
Homework 9, Fitting a Simulation Model to Data

36-467/667

Due at 6 pm on Thursday, 5 November 2020

In this problem set, we continue working with the lynx data set, and with the lv model from the previous
problem set. This is a version of the Lotka-Volterra model, named after the scientists1 who invented it.
This model explains cycles in the population of an animal species by looking at the interactions between
a predator species (like the lynx) and its prey. (The main prey of the lynx is a kind of rabbit called the
“snowshoe hare”.)

Specifically, the model is mostly a set of differential equations2, like so:

dS

dt
= (θ1R(t)− θ2)S(t) (1)

dR

dt
= (θ3 − θ4S(t))R(t) (2)

S(0) = 1 (3)
R(0) = 1 (4)
X(t) ∼ Poisson(θ5S(t)) (5)

Here, S(t) is the number of predators at time t, R(t) is the number of prey animals at time t, and X(t) is the
number of predators observed (caught) at time t. S(t) and R(t) are measured relative to the abundance of
these animals at time t = 0, but X(t) is supposed to be a simple count.

The meaning of the model parameters is as follows. If there were no predators (S(t) = 0), the prey species
would grow exponential in population at rate θ3. The more predators there are, the lower the growth rate of
the prey (because of the −θ4S(t) term), until, past some point, predators actually cause the prey population
to shrink. If there were no prey (R(t) = 0), the population of predators would shrink exponentially at
rate −θ2. Adding more prey animals raises the growth rate of the predators, whose numbers will grow
exponentially if θ1R(t) > θ2. Finally, θ5 is an observational or measurement parameter, which tells us how
the relative abundance of predators S(t) relates to the expected number of observed predators X(t). (Notice
that all of the parameters, to make sense, must be > 0.)

In this problem set, we’ll use the methods we’ve developed so far to estimate this model. You will want to
refer to the lv.R code from last time.

1. (5) Explain why the first observed value for X is a reasonable rough or initial estimate of θ5.

2. A fixed point of a dynamical system, like the Lotka-Volterra equations, is a state (S,R) where the
rates of change are 0, so dS/dt = dR/dt = 0.

1Lotka was trained as a physicist, became a pioneer of applying mathematics to biology, couldn’t find a university job and
ended up spending most of his career working for a life insuance company (where he did pioneering work on demography).
Volterra was an eminent pure mathematician who looked in to the problem of population cycles as a favor to his son-in-law, who
worked for the Italian equivalent of the fish-and-wildlife department. Interestingly, neither was trained as an ecologist (a field
which was just emerging when they wrote), or even a biologist.

2If you look this up in a textbook (or Wikipedia. . . ), you will see something where the initial values of S(t) and R(t) are
arbitrary, rather than fixed at 1. The usual version can however always be transformed in to the one I give here, and doing so
saves us from having to estimate two parameters. Also, making the observable follow a Poisson distribution isn’t essential; some
people use different distributions of noise, but the idea that the mean is proportional to S(t) is essential.
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a. (2) Show that (0, 0) is a fixed point, regardless of the parameters.

b. (3) Show that (S,R) = (θ3/θ4, θ2/θ1) is a fixed point.

c. (2) Show that there are no other fixed points.

3. The lv.latent() function in the code from last week runs the part of the model which calculats S(t)
and R(t) (but not X(t)). Run it with parameters θ1 = 1.6, θ2 = 2.5, θ3 = 0.5 and θ4 = 0.1, and times
evenly spaced from 0 to 60 in units of 1/12. Save the result in an object called lv.out.

a. (5) Which of the mathematical variables R(t), S(t) or X(t) corresponds to the numerical R
variable lynx in lv.out? Which mathematical variable corresponds to hare in lv.out?

b. (5) Plot the lynx variable against time; it should look cyclical. How much time passes between
peaks? What’s the ratio between the minimum and maximum population of lynxes?

c. (5) Plot the lynx variable against the hare variable. You should see a lop. Does the process
move around the loop with equal speed in all phases of its cycle, or does it move faster in
some parts and slower in others? How can you tell?

d. (5) Add the fixed point corresponding to these parameter values to the plot. Describe where the
point lies in relation to the trajectory.

Lotka and Volterra showed that time averages correspond to the fixed point. That is, that T−1 ∫ T

t=0 S(t)dt→
θ3/θ4 as T →∞, while T−1 ∫ T

t=0 R(t)dt→ θ2/θ1. That is, the system “orbits around” the fixed point, and
the average as it does so matches the fixed point. (Not all dynamical systems which have fixed points have
this property.)

4. (5) Explain why the time average of X(t) is a reasonable rough, initial estimate of θ5(θ3/θ4). What is
the corresponding estimate of θ3/θ4 for the lynx data?

5. We have tried fitting linear autoregressive models to this data before, and found the results aren’t very
satisfying. One reason for this, hinted at in the last homework, is that there seems to be a lot more
variability in the population count at the peaks of the cycle than at the bottom, and in fitting AR
models we assume constant variance. We are nonetheless going to try using an autoregressive model as
our auxiliary model for fitting the Lotka-Volterra equations to this data using indirect inference.

estimate.auxiliary <- function(x) {
ar.fit <- ar.ols(x, order.max=3, aic=FALSE, demean=FALSE, intercept=TRUE)
beta <- c(log(ar.fit$x.intercept), ar.fit$ar, log(sd(ar.fit$resid, na.rm=TRUE)))
return(beta)

}

a. (5) Explain what the estimate.auxiliary function does: what is its argument, what does it return,
and what purpose does it serve here?

b. (5) Some of the estimated auxiliary parameters are logged by this function, but others are not. Why
do you think that’s done? That is, why log those parameters but not the others?

c. (5) Why does the estimate.auxiliary function use an AR(3) model, when there are 5 parameters
in the Lotka-Volterra model? Could we use an AR(2) instead? What about an AR(4)?

d. (5) Do any of the entries in β, as returned by this function, correspond to coordinates of the θ vector
of parameters in the Lotka-Volterra model? Explain.

6. To estimate the model, we start with a guess about the Lotka-Volterra parameters, find the corresponding
value of the auxiliary parameters by simulating, and then adjust the Lotka-Volterra parameters to
match the data better. Ordinarily, we’d just use optim() to do the iterative adjustment. However, all
the components of θ need to be > 0, so we need to use a method for optimization which can handle
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inequality constraints. The constrOptim() function, in R, will do this3. The lv.indinf() function,
given below and on the class website, uses this.
a. (3) The lv.indinf() function defines an internal function called aux.discrep(). What does it

do? How is it used by the code?
b. (5) Run this code using theta.ref as the starting value of the parameters. What are the fitted

values?
c. (6) Make one simulation run of the model at the fitted values. Plot this simulation run as a

function of time, and add the original data to the plot. Comment on how the simulation run
resembles the data and on how they differ.

lv.indinf <- function(start, data=lynx, s=100) {
require(numDeriv)
beta.hat <- estimate.auxiliary(data)
aux.discrep <- function(theta) {

aux.from.sims <- replicate(s, estimate.auxiliary(lv.sim(theta.vec=theta)))
beta.bar <- rowMeans(aux.from.sims)
sum((beta.hat - beta.bar)^2)

}
gradient.discrep <- function(theta) {

return(grad(func=aux.discrep, x=theta, method="simple"))
}

est <- constrOptim(theta=start, f=aux.discrep, grad=gradient.discrep,
ui=diag(length(start)), ci=rep(0, length(start)),
method="BFGS")

return(est)
}

7. Uncertainty.
a. (5) Write code which runs the model at the fitted parameters from the previous problem, and

then runs the indirect inference function on the simulation.
b. (6) Write code which repeats your code from part (a) multiple times and takes the standard

deviation across the simulation runs. Hint: For debugging purposes here, make the number
of replications small.

c. (6) We’ve talked about multiple ways of calculating standard errors for estimators in this course.
What kind of standard error is this giving us?

d. (2) Run your code from (b) to get standard errors for each of the five parameters of the Lotka-
Volterra model. NOTE: This is the most time-consuming part of the assignment. Use caching,
and observe how points have been assigned to problems.

Presentation rubric (10): The text is laid out cleanly, with clear divisions between problems and sub-
problems. The writing itself is well-organized, free of grammatical and other mechanical errors, and easy to
follow. All plots, tables, etc., are generated automatically by code embedded in the R Markdown file. Plots
are carefully labeled, with informative and legible titles, axis labels, and (if called for) sub-titles and legends;
they are placed near the text of the corresponding problem. All quantitative and mathematical claims are
supported by appropriate derivations, included in the text, or calculations in code. Numerical results are
reported to appropriate precision. Code is properly integrated with a tool like R Markdown or knitr, and
both the knitted file and the source file are submitted. The code is indented, commented, and uses meaningful
names. All code is relevant, without dangling or useless commands. All parts of all problems are answered
with coherent sentences, and raw computer code or output are only shown when explicitly asked for.

3More specifically, constrOptim() handles linear inequality constraints, but that’s all we need here. For more general
constrained optimization, I like the alabama package, but there are many others.
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https://cran.r-project.org/web/packages/alabama/index.html

