
Homework 7

36-467, Fall 2020

Due at 6 pm on Thursday, 29 October 2020

Note: This was supposed to have been due on the 22nd, but I
(i) screwed up the release, and then (ii) left town for family business
until it was too late to ask you to do this. This will be extra credit,
meaning your grade on it will replace your lowest grade on the other
homeworks (unless your grade on this is lower than on any of the
other homeworks; attempting this can only improve your grade).

1. The “sandwich covariance” for linear regression In this problem, and this
problem only, suppose our data consists of IID variables X1, . . . Xn, where
each Xi = (Yi, Zi); where both Yi and Zi are centered, so E [Yi] = E [Zi] =
0; and that we want to estimate a linear regression of Y on Z by least
squares, so we would ideally like to find the b0 which minimizes m(b) =
E
[
(Y − bZ)2

]
. We do not assume that the true relationship between Y

and Z is linear.

(a) (5) Show that m(b) = Var [Y ] + b2Var [Z]− 2bCov [Y,Z].

(b) (5) Show that the second derivative of m(b) (with respect to b) is
m′′(b) = 2Var [Z].

(c) (5) With finite data, we approximatem(b) byMn(b) = n−1
∑n

i=1 (Yi − bZi)
2.

Define the residual for the ith observation as Ri(b) = Yi− bZi. Show
that the first derivative of Mn(b) is M ′n(b) = −2

n

∑n
i=1Ri(b)Zi.

(d) (8) Explain why it’s reasonable, under our assumptions, to estimate
Var [M ′n(b0)] by

Ĵn =
4

n2

n∑
i=1

R2
i (b̂n)Z2

i

“Reasonable” here means you don’t need to give a formal proof, but
you should give reasons to explain why Ĵn is connected to Var [M ′n(b0)].
Hint: What’re the expectations of the summands?

(e) (8 Find an expression for the standard error of b̂n, the minizer of
Mn(b). Your answer should involve both Ĵn and the sample variance
of Z (and possibly other things).

(f) (4) Now assume that Y = b0Z + ε where ε is IID with mean 0 and
variance σ2. (That is, the usual linear-model assumptions hold.)
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Show that your expression for the standard error from the last sub-
problem will converge on σ/

√
Var [Z] for large n.

Notice that in this problem we did not assume that the linear regression
model is right, or, if the relationship between Y and Z is linear, assume
that the noise around the regression line has constant variance. What
we’ve just done, in the next-to-last sub-problem, is the calculation of a
“robust standard error” (because it’s still valid if the usual assumptions
are broken). In particular, this is a “heteroskedasticity-consistent” (HC)
robust standard error (because it works even if the noise is “heteroskedas-
tic”, i.e., does not have constant variance).

2. Estimating an AR(1) by optimizing Suppose we’re dealing with a sta-
tionary time series X(t) which is centered, so E [X(t)] = 0, and has
autocovariance function Cov [X(t), X(t+ h)] = γ(h). We want to es-
timate an AR(1) model by least squares, so we minimize the function

Mn(b) = (n− 1)−1
∑n−1

t=1 (X(t+ 1)− bX(t))2. We call this minimizer b̂n.
Take it on trust that Mn(b)→ E

[
(X(t+ 1)− bX(t))2

]
≡ m(b) as n→∞.

Define b0 to be the minimizer of m(b).

Unless the sub-problem explicitly says otherwise, do not assume that the
AR(1) model is correct.

(a) (5) Show that m(b) = γ(0)(1 + b2)− 2bγ(1).

(b) (5) Show that m′′(b) = 2γ(0).

(c) (5) Define the residuals R(t; b) as R(t; b) = X(t) − bX(t − 1). Show
that

M ′n(b) = − 2

n− 1

n−1∑
t=1

R(t+ 1; b)X(t)

(d) (5 Explain why Ĵn = 4
(n−1)2

∑n
t=1R

2(t+ 1; b̂n)X2(t) might not be a

good estimate of Var [M ′n(b0)].

Note: There are techniques for calculating heteroskedastic-autocorrelation-
consistent (HAC) robust standard errors, based on smoothing terms like
R2X2; we’ll revisit this topic towards the end of the course when we look
at fitting regression models with autocorrelated noise.

3. Estimating an AR(1) by optimizing, continued Now suppose that the
AR(1) model is right, so that X(t + 1) = b0X(t) + ε(t + 1), where the
εs all have mean 0, variance τ2 > 0 and are uncorrelated with each other
and with earlier Xs.

(a) (6 Express m(b) in terms of b0 (the true autoregressive coefficient),
τ2 and b.

(b) (5) Show that Cov [X(t), ε(t+ 1)] = 0. Hints: Use the law of total
expectation, and the facts that the innovations have expectation 0
and are uncorrelated with earlier Xs.
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(c) (5) Show that Cov [X(t)ε(t+ 1), X(t+ h)ε(t+ h+ 1)] = 0. Hints:
Use the law of total expectation again (and the previous sub-problem).

(d) (10) Show that

Var [M ′n(b0)] =
4

n− 1

τ4

1− b20
Hint: Use the previous sub-problem.

(e) (8) Show that Var
[
b̂n

]
≈ 1−b20

n−1 for large n.

4. (1 How much time did you spend on this problem set?

Rubric (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical
and other mechanical errors, and easy to follow. All plots, tables, etc., are
generated automatically by code embedded in the R Markdown file. Plots are
carefully labeled, with informative and legible titles, axis labels, and (if called
for) sub-titles and legends; they are placed near the text of the corresponding
problem. All quantitative and mathematical claims are supported by appropri-
ate derivations, included in the text, or calculations in code. Numerical results
are reported to appropriate precision. Code is properly integrated with a tool
like R Markdown or knitr, and both the knitted file and the source file are sub-
mitted. The code is indented, commented, and uses meaningful names. All code
is relevant, without dangling or useless commands. All parts of all problems are
answered with coherent sentences, and raw computer code or output are only
shown when explicitly asked for.
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