns out that

K(x, x′) =
∞∑
j=1

φj(x)φj(x′)λj

So kernel regression, in this first sense, turns out to mean “regression where we use the eigenfunctions of the
kernel as the features”.

On the other hand, one kind of linear integral transformation we can apply to a function is convolution,
which is where K(x, u) = G(x− u), so

(Tf)(x) =
∫
f(u)G(x− u)du

If, in particular, this G(x− u) is a pdf, then convolution becomes smoothing, because (Tf)(x) is a weighted
average of values of f(u) for u near x. (Exactly what “near” means depends on how far the tails of G(x− u)
extend, and how rapidly they tend to 0.) This is basically what Nadaraya-Watson smoothing is doing; the
denominator is just to make sure that we’re always getting a properly-normalized weighted average. Behind

27

Nadarya-Watson smoothing, there was the statistical example of kernel density estimation, (Rosenblatt 1956;
Parzen 1962), which is just the convolution of the empirical distribution with the kernel pdf.

So: mathematicians used “kernel” to mean part of an integral operator. Statisticians trained in this sort
of math connected it to regression in two distinct ways, one group by using the eigenfunctions of integral
operators as features, the other group by looking at integral operators that did smoothing. If one side had
called what they were doing “eigenfunction-feature machines”, and the other “convolution smoothers”, we
would have different confusions.

(In addition to this mathematical sense of “kernel” in linear integral operators, it is also used for a rather
different concept in abstract algebra; the names appear to have been developed independently [https:
//mathshistory.st-andrews.ac.uk/Miller/mathword/k/]).

References

Cristianini, Nello, and John Shawe-Taylor. 2000. An Introduction to Support Vector Machines: And Other
Kernel-Based Learning Methods. Cambridge, England: Cambridge University Press.

Herbrich, Ralf. 2002. Learning Kernel Classifiers: Theory and Algorithms. Cambridge, Massachusetts: MIT
Press.

Körner, T. W. 1988. Fourier Analysis. Cambridge, England: Cambridge University Press.

Minsky, Marvin, and Seymour Papert. 1969. Perceptrons: An Introduction to Computational Geometry.
Cambridge, Massachusetts: MIT Press.

Nadaraya, E. A. 1964. “On Estimating Regression.” Theory of Probability and Its Applications 9:141–42.
https://doi.org/10.1137/1109020.

Parzen, Emanuel. 1962. “On Estimation of a Probability Density Function and Mode.” Annals of Mathematical
Statistics 33:1065–76. https://doi.org/10.1214/aoms/1177704472.

Rahimi, Ali, and Benjamin Recht. 2008. “Random Features for Large-Scale Kernel Machines.” In Advances in
Neural Information Processing Systems 20 (Nips 2007), edited by John C. Platt, Daphne Koller, Yoram Singer,
and Samuel T. Roweis, 1177–84. Red Hook, New York: Curran Associates. http://papers.nips.cc/paper/3182-
random-features-for-large-scale-kernel-machines.

———. 2009. “Weighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization
in Learning.” In Advances in Neural Information Processing Systems 21 [Nips 2008], edited by Daphne
Koller, D. Schuurmans, Y. Bengio, and L. Bottou, 1313–20. Red Hook, New York: Curran Associates, Inc.
https://papers.nips.cc/paper/2008/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html.

Rosenblatt, Murray. 1956. “Remarks on Some Nonparametric Estimates of a Density Function.” Annals of
Mathematical Statistics 27:832–37. https://doi.org/10.1214/aoms/1177728190.

Shawe-Taylor, John, and Nello Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge, England:
Cambridge University Press. https://doi.org/10.1017/CBO9780511809682.

Vapnik, Vladimir N. 2000. The Nature of Statistical Learning Theory. 2nd ed. Berlin: Springer-Verlag.

Watson, Geoffrey S. 1964. “Smooth Regression Analysis.” Sanhkya 26:359–72. http://www.jstor.org/stable/
25049340.

28

https://mathshistory.st-andrews.ac.uk/Miller/mathword/k/
https://mathshistory.st-andrews.ac.uk/Miller/mathword/k/
https://doi.org/10.1137/1109020
https://doi.org/10.1214/aoms/1177704472
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines
https://papers.nips.cc/paper/2008/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1017/CBO9780511809682
http://www.jstor.org/stable/25049340
http://www.jstor.org/stable/25049340

	Notation
	Linear classifiers (recap)
	We want to use many nonlinear features, but don't actually want to calculate them all
	Dual Representation and Support Vectors
	The Kernel Trick
	An Example: The Gaussian/Radial Kernel
	Kernelization
	Kernelized regression, especially kernel ridge regression

	Margin Bounds
	Generalization error for classifiers with zero in-sample error in terms of margin
	Classifiers with non-zero in-sample error: ``soft margin'' and ``slack''
	Hinge loss
	Being able to ignore some training points while still classifying perfectly
	Error bounds for kernel classifiers

	Support Vector Machines
	Maximum Margin SVMs
	Soft Margin Maximization
	Hinge loss minimization

	R
	Other SVM packages in R
	A kernel ridge regression example in R

	Random Features
	In R

	Further Reading
	Kernel machines vs. Nadaraya-Watson smoothing
	References

