
Homework 2: Fun with Trends and Detrending

36-467, Fall 2018

Due at 12 noon on Thursday, 13 September 2018

Agenda: Getting a feel for how linear smoothers work; under-
stand properties of detrended data.

1. What do splines like? Refer back to the Kyoto cherry blossom data from
Homework 1. Fit the spline again, and call it kyoto.spline (as in the
solutions to HW 1).

(a) (1) The value of λ (the penalty on curvature) selected by cross-
validation is stored in the $\lambda element of kyoto.spline. What
is it?

(b) (6) smooth.spline unfortunately does not store the smoother matrix
w, though it does store its diagonal in the $lev component. We can
recover the whole of w re-fitting the spline on artificial data. The
following code will do it:

smoother.matrix <- function(a.spline, x) {

n <- length(x)

w <- matrix(0, nrow=n, ncol=n)

for (i in 1:n) {

y <- rep_len(0, n) # Equivalent to rep(0, length.out=n) but faster

y[i] <- 1

w[,i] <- fitted(smooth.spline(x, y, lambda=a.spline$lambda))

}

return(w)

}

(This code is also in a file on the class homepage.)

Run this function on the spline you fit from the data, and a suit-
able choice x. Check that it isn’t doing something obvious wrong
by checking the dimensions of the resulting matrix (what should
they be?), and by checking that the diagonal of this matrix matches
kyoto.spline$lev. (For that latter, the all.equal function is help-
ful.) In this problem, be explicit about the code you are using.

(c) (4) Fix any matrix w, and let ej be the n × 1 matrix which is 0
everywhere, except in row j, where it is 1. Explain why wej gives
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the jth column of w. Explain how this relates to the code in the
previous problem.

(d) (5) Make a plot of all of the eigenvalues (not vectors) of the smoother
matrix, in order. How many of them are > 0.95? How many are
> 0.1? How many are > 0.01? Are any of them exactly zero?

(e) (5) Following the example in the notes for lectures 2 and 3, make a
plot of the first ten eigenvectors of the smoother matrix. Describe
the kinds of patterns in the data these eigenvectors capture.

(f) (3) Make a similar plot for the last ten eigenvectors. Describe the
kinds of patterns they capture.

(g) (2) What sorts of patterns will show up in the fitted values of the
spline (= the estimate of the trend)? What sorts of patterns will
show up in its residuals (= the estimate of the fluctuations)?

(h) (3) The example in the notes for the previous problem plots the en-
tries in the eigenvectors against their position (“index”) in the vector.
Here, different positions correspond to different calendar years. Re-
do the plot from problem 1e so the eigenvectors are plotted against
the Year.AD variable. Does this change your description of any of
the patterns?

(i) (3) Use the contour function to make a contour plot of the smoother
matrix. (You will probably want to adjust some of the default settings
of contour.) Explain how this plot relates to the idea that the spline
is doing a kind of local averaging.

2. Degrees of freedom and moving averages Assume, for simplicity, no missing
values in the data.

(a) (5) Suppose we have one-dimensional data, and estimate the trend by
averaging each observation with its k nearest neighbors. How many
degrees of freedom does the smoother matrix w have?

(b) (4) Assume we have two-dimensional data, laid out in a regular grid,
and estimate the trend by averaging each observation with its k near-
est neighbors in every direction. How many degrees of freedom does
w have?

(c) (1) Assume we have four-dimensional data (3D space + time), with
measurements taken at irregular points and times, and we estimate
the trend by averaging each observation with its k nearest neighbors
in 4D. How many degrees of freedom does w have?

3. The Yule-Slutsky effect In this problem, assume that X(t) = µ(t) + ε(t),

that µ̂(t) = 1
3

∑t+1
i=t−1Xi, and that ε̂(t) = X(t)− µ̂(t).

(a) (3) Find an expression for E [ε̂(t)] in terms of the µ’s.

(b) (5) Find an expression for Var [ε̂(t)].
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(c) (5) Find an expression for Cov [ε̂(t), ε̂(t+ 1)].

(d) (5) Now further assume that Var [ε(t)] = σ2, and that Cov [ε(t), ε(s)] =
0 when t 6= s. Find Cov [ε̂(t), ε̂(t+ 1)]. Explain why the de-trended
residuals are correlated, even though the true fluctuations are not.

4. Detrending by differencing We have focused on detrending by smoothing,
where we first estimate the trend, and then subtract it off. An alterna-
tive procedure is to remove trends by taking differences between nearby
observations. This problem explores how this works, in a situation where
we have one coordinate, so our data can be written X(t) = µ(t) + ε(t).
Assume t is discrete, so it can be 1, 2, . . ., and that there are no missing
values.

Define ∆(t) as X(t)−X(t− 1).

(a) (5) Write ∆(t) in terms of the µ’s and ε’s. Does it make sense to
view ∆(t) as an estimate of ε(t)?

(b) (5) Find the expectation and variance of ∆(t) in terms of µ, and the
variance and covariance of ε.

(c) (5) Explain why ∆(t) can be said to be “detrended”, if µ changes
slowly.

(d) (5) Find an expression for Cov [∆(t),∆(t+ 1)].

(e) (5) Yule-Slutsky again Assume Var [ε(t)] = σ2, Cov [ε(t), ε(s)] = 0
(unless t = s). What is Cov [∆(t),∆(t+ 1)]?

(f) Differencing random walks In a random walk process, X(t) = X(t−
1) + η(t), and the η all have constant variance and are uncorrelated
with each other.

i. (2) Show that differencing a random walk gives us exactly the
η’s, i.e., that here ∆(t) = η(t).

ii. (3) Explain how this relates to the previous parts of the problem.
Hints: In a random walk, what is Cov [X(t), X(t− 1)]? How are
the ε’s related to the η’s?

Rubric (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical
and other mechanical errors, and easy to follow. Questions which ask for a
plot or table are answered with both the figure itself and the command (or
commands) use to make the plot. Plots are carefully labeled, with informative
and legible titles, axis labels, and (if called for) sub-titles and legends; they are
placed near the text of the corresponding problem. All quantitative and math-
ematical claims are supported by appropriate derivations, included in the text,
or calculations in code. Numerical results are reported to appropriate precision.
Code is properly integrated with a tool like R Markdown or knitr, and both the
knitted file and the source file are submitted. The code is indented, commented,
and uses meaningful names. All code is relevant, without dangling or useless
commands. All parts of all problems are answered with coherent sentences, and
raw computer code or output are only shown when explicitly asked for.
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