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1 How Much vs. How Fast

It’s often important to distinguish between variables which say how much of something there currently is, and
those which say how quickly that quantity is changing. In some fields, the “how much” variables are called
stocks and the “how quickly” are flows, while in others they are levels and rates (or rates of change),
and in yet others charges and currents, or quantities and fluxes.

Regardless of the name, one key to keeping these things straight is to think about the dimensions we use to
express them. A “how much” might have dimensions of money, or quantity, or mass, or energy (and so units
of dollars, or persons, or kilograms, or joules), but a “how quickly” has the dimensions of its “how much” per
unit time: it’s dollars per year, or persons per week, or kilograms per second.

When time is discrete, so we have times t, t+ 1, . . . t+ 2, . . ., people often use the symbol ∆ (capital Greek
delta) as a prefix, to indicate rate of change, ∆x(t) ≡ x(t) − x(t − 1). (Note: some people would set
∆x(t) = x(t + 1) − x(t); this isn’t a huge difference, but it can lead to annoying off-by-one errors when
combining formulas from different sources.) In continuous time, we just use the time derivative, dxdt (t) or
ẋ(t) or x′(t). Remember that ẋ(t) is, by definition, limh→0

x(t)−x(t−h)
h , so you can see that there’s a close

relationship between ẋ(t) and ∆x(t).

Rates of change can often be broken down into a sum of contributions from different processes, each of which
would have its own impact on the level variable. In these situations, we often speak of each contribution as
its own rate, and the over-all sum as the net rate. (Sometimes we even group contributions from related
processes together and talk about their net rate.) That’s a vague, abstract statement, but hopefully the next
few examples will clarify.
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1.1 Examples of Stocks and Flows / Levels and Rates

1. The volume of water in your bathtub at time t, V (t), is a “how much”, a stock or level. (The units are
units of volume, gallons or liters or cubic meters.) The net rate at which water is being added to or
removed from the tub is the “how fast”, flow or rate variable, say dV/dt in continuous time, and it has
dimensions of volume per unit time, say gallons per minute or liters per second. This rate of change is
the three components:
a. The rate at which water is flowing in from the tap or spigot;
b. The rate at which water is flowing out from the drain; and
c. The rate at which water is splashing over the side of the tub.

2. The number of people in a country at a particular moment in time t, say n(t), is a “how much”, a level.
This will generally be different from one year to the next, so n(t) 6= n(t− 1). The rate of change in
population will be ∆n(t) = n(t)− n(t− 1) people per year. Note that this rate of change itself is the
sum of a number of different rates of change:
a. The number of births;
b. The number of deaths;
c. The number of people entering the country (immigration);
d. The number of people leaving the country (emigration). The sum of (c) and (d) would be the net

migration rate. — It’s worth noting that when people talk about “the birth rate” or “the death
rate”, they usually mean “per capita” rates, which have been normalized by dividing by the total
population, so that if d(t) people die over the course of year t, the death rate would be reported as
d(t)/n(t). This would have dimensions of ([people]/[time])/[people]) or 1/[time], but it’s usually
reported as so many deaths per year per person, or deaths per year per 100,000 people1.

3. The number of people in a particular location with Covid-19 at a particular time t, say I(t), is a “how
much”, level. It has units of people. The number of new cases per week is, as the phrase suggests, part
of the rate of change in I(t). The other contributions to the rate of change include the rate of recovery,
the rate of death, and the net rate of migration of infected people.

4. “Wealth” is how much money a person or organization has in total. This has units of currency, dollars
or euros or dinars as the case may be. “Income”, on the other hand, is how much money the person or
organization makes over some period of time, say a week or a year, so it has units of currency per unit
time, say dollars per year. Wealth is a stock; income is a flow. The rate of change of wealth is income
minus expenditures.

1.2 Example with Population

Here is the population of the United States over time2:
library(pdfetch)
# Total US population
pop.fred <- pdfetch_FRED("POP")
# This comes as a complicated data type, so break it down to a simple data
# frame, converting dates to a year with a decimal fraction
library(xts) # Functions needed for pdfetch's preferred format

1You might ask why d(t)/n(t) rather than say d(t)/n(t + 1) or even d(t)
(n(t)+n(t+1))/2 . The short answer is that this is pretty

much the probability of a random person in the population at the start of the year dying over the course of the year, which
is a good thing to know. The longer answer is that if we’re looking at the population of a country or even a city from one
year to the next, n(t) and n(t + 1) will typically be so close to each other that it really doesn’t matter which one we use as
the denominator. (That argument breaks down for very small populations, e.g., a single city block. It also breaks down if the
time between measurements is long compared to the typical life-span of individuals in the population, e.g., a century for human
beings, or a year for fruit flies.) The yet longer answer is that you could use any of these denominators, or others, so long as you
were consistent about it. The demographers whose job it is to calculate and use these “vital rates” have names for the different
denominators, and elaborate book-keeping schemes for ensuring consistency (clearly explained in, for example, Alho and Spencer
(2005)).

2On the mysteriously-helpful FRED data source, see below.
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library(lubridate) # Provides useful date-conversion functions
pop <- data.frame(year=decimal_date(index(pop.fred)),

y=as.numeric(pop.fred))
plot(pop, type="l",ylab="US population", ylim=c(0, max(pop)))
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Now at this point you should notice something funny about the plot: the largest number on the vertical axis
is only 300,000, which is much smaller than the actual population of the US. (It’s about the population of
the city of Pittsburgh!) The data series is, in fact, in units of thousands of people (see [https://fred.stlouisfed.
org/series/POP]), not individuals — kilohumans, as it were. We could just live with this, but I prefer to
convert the numbers:
pop$y <- 1000*pop$y
plot(pop, type="l",ylab="US population", ylim=c(0, max(pop)))
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Differencing this gives the change in population from one observation to the next. The time between
observations is a month, so we could treat this difference as the rate in people per month. It’s a bit easier to
grasp though if we convert to people per year, using x people

month
12 months

1 year :
plot(pop$year[-1], diff(pop$y)*12,

xlab="year",
main="US population rate of change ",
ylab="people/yr",
ylim=c(0, 12*max(diff(pop$y))), type="l")
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(What, according to the plot, happened around 2010? What do you think actually happened then?)

Notice that while the plot of population over time looks like it has a pretty constant slope, that growth looks
a lot more erratic on a month-to-month basis. (Though there are clearly some repeating patterns in the rate
of change.) Generally speaking, “stock” or “level” variables will have smoother-looking time series than their
correspond “flow” or “rate” variables, in just this way.

The same data source gives us access to the birth rate:
births.fred <- pdfetch_FRED("SPDYNCBRTINUSA")
births <- data.frame(year=decimal_date(index(births.fred)),

y=as.numeric(births.fred))
plot(births, type="l",

main="US birth rate",
ylab="births / 1000 people / yr",
ylim=c(0, max(births$y)))
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If we had the death rate, we could deduce from this the (net) migration rate. (How?) If, on the other hand,
we had the figures for immgiration and emigration, we could deduce the death rate. (Again, how?)

2 Rates from Levels, Levels from Rates

If we know a level variable x(t), we get the corresponding rate by taking differences:

∆x(t) = x(t)− x(t− 1)

The appropriate R command, as we’ve seen in passing, is diff() (for “difference”).

If we know a rate variable, we can almost get the levels back:

x(T ) = x(0) +
T∑
t=1

∆x(t)

The appropriate R command is cumsum() (for “cumulative sum”). Notice that we have to know the initial
level x(0).

(Of course there’s nothing magic about time 0. If we know x(t1) and want x(t2) with t2 > t1, it’s x(t1) +∑t2
s=t1+1 ∆x(s). [What would we do if t2 < t1?])
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2.1 Calculus

You may be recalling some formulas from calculus at this point. If we know the function x(t), then the
derivative is3

ẋ(t) = dx

dt
(t) = lim

h↓0

x(t)− x(t− h)
h

Going the other way is integration:

x(T ) = x(0) +
∫ T

0
ẋ(t)dt

Heuristically4: ẋ(t) is the rate of change in x at time t. So ẋ(t)dt is the amount of change over the very small
time from t to t+ dt. (Sanity check: ẋ(t) has dimensions of stuff per unit time, dt has dimensions of time,
so ẋ(t)dt has units of stuff.) Adding up all the changes over small intervals of time has to give us the net
change, or

x(T )− x(0) =
∫ T

0
ẋ(t)dt

Because of these relationships, if we start with a time series x(t) and get Y (t) from it by taking cumulative
sums, y(t) ≡

∑t
s=0 x(s), it’s common to talk about y(t) as an integrated series.

You may, at this point, recall that in calculus we defined the average value of a function x over the interval
from 0 to T as

1
T

∫ T

0
x(t)dt

So the average rate of change would be
1
T

∫ T

0
ẋ(t)dt

or
x(T )− x(0)

T

The latter formula of course also works in discrete time.

3 Relative Change and Growth Rates

Sometimes we are more interested not in the total amount by which some quantity changed, but in how big
that change was relative to the starting value. That is, instead of caring about

x(t)− x(t− 1)

we might care about
x(t)− x(t− 1)

x(t− 1)
3If you know enough mathematical analysis to be bothered by my lack of rigor over the next few paragraphs, you also know

enough analysis to insert the necessary regularity conditions on the function x : R 7→ R to make it true, and perhaps even to
work out the extension to functions which have, say, a finite number of points of discontinuity. (In other words: trust me, I do
actually know math.)

4In math, a “heuristic” is a way of reasoning which we know isn’t quite right, but which often helps us discover true things,
which we can then check more rigorously. (It’s the same route as “Eureka!”, “I have found it!”). Here the heuristic is “when
we see expressions like dx or dt in bits of calculus, treat them like arbitrarily small but not quite zero quantities on which the
usual rules of algebra apply”. This isn’t right, “infinitessimals” don’t really exist[ˆnonstandard], but it’s a lot easier to follow
than a truly rigorous proof of the fundamental theorem of calculus! — The book which introduced the notion of mathematical
heuristics, and still one of the best books on the subject, is Polya (1957), which I strongly urge reading. Bressoud (2019) tells
the story of how we moved from actually thinking that things like dt had to be infinitessimal numbers, somehow, to modern,
rigorous versions of calculus based on limits.
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This is sometimes called the relative change, and sometimes written δx(t) (a lower-case Greek letter delta).
Note that the dimension here is (stuff)/(stuff) per unit time, or 1/time, whatever the dimensions of x itself
might be (mass, people, viruses, money. . . ).

Just as we can recover the new value from the old value and the change,

x(t) = x(t− 1) + ∆x(t)

we can recover the new value from the old value and the relative change,

x(t) = x(t− 1) (1 + δx(t))

We’ve just seen that additive changes, well, add up over time:

X(T ) = x(0) +
T∑
t=1

∆x(t)

Relative changes multiply:

X(T ) = x(0)
T∏
t=1

(1 + δx(t))

3.1 Relative Change, Exponential Growth, Exponential Growth Rates

Suppose that each level is some fixed percentage bigger (or smaller) than the one before, so that δx(t) = r for
all t. Then

x(t) = x(0)(1 + r)t

Because this involves exponentiating 1 + r, it’s called exponential growth. People sometimes also use this
phrase when r < 0, but if we want to distinguish that case, it’s called exponential decay. r is called the
growth rate, or, if r < 0, we sometimes say −r is the decay rate. Thus we might say that “per-capita
income grows at 2% per year” or “the amount of radioactive material remaining decays at 5% per year”.

This suggests how we should define average growth rates:

r =
(
x(t)
x(0) − 1

)1/t

because then x(t) = x(0)(1 + r)t.

For various reasons5, it’s often more convenient to re-write multiplicative growth as

x(t) = x(0)eλt

or
x(t) = x(0)et/τ

In the former case, where we write eλt, it’s easy to convince yourself that

λ = ln (1 + r)

This is called the logarithmic growth rate, though many people drop the “logarithmic” when they think
it’s clear from context. (Also, if |r| � 1, then ln (1 + r) ≈ r, as you can prove using Taylor approximation.)
In the latter case, where we write et/τ , it’s easy to convince yourself that

λ = 1
τ

5Like if we want to do any kind of calculus.
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|τ | is then called the characteristic time of the exponential growth (or decay). It’s the time needed for
x(t) to change by a factor of e.

Since changing by a factor of e isn’t that intuitive, we sometimes convert to using a base of 2 for our exponents,

x(t) = x(0)2t/τ2

|τ2| is called the doubling time or halving time (depending on whether r > 0 or r < 0); if r < 0, it’s also
called the half life. To find τ2 in terms of r, let’s set this equal to our expression in terms of e, simplify, and
then take natural log of both sides:

x(0)2t/τ2 = x(0)et ln (1+r) (1)
2t/τ2 = et ln (1+r) (2)
t

τ2
ln 2 = t ln (1 + r) (3)

ln 2
τ2

= ln (1 + r) (4)

ln 2
ln (1 + r) = τ2 (5)

0.6931472 . . .
ln (1 + r) = τ2 (6)

0.6931472 . . .
r

≈ τ2 (7)

where the last approximation works when |r| � 1. (A rule of thumb you may have encountered is that
the doubling time for an investment is 70 divided by the growth rate as a percentage; that’s this formula,
approximating log 2 as 0.70 rather than 0.6931472 . . . for the sake of mental arithmetic.)

Finally, there is a connection between growth rates, and rates of changes of logarithms6. Since

x(t) = x(t− 1)(1 + δx(t))

we have7

log x(t) = log x(t− 1) + log (1 + δx(t))
or

log (1 + δx(t)) = log x(t)− log x(t− 1)
Now we can define the logarithmic growth rate ρ(t) as log x(t)− log x(t− 1), and we have

log x(t) = log x(0) +
t∑
t=1

ρ(t)

In other words, if we just take logs, (logarithmic) growth rates work just like ordinary additive rates of change.
In particular, we can find the average logarithmic growth rate very simply:

ρ = log x(t)− log x(0)
t

Sometimes we don’t even have to take the logs explicitly, we can just use a logarithmic scale on the vertical
axis.

Exercise: The logarithmic growth rate is ln (1 + r). Does this relationship still hold between the average
growth rate and the average logarithmic growth rate?

6I’m writing log rather than ln or logk because it doesn’t matter what base we use for the logarithm, so long as we use the
same base for everything.

7If x(t) is a variable with units, you should be a little worried about taking its logarithm — what do log kilograms or log
dollars mean? But notice that what we end up with is log x(t)− log x(t− 1) = log x(t)

x(t−1) , and
x(t)

x(t−1) is a dimensionless ratio,
which will always have the same numerical value no matter what units we use for x (so long as we consistently use the same
units over time). In general, if you start with an equation where the units balance, you can safely take the log of both sides
(or exponentiate both sides!) and be confident that there’s a way of re-arranging the results so that you only take logs of
dimensionless ratios.
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3.2 Example: Gross Domestic Product Per Capita

The gross domestic product (GDP) of a country in a certain year is the summed price of all the goods and
services produced and bought in that country in that year8. Calculating GDP has become a central task of
official statistical agencies over the last, say, 70 years, since GDP per capita9 has become one of the ways in
which countries keep score with each other. A country’s GDP per capita is its mean income per person. Here
is the GDP per capita for the United States, as provided by the Federal Reserve Bank of St. Louis10, as far
back as the data go, after adjusting for inflation11.
library(pdfetch)
# Fetch real (inflation-adjusted) US per-capita gross domestic product
# ("chained 2012 dollars", i.e., no inflation adjustment for 2012)
gdppc.fred <- pdfetch_FRED("A939RX0Q048SBEA")
# This comes as a complicated data type, so break it down to a simple data
# frame, converting dates to a year with a decimal fraction
library(xts) # Functions needed for pdfetch's preferred format
library(lubridate) # Provides useful date-conversion functions
gdppc <- data.frame(year=decimal_date(index(gdppc.fred)),

y=as.numeric(gdppc.fred))
plot(gdppc, type="l", ylab="GDPPC (dollars/person/yr)",

main="Real GDP per capita (2012 dollars)",
ylim=c(0, max(gdppc)))

8The difference between gross domestic product (GDP) and gross national product (GNP) depends on whether we add up all
the goods and services produced in a country’s territory, no matter who does the work (GDP), or whether we add up all the
goods and services produced by a country’s citizens, no matter where they are (GNP). They’re usually very similar, but can
differ if a country’s gets of income abroad (because its citizens work abroad, or own assets in other countries, etc.) or conversely
has to send a lot of payments to other countries (because lots of its businesses are really shell companies).

9“per capita” is a Latin phrase, meaning “for (each) head”, that is, “for each person”.
10The Federal Reserve system, or “Fed”, is the U.S.’s central bank, which is (basically) responsible for the money supply for

the United States. In most countries, the central bank is, in fact, a single bank, but the Fed is, officially, a federation of a
number of regional banks based in cities that were major commercial sites when the Fed was established about 100 years ago,
plus the over-all headquarters in Washington, D.C. To do its job of regulating the money supply, the Fed needs to know a lot
about how the economy is doing, so it’s been a pioneer of gathering and analyzing economic data. The regional Fed branches
have a lot of independence, and during the early days of the Web, the branch of the Fed in St. Louis, Missouri established a
site which provided electronic access to lots of official economic statistics, called FRED (“Federal Reserve Economic Data”), at
[https://fred.stlouisfed.org/]. This has continued to today, with a much nicer on-line interface than what we had to deal with
when I was your age. (My lawn, please to get off it.) The pdfetch library gives an easy way to load these data series in to R, if
you know which series you want.

11Specifically, this uses the consumer price index (CPI) to go from “nominal” dollars (i.e., the dollars you’d see on a shop’s
board, or in a catalogue, or on a paycheck) to “real”, inflation-adjusted dollars. The base year for the index here is 2012, meaning
that’s the year when nominal dollars equal real dollars; each nominal dollar in an earlier year (generally) corresponds to more
than 1 dollar in 2012, and each nominal dollar in a later year to less than one 2012 dollar. (I could have re-based this to 2019,
but it would have been more work than I felt like doing.) — Note the CPI is not the only way to adjust for inflation. There are
actually separate CPIs for urban and rural consumers (the over-all CPI averages these), a very different produced price index,
etc. There is also a lot of controversy over whether the CPI adequately handles technological changes (how much would it have
cost in 1970 to get services equivalent to a low-end 2020 smart phone?) and social changes (college costs a lot more than in 1970,
which is easy to handle, but it’s also seen as more important, which is harder).
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We can look at the logarithmic growth rate by taking difference between successive logarithms of this series12:
plot(gdppc$year[-1], diff(log(gdppc$y))*4, type="l", xlab="year",

main="Logarithmic growth rate of real GDPPC",
ylab="Growth rate (1/yr)")

12Why do I have to omit the first year in the plot above? Why do I multiply by 4?
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If we omit the very last value from the GDPPC series (why?), we can find an average growth rate, and see
that growth was (kind of) steady around that rate:
T <- max(gdppc$year) - min(gdppc$year)
avg.log.growth.rate <- (log(gdppc$y)[length(gdppc$y)-1] - log(gdppc$y)[1])/(T-1)
plot(gdppc, type="l", ylab="GDPPC (dollars/person/yr)",

main="Real GDP per capita (2012 dollars)",
ylim=c(0, max(gdppc)))

curve(gdppc$y[1] * exp((x-gdppc$year[1])*avg.log.growth.rate),
add=TRUE, col="blue")
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Of course, the actual growth rates center nicely around their average:
plot(gdppc$year[-1], diff(log(gdppc$y))*4, type="l", xlab="year",

main="Logarithmic growth rate of real GDPPC",
ylab="Growth rate (1/yr)")

abline(h=avg.log.growth.rate, col="blue")
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Another way to get that average log growth rate would be to just use a logarithmic scale on the vertical axis
(without taking any differences):
plot(gdppc, type="l", ylab="GDPPC (dollars/person/year)",

main="Real GDP per capita (2012 dollars)",
log="y")
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