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Abstract

“Compartment models”, which track the transitions of large numbers of in-
dividuals across a series of qualitatively-distinct states (the “compartments”) are
common in fields which study large populations, such as epidemiology and so-
ciology. These notes cover such models as a particular kind of Markov chain,
including some examples from epidemiology, evolutionary economics, and de-
mography.

I made some mistakes in lecture; these notes correct them.

Epidemiology, ecology, sociology, demography, chemical kinetics, and some other
fields are sometimes grouped together as “population sciences”, which study the be-
havior and evolution of large populations of individuals. All of these fields make
extensive use of what are called (among other things) “compartment models”, where
the members of the population are divided into a discrete set of qualitatively-distinct
states (or “compartments”), and transition between them at rates which vary as func-
tions of the current distribution over compartments1. They can be used whenever a
population is divided into discrete, qualitatively-distinct types or classes, and transi-
tions between classes are stochastic.

1 Compartment Models in General

1.1 Basic Definitions and Assumptions
Let’s begin with the case of a “closed” population of constant size n. (§5 will consider
the modifications needed to make the population size vary over time.) This popula-
tion is divided into r ≥ 2 qualitatively distinct classes, types or compartments2, and
we are primarily interested in how many individuals are located in each compartment.
We thus define the state of the population at time t , X (t ), as a vector,

X (t )≡ [X1(t ),X2(t ), . . .Xr (t )] (1)

where Xi (t ) counts how many individuals are in compartment i at time t .

1Whether the ubiquity of these models reflects some underlying commonality across these fields, or just
a tendency for scientists with similar mathematical training to borrow and/or re-invent similar models, is
beyond the scope of this note.

2These words are all synonyms in the present context.
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The state X (t ) changes because individuals can move from one compartment to
another. We assume that these moves or transitions follow a stochastic process, and
we make two important assumptions about that process.

1. The i -to- j transition rate pi j is the probability that an individual in compart-
ment i will move to compartment j at the next time step. ( pi i is thus the prob-
ability of staying in compartment i .) We assume that the transition rates are
functions of the current population state, and not the past (or the future), so
pi j (X ) is a well-defined function.

Note that this assumption allows some pi j to be zero, either always or for cer-
tain states of the population. (These are sometimes called forbidden or sup-
pressed transitions.) It also allows some pi j to be constant, regardless of X .

2. All individuals in the population make independent transitions, conditional on
X (t ). The moves of all the individuals in a given compartment are thus condi-
tionally independent and identically distributed.

These assumptions are not implied by the mere fact that we’ve divided the pop-
ulation into compartments and are tracking the number of individuals in each com-
partment. They could be false, or true only for a different choice of compartments,
etc.

— You may feel some scruples about applying these assumptions to people, at
least to social processes which reflect human actions (as opposed to, say, models of
disease spread). But modeling aggregated social processes as stochastic in this way
does not commit us to saying that people act randomly, or don’t have motives for
their actions, or that all individuals in the same compartment are identical. What it
does commit us to is that the differences between people in the same compartment
which determine their motives and their actions are so various, so complicated, and
so independent of the circumstances which landed them in that compartment that
they can’t be predicted, and can be effectively treated as random3.

1.2 Consequences of the Assumptions
These assumptions are enough to tell us that the sequence of random variables X (t ) is
a Markov chain. If it’s a Markov process, it has to be a Markov chain because the state
space is discrete, though large (Exercise 1), so what we really need to do is show that
the Markov property holds. The easiest way to get there is through defining some
additional variables.

3There are precise technical senses in which any sufficiently complicated function is indistinguishable
from randomness. For a brilliant and accessible introduction to these ideas, and how they underlie prob-
ability modeling, I strongly recommend Ruelle (1991). The standard textbook on this subject is Li and
Vitányi (1997). Salmon (1984, ch. 3) applies these ideas to the problem of defining “the” probability of an
outcome for members of some class.
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1.2.1 Flow or Flux Variables

For each pair of compartments i and j , define Yi j (t+1) as the number of individuals
who moved from compartment i to compartment j at time t + 1. This is sometimes
called the flow or flux from i to j .

Yi j (t+1) is a random quantity. By the assumptions above, in fact, it has a binomial
distribution:

Yi j (t + 1)∼ Binom(Xi (t ), pi j (X (t ))) (2)

This implies that

E
�

Yi j (t + 1)|X (t )
�

= Xi (t )pi j (X (t )) (3)

Var
�

Yi j (t + 1)|X (t )
�

= Xi (t )pi j (X (t ))(1− pi j (X (t ))) (4)

There are two implications of these worth noting.

1. Both the expected flux and the variance in the flux are proportional to Xi (t ).
This means that the standard deviation in the flux is only proportional to

p

Xi .
Thus, if Xi (t ) is large, the relative deviations in the flux are shrinking. This
suggests that there should be nearly-deterministic behavior in large populations.

2. The assumption that each individual in compartment i has the same probability
of moving to compartment j is crucial to calculating the variance. If there were
randomly-distributed transition rates for all individuals in the compartment,
we’d see a higher variance for the flux (Exercise 2).

If r > 2, then the set of fluxes out of i , [Yi1(t +1),Yi2(t +1), . . .Yi r (t +1)] has as
its joint distribution a multinomial, with the number of “trials” being Xi (t ), and the
probabilities being (pi1, pi2, . . . pi r ). (Remember that the marginal distributions of a
multinomial distribution are binomial.)

1.2.2 Stock-Flow Consistency

The variables Xi (t ) count the total number of individuals in each compartment, re-
gardless of how or when they arrived there. Such variables are sometimes called stock
or level variables. The Yi j (t ) variables, on the other hand, are (as already said) flow
or flux variables. A basic principle is that the new level of the stock is the old level,
plus flows in, minus flows out:

Xi (t + 1) = Xi (t )+
∑

j 6=i

Yi j (t + 1)−Y j i (t + 1) (5)

(new level) = (old level)+
∑

(in flow)− (out flow) (6)

This is sometimes called stock-flow consistency.
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1.2.3 Markov Property

Because Eq. 5 says how the level in each compartment changes, it tells us how the state
vector X (t ) changes as well.

Notice that, from our assumptions, Yi j (t + 1) is independent of the past given
X (t ). It is independent of earlier values of X , and also independent of earlier values
of the Y ’s. Since Eq. 5 tells us that X (t + 1) is a deterministic function of X (t ) and
Y (t + 1), it follows that X (t + 1) is independent of earlier X ’s (and Y ’s) given X (t ).
Hence the state of the population follows a Markov chain.

Because the state space, while large, is finite, the Markov chain will eventually
enter some closed, irreducible set, and stay there forever. In the long run, the distri-
bution of X (t ) will follow the invariant distribution for that irreducible set. These
are properties of any finite Markov chain, and so apply to this one, even though its
has special structure.

2 Epidemic Models
In epidemiology, compartment models are often known as “epidemic models”, and
in that field they descend from pioneering work in mathematical epidemiology done
in the early 20th century4, but they are applied much more broadly than just to epi-
demics. It’s worth thinking through some of the most basic cases, to get a feel for how
they work.

2.1 SI
Let’s begin with a model with just two compartments, dividing the entire population
into those who are infected with a certain disease — call this compartment I — and
those who, not having caught the disease yet, are susceptible, in compartment S. The
state of the population is X (t ) = (XI (t ),XS (t )), but since XS (t ) = n − XI (t ), it is
enough to keep track of XI (t ).

With two compartments, we need to specify two rates, pSI and pI S . The former is
the rate at which susceptible individuals become infected; the later is the rate at which
infected individuals are cured and become susceptible again.

A simple assumption is that pSI (XS ,XI ) = αXI , because the more members of the
population are infected, the more likely a susceptible individual is to encounter one
and become infected. We might, however, simply set pI S = 0, indicating that no one
recovers from the disease, but rather the infected remain infected, and contagious,
forever. There are a couple of ways to justify this latter assumption.

1. We’re in a zombie movie. (This is Pittsburgh, after all.)

2. We’re only interested in what happens on a comparatively short time scale.
More precisely, whatever processes make infected individuals non-infectious
(recovery, death, quarantine, etc.) happen much more slowly than the process

4It is conventional these days to attribute this to the work of Sir Ronald Ross on malaria, but early
reviews (e.g., Lotka 1924, ch. VIII, pp. 79–82) make it clear that this was much more of a collective effort.
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of contagion itself, and we’re only trying to approximate the beginning of the
epidemic, before the former processes can kick in.

3. The infected really do remain around, and contagious, forever (§2.1.1.)

Leaving aside how to justify the assumption that pSI = 0, what are the conse-
quences of these assumptions about the transition rates?

An obvious consequence is that if XI (t ) = n or XI (t ) = 0, then XI will remain
= n or = 0 forever. That is, these are absorbing states of the population. You can
convince yourself that these are the only absorbing states. You can also convince
yourself that an absorbing state forms a closed, irreducible set of states, and that these
are the only closed, irreducible sets for this chain (Exercise 3). There are thus two
possible invariant distributions, one which gives probability 1 to XI = 0 and the other
which gives probability 1 to XI = n. The disease thus either dies out, or takes over
the whole population. Finally, you can convince yourself that XI (t ) never decreases,
so the disease must take over the population if it’s ever present at all.

To see what happens on the way there, we’ll need to use the flow variables. There
is only one flux that we need to worry about, YI S :

XI (t + 1) =XI (t )+YI S (t + 1) (7)
XS (t + 1) =XS (t )−YI S (t + 1) (8)

Since YI S is binomially distributed, we can work out the expected change in the
number of infected individuals.

E [XI (t + 1)|XI (t )]−XI (t ) = XS (t )αXI (t ) (9)
= αXI (t )(n−XI (t )) (10)

Notice that this growth is very small when XI ≈ 0, and again when XI ≈ n. There is
an intermediate range where the growth is very rapid.

Figure 1 plots a typical expected course of XI (t ). This is what’s known as logistic
or sigmoidal5 growth. This can be caricatured as “nothing seems to happen for a long
time, then suddenly it explodes and grows exponentially, but eventually it levels off
and saturates”.

Of course, Figure 1 is comes from iterating the deterministic equation 10. What
happens if we actually follow the stochastic process? Figure 2 plots 100 realizations of
the SI model, along with the deterministic approximation, and shows that while the
shape is the same, the timing of the exponential take-off and of the eventual saturation
becomes variable.

2.1.1 Diffusion of Innovations

A disease which, once caught, never goes away and remains infectious forever is a bit
weird, biologically speaking. But the same ideas are also used to model the spread of
new technologies and ideas, what is sometimes called the “diffusion of innovations”,

5Because somebody thought it that curve looked like an S, or perhaps the outline of σ .

5



0 50 100 150 200

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

t

X
I(t

)

Figure 1: Illustration of the kind of behavior that results from Eq. 10. This is shown
with n = 105, α= 10−6, and XI (1) = 1.
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Figure 2: Comparison of stochastic simulations of the SI model (grey lines) to the
deterministic approximation (black line). Parameters are as in Figure 1.
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and then it makes sense to say that those who have “caught” an idea remain infected
with it, and potentially contagious, for the rest of their lives.

This week’s homework explores this idea in the context of one of the classic data-
sets on the diffusion of innovations, about the spread of the use of a new antibiotic
among doctors in four towns in Illinois in the 1950s. The same notions, however,
have been used to model the adoption of a wide range of technologies, practices, art
forms, and ideologies (Rogers, 2003).

It’s worth noting that the idea of analogizing the spread of ideas or behavior to the
spread of disease is a very old one, but it’s usually been an analogy deployed when peo-
ple disapprove of what is spreading. (It is very rare to talk about “infectious virtue”.)
The oldest example I have found is the Roman writer and politician Pliny the Younger
calling Christianity a “contagious superstition” (superstitionis contagio) in a letter to
the Emperor Trajan in +110 (Epistles X 96.9), but the analogy has spontaneously re-
curred many, many times since then. It was also the basis for more systematic and
scholarly studies, such as Siegfried (1960/1965), long before Dawkins (1976) coined
the word “meme”.

2.2 SIS
A logical next step is to keep two compartments, but to allow for movement back
and forth between them. That is, some infected individuals can recover and become
susceptible again. Again, a simple assumption is that infected individuals recover at a
constant rate, pSI = ρ, while we keep pI S = αXI . Because this allows for movement
from each compartment to the other, we need to keep track of two fluxes:

YSI (t + 1) ∼ Binom(XS (t ),αXI (t )) (11)
YI S (t + 1) ∼ Binom(XI (t ),ρ) (12)

Now

XI (t + 1) = XI (t )+YSI (t + 1)−YI S (t + 1) (13)
XS (t + 1) = XS (t )−YSI (t + 1)+YI S (t + 1) (14)

To understand the dynamics here, start by considering what would need to hap-
pen for the expected change in XI to be zero.

E [XI (t + 1)|XI (t )]−XI (t ) = αXI (t )(n−XI (t ))−ρXI (t ) (15)

Let’s set this equal to 0 at XI (t ) =X ∗I . There are two solutions:

X ∗I (α(n−X ∗I )−ρ) = 0 (16)
X ∗I = 0 or (17)

ρ

α
+X ∗I = n (18)

X ∗I = n−
ρ

α
(19)
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Figure 3: 100 trajectories of the SIS model, with n = 105, α = 10−6, γ = 10−2 (so
X ∗I = 9× 104) and XI (1) = 1. Notice that there are two horizontal lines at large t .

The first solution is boring — if nobody’s infected, nobody gets infected. The other
solution is more interesting: it gives the level of infection where new infections just
balance recoveries (on average). Whether XI (t ) will tend to converge to this level is
however another question. Obviously this is only possible if n > ρ/α+ 1, so let’s
assume that going forward.

Suppose that XI (t ) =X ∗I +ε for some small amount ε. You can show (Exercise 4)
that the expected change in XI has the opposite sign from ε, so that if the process is
above X ∗I it will tend to be pulled down towards it, and vice versa. This suggests that
the process should bounce around this level.

In fact, the situation is a little more subtle. XI = 0 is still an absorbing state, but
now it is one which can be reached from other states of the population. If, after all,
XI (t ) = 1, there is some probability that XI (t + 1) = 0. (What is that probability?)
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Figure 4: Close-up of Figure 3, showing fluctuations around X ∗I at large times.
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Figure 5: Close-up of Figure 3, showing that some simulations converge to zero.
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And no matter how big XI gets, there is always some probability that it will eventu-
ally reach 1, and then in turn 0. So XI = 0 is the only closed, irreducible set of states.
Consequently, the disease will always die out eventually in an SIS model. It will, how-
ever, generally take a very long time to do so, and in the meanwhile it will spend most
of its time oscillating around X ∗I .

2.3 SIR, SEIR, etc.
It is easy, and often convenient, to add more compartments to epidemic models of this
sort. In an SIR model, for example, the third compartment, R, stands for “removed”
or “recovered”, depending on whether we think of individuals in that compartment
as having died off, or as having acquired immunity. The basic dynamics are

pSI = αXI (20)
pI R = ρ (21)
PSR = 0 (22)
pI S = 0 (23)
PRI = 0 (24)
pRS = 0 (25)

I will let you check that the only absorbing state is XR = n, and also let you work
out both the deterministic approximation and simulate some trajectories on the way
there.

A related wrinkle is to add an intermediate compartment between S and I , say E
for “exposed”, in which someone is not yet showing symptoms. Individuals in com-
partment E might or might not be infectious themselves (and, if so, might be more
or less infectious than those in compartment I ). If one wants to have characteristic
lengths of time for each phase of the disease, one can add even more compartments,
say I1, I2, . . . Iτ , with automatic progression from one to the next.

3 Space
The easiest way to handle space in a compartment model is to say that you have r1
types or classes of individuals across r2 locations, so that the r = r1 r2 compartments
track combinations of types and locations. Migration from one location to another is
then just another kind of transition. The transition rates can be made to be functions
of the counts of types only in the same location (e.g., S’s in location 1 can only be
infected by I ’s in location 1), or global aggregates calculated across all location, or
some combination of both of these.

This approach will work poorly when the number of locations r2 will become
comparable to the population size n, since then most locations will have a count of 0
for most types, and you would be better off using a different, more individual-based
model.
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4 Asymptotics
We haven’t discussed what happens as n→∞. Basically, a compartment model con-
verges on a system of ordinary differential equations.

Said a bit less baldly, suppose that the transition rates pi j (X ) are all of the form
pi j (X ) = ρi j (X /n)h, where h represents the amount of time that passes from one
value of X to the next. Notice that we are assume that the transition rates are re-
ally functions of the distribution of individuals across the compartments, and not the
numbers in compartments — that we get the same rate of infection when n = 20 and
XI = 10 as when n = 2000 and XI = 1000. Finally, we fix a finite, but perhaps large,
interval of time T . Then what we find is that the trajectory of the compartment
model between time 0 and time T approaches the solution of a differential equation.
If we say that x(t ) is the solution to

d xi

d t
=
∑

j

ρ j i (x(t ))x j (t )−ρi j (x(t ))xi (t ) (26)

then, as n→∞ and h→ 0, the random sequence X (h)/n,X (2h)/n,X (3h)/n, . . .X (T )/n
comes closer and closer to the deterministic function x on the interval [0,T ] (with
high probability).

This is the trick that I used above, when I invoked “deterministic approximations”
to the epidemic models. For instance, in the SI model, the limiting trajectory for
(XS (t )/n,XI (t )/n) is given by

d xS

d t
= −axS (t )(1− xS (t )) (27)

d xI

d t
= axI (t )(1− xI (t )) (28)

xS (t )+ xI (t ) = 1 (29)
(30)

and solving this differential equation does indeed give us sigmoidal growth curves.
(Can you work out how the a here relates to the α in the stochastic, finite-n version
of the SI model?)

It is important that the convergence only holds over finite times [0,T ]. Basically,
this is because infinite time gives a stochastic process infinitely many opportunities
to do arbitrarily improbable things, so they will eventually. In particular, in the SIS
model, the limiting behavior is

d xI

d t
= axI (t )(1− xI (t ))− g xI (t ) (31)

and not extinction.
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5 Demography: Birth, Aging, and Death
So far, we have considered models where the population size n is constant. Most real
populations change in size, and an important application of compartment models is
to demography, where what we really care about is how n changes over time. The
three processes which change n are birth, death, and migration.

The SIR model shows how to handle death: we can treat “being dead” as just
another compartment, say R6. Individuals in compartment i transition to this com-
partment at some rate δi , and there are no transitions out of this compartment. De-
mographers typically define the mortality rate as the number of deaths per 1000
individuals per year, which you can translate into a probability per person per unit
time (depending on the time-scale of your model). Yi R(t ) would be the random vari-
able which counted the actual number of deaths among members of compartment i
in time-period t . If this sort of formal simplicity isn’t needed, however, we can simply
introduce a new variable Di (t ) for deaths in compartment i in period t .

Migration can be handled similarly, by introducing a new compartment for “leav-
ing for the rest of the world”. If both in- and out- migration are possible, then we
need to model the flow of immigrants.

Birth, however, requires a slightly special treatment in these models. The diffi-
culty is that parents are (typically) still around. The easiest way to handle this is to
introduce a new set of variables, Bi j (t ), which count the number of new births into
compartment j from parents in compartment i7 If individuals can only be born one
at a time, then we can make Bi j binomial reflecting a certain rate of parentage for in-
dividuals in compartment i . If there are a non-trivial number of twins, triplets, etc.,
it might be better to use something like a Poisson distribution.

The model thus looks like this:

Yi j (t + 1) ∼ Binom(Xi (t ), pi j (X (t ))) (32)

Di (t + 1) ∼ Binom(Xi (t ),δi (X (t ))) (33)
Bi j (t + 1) ∼ Binom(Xi (t ),βi j (X (t ))) (34)

Xi (t + 1) = Xi (t )−Di (t + 1)+Bi i (t + 1)+
∑

j 6=i

B j i (t + 1)+Y j i (t + 1)−Yi j (t + 1)(35)

In human demography, and to a lesser extent in population ecology, we need a
fairly large number of compartments, which track combinations of age and sex. De-
mographers conventionally work with 5-year age brackets, so that there is a compart-
ment for females age 0–5 and for males age 0–5, for females age 6–10 and for males age
6–10, and so on all down the line. The transition probabilities are very simple: every
individual who does not die moves into the next age group (and the same sex), with
probability 1. It is the age-specific death rates δi which let us model realistic distribu-
tions of life-span; without them, we’d have geometric distributions of longevity.

6Saying that R stands for “removed” is euphemistic.
7I am writing as though individuals have only one parent, which of course isn’t true for (most) verte-

brates, including human beings, but the reasons for this will become apparent shortly.
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Births can only happen into the 0–5 age brackets, so Bi j = 0 unless j is one of
those two brackets. Because only females give birth, Bi j = 0 unless i is a female age
bracket of child-bearing age. In many applications, the age-fertility rates βi j will be
taken to be constant, but they can be allowed to vary with the number of males, or
even with the ratio of males to females, depending on the customs of the population
concerned. Note that these rates βi j should not be confused with the total fertility
rate, which is the sum of age-specific rates across child-bearing years.

6 Chemistry
Chemistry provides an important application for compartment models. Here the
“compartments” are different types of molecules, or chemical species, and transi-
tions are the consequences of reactions. We can write the SI model in this form, with
one reaction, S + I → 2I 8. We can also write the SIS model as something with two
reactions, S + I → 2I and I → S. The constant-n case corresponds to all reactions
having the same number of molecules on both the left- and the right- hand sides (as
the SI and SIS cases do). In actual chemistry, though, it’s common for the number of
molecules to change, as in 2H2+O2→ 2H2O (three molecules go in, two molecules
come out). The way to handle this is to use Y variables to count the number of times
each reaction happens, and then subtract the substrates (on the left) and add the prod-
ucts (on the right), so, e.g., if the hydrogen-and-oxygen-to-water reaction was the only
one, we’d have

XH2
(t + 1) = XH2

(t )− 2Y2H2+O2→2H2O (t + 1) (36)

XO2
(t + 1) = XO2

(t )−Y2H2+O2→2H2O (t + 1) (37)

XH2O (t + 1) = XH2O (t )+ 2Y2H2+O2→2H2O (t + 1) (38)

(We would also typically assume that the transition rate for this reaction is ∝
X 2

H2
XO2

.)

7 Further reading
For a fine textbook treatment of compartment models in biology, see Ellner and
Guckenheimer (2006), which includes a good chapter on epidemic models, and refer-
ences to the further literature.

8 Exercises
To think through, as complements to the reading, not to hand in.

8A reaction like this, where the species I is involved in a process which makes more of the same species,
is called autocatalytic.
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1. Compartment-model state spaces are very large Fix n. A possible state X is a vec-
tor of non-negative integers [X1,X2, . . .Xr ], with the constraint that

∑r
i=1 Xi =

n. Prove that the number of such vectors is
�

n+ r − 1
n

�

.

(a) Imagine writing out a line of n dots, and inserting r − 1 vertical bars be-
tween the dots, with the possibility of bars being next to each other. Call
the number of dots to the left of the left-most bar X1, the number of dots
between that first bar and the second X2, and so on. Convince yourself
that every arrangement of dots and bars corresponds to a valid value of X ,
and that every valid value of X can be represented in this way.

(b) Show that the number of arrangements of dots and bars is equal to choos-
ing n locations for dots out of n+ r − 1 places.

(c) Show that
�

n+ r − 1
n

�

=
�

n+ r − 1
r − 1

�

.

(d) Use Stirling’s approximation, log n! ≈ n log n, to show that as n grows
with r fixed, the size of the state space grows like n r−1.

2. Randomly-varying transition rates across individuals and over-dispersion Suppose
that each individual in compartment i has its own, random transition rate Pi j

for moving to compartment j , with E
�

Pi j

�

= pi j and Var
�

Pi j

�

= vi j . Show

that Var
�

Yi j (t + 1)|X (t )
�

=Xi (pi j (1− pi j )+ vi j ).

3. Show the following for the SI model of §2.1.

(a) XI = 0 and XI = n are absorbing states.

(b) There are no other absorbing states.

(c) An absorbing state forms a closed, irreducible set of states. (This is a gen-
eral fact about Markov chains.)

(d) This chain has no other closed, irreducible sets.

(e) With probability 1, either XI (t )→ 0 or XI (t )→ n.

4. For the SIS model, calculate E
�

XI (t + 1)−XI (t )|XI (t ) =X ∗I + ε
�

in terms of
n, α, ρ and ε, and show that (for small ε) it has the opposite sign from ε.

5. (a) Prove that if the probability of an event happening on each time step is a
constant p, and successive time-steps are independent, the number of steps
we need to wait for the event to happen has a geometric distribution. Find
the parameter in terms of p.
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