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Lecture 1: Optimal Prediction (with Refreshers)

36-401, Fall 2015

1 September 2015

Regression analysis is about investigating quantitative, predictive relation-
ships between variables. It’s about situations where there is some sort of link,
tie or relation between two (or more) variables, so if we know the value of one
of them, it tells us something about the other. The concrete sign of this is
that knowledge of one variable lets us predict the other — predict the target
variable better than if we didn’t know the other. Pretty much everything we
are going to do in this class is about crafting predictive mathematical models,
seeing whether such models really have any predictive power, and comparing
their predictions. Before we get into the issues of statistics and data analysis,
it will help us to think what optimal prediction would look like, if we somehow
knew all the probability distributions of all our variables.
§1 refers to many concepts from probability (reviewed in §2) and statistical

inference (reviewed in §3).

1 Statistical Prediction and the Optimal Linear
Predictor

1.1 Predicting a Random Variable from Its Distribution

Suppose we want to guess the value of a random variable Y . Since we don’t feel
comfortable with the word “guess”, we call it a “prediction” instead. What’s
the best guess we can make?

We need some way to measure how good a guess is. Say our guess is m. The
difference Y −m should somehow be small. If we don’t care about positive more
than negative errors, it’s traditional to care about the squared error, (Y −m)2.
Since Y is random, this will fluctuate; let’s look at its expected value,

E
[
(Y −m)2

]
(1)

We will call this the mean squared error of m, MSE(m).
From the definition of variance,

MSE(m) = E [(Y −m)]
2

= (E [Y −m])2 + Var [Y −m] (2)
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2 1.1 Predicting a Random Variable from Its Distribution

The first term is the squared bias of estimating Y with m; the second term
is the variance of Y −m. Mean squared error is bias (squared) plus variance.
This is the simplest form of the bias-variance decomposition, which is one
of the central parts of statistics.

Now remember that Var [Y −m] = Var [Y ], so

MSE(m) = (E [Y −m])2 + Var [Y ] (3)

= (E [Y ]−m)2 + Var [Y ] (4)

where the second line uses the linearity of expectations.
We would like to pick m to make this small, to minimize it (Figure 1). The

variance term is irrelevant to making this small, since it’s the same no matter
what m is. (Remember, Var [Y ] is about the true distribution of Y , but m is
just our guess.) It should therefore play no role in the minimization.

Remember from basic calculus that one way to find the minimum1 of a
function is to take the derivative, set it to zero, and solve for the minimizing
argument to the function. Here what we want to minimize is MSE(m) and the
argument is m, so

dMSE(m)

dm
=

d

dm

[
Var [Y ] + (E [Y ]−m)2

]
(5)

is the derivative we need to work out and set to zero. So, using the chain rule,

dMSE(m)

dm
=
dVar [Y ]

dm
+ 2(E [Y ]−m)

(
dE [Y ]

dm
− dm

dm

)
(6)

Changing the prediction we make, m, doesn’t do anything to the true dis-
tribution of Y , so dVar [Y ] /dm = dE [Y ] /dm = 0, and we’ve got

dMSE(m)

dm
= −2(E [Y ]−m) (7)

Say this is zero at m = µ, and solve for µ:

−2(E [Y ]− µ) = 0 (8)

E [Y ]− µ = 0 (9)

E [Y ] = µ (10)

In other words, the best one-number guess we could make for Y is just its
expected value.

1Or maximum; but here it’s a minimum. (How could you check this, if you were worried
that I was wrong?)
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3 1.1 Predicting a Random Variable from Its Distribution
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curve(7 + (0.57 - x)^2, from = -2, to = 2, xlab = "m", ylab = "MSE(m)")

Figure 1: Mean squared error E
[
(Y −m)2

]
as a function of the value m which we

predict, when E [Y ] = 0.57, Var [Y ] = 7. (The text below the plot shows the R command
used to make it.
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4 1.2 Predicting One Random Variable from Another

1.2 Predicting One Random Variable from Another

Now imagine we have two random variables, say X and Y . We know X and
would like to use that knowledge to improve our guess about Y . Our guess is
therefore a function of x, say m(x). We would like E

[
(Y −m(X))2

]
to be small.

We can use conditional expectations to reduce this problem to the one al-
ready solved.

E
[
(Y −m(X))2

]
= E [E [(Y −m(X) | X]] (11)

For each possible value x, the optimal value µ(x) is just the conditional mean,
E [Y |X = x]. The optimal function just gives the optimal value at each point:

µ(x) = E [Y | X = x] (12)

This µ(x) is called the (true, optimal, or population) regression function
(of Y on X). If we are interested in the relationship between Y and X, this is
what we would really like to know, or one of the things we’d really like to know.

Unfortunately, in general µ(x) is a really complicated function, for which
there exists no nice mathematical expression. The Ancestors, then, in their
wisdom decided to ask “what is the best prediction we can make which is also a
simple function of x?” In other words, they substituted a deliberately simplified
model of the relationship for the actual relationship.

1.3 The Optimal Linear Predictor

Many people regard linear functions as especially simple2, so let us now ask
“What is the optimal prediction we can make which is linear in X?” That is,
we restrict our prediction function m(x) to have the form b0 +b1x. (To be really
pedantic, that’s an “affine” rather than a “linear” function.)

The mean squared error of the linear model b0 +b1x is now a function of two
arguments, b0 and b1. Let’s re-write it to better separate the contributions from
those arguments (which we control) and the contributions from the distribution
of X and Y (which are outside our control).

MSE(b0, b1) = E
[
(Y − (b0 + b1X))2

]
(13)

= E
[
Y 2
]
− 2b0E [Y ]− 2b1E [XY ] + E

[
(b0 + b1X)2

]
(14)

= E
[
Y 2
]
− 2b0E [Y ]− 2b1(Cov [X,Y ] + E [X]E [Y ]) + b20 + 2b1E [X] + b21E

[
X2
]

(15)

= E
[
Y 2
]
− 2b0E [Y ]− 2b1Cov [X,Y ]− 2b1E [X]E [Y ] + b20 (16)

+2b0b1E [X] + b21Var [X] + b21(E [X])2

(See §2 for the identities I’m using above.)

2Actually being precise about “how complicated is this function?” is a surprisingly hard
matter. (To appreciate this, think about how a straight line may seem like a simple function,
but so does a step function, and yet you need a lot of little steps to approximate a straight
line...) Resolving this leads to some very deep mathematics (Badii and Politi, 1997; Li and
Vitányi, 1997).
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5 1.3 The Optimal Linear Predictor
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mse <- function(b0, b1, E.Y.sq = 10, E.Y = 2, Cov.XY = -1, E.X = -0.5, Var.X = 3) {

E.Y.sq - 2 * b0 * E.Y - 2 * b1 * Cov.XY - 2 * b1 * E.X * E.Y + b0^2 + 2 *

b0 * b1 * E.X + Var.X * b1^2 + (E.X * b1)^2

}

curve(mse(b0 = -1, b1 = x), from = -1, to = 1, lty = "solid", ylim = c(0, 25),

xlab = "Slope", ylab = expression(MSE(b[0], b[1])))

curve(mse(b0 = 0, b1 = x), add = TRUE, lty = "dashed")

curve(mse(b0 = 1, b1 = x), add = TRUE, lty = "dotted")

legend("topleft", legend = c("Intercept=-1", "Intercept=0", "Intercept=1"),

lty = c("solid", "dashed", "dotted"))

Figure 2: Mean squared error of linear models with different slopes and intercepts,
when E [X] = −0.5, Var [X] = 3, E [Y ] = 2, E

[
Y 2

]
= 10, Cov [X,Y ] = −1. Each

curve represents a different intercept b0 in the linear model b0 + b1x for Y .
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6 1.3 The Optimal Linear Predictor

We minimize again by setting derivatives to zero; we now need to take two
partial derivatives, which will give us two equations in two unknowns.

∂E
[
(Y − (b0 + b1X))2

]
∂b0

= −2E [Y ] + 2b0 + 2b1E [X] (17)

∂E
[
(Y − (b0 + b1X))2

]
∂b1

= −2Cov [X,Y ]− 2E [X]E [Y ] + 2b0E [X] (18)

+2b1Var [X] + 2b1(E [X])2

We’ll call the optimal value of b0 and b1, the ones where these derivatives are
exactly 0, β0 and β1.

The first equation is simpler, so we use it to find β0 in terms of β1:

β0 = E [Y ]− β1E [X] (19)

Some points about this equation:

• In words, it says that the optimal intercept (β0) makes sure that the line
goes through the mean Y value at the mean X value. (To see this, add
β1E [X] to both sides.)

• It’s often helpful to sanity-check our math by making sure that the units
balance on both sides of any equation we derive. Here, β0 should have the
same units as Y , and the right-hand side of this formula does, because β1
has the units of Y/X.

• If the variables were “centered”, with E [X] = E [Y ] = 0, we’d get β0 = 0.

Now we plug this in to the other equation:

0 = −Cov [X,Y ]− E [X]E [Y ] + β0E [X] + β1Var [X] + β1(E [X])2 (20)

= −Cov [X,Y ]− E [X]E [Y ] (21)

+(E [Y ]− β1E [X])E [X] + β1Var [X] + β1(E [X])2

= −Cov [X,Y ] + β1Var [X] (22)

β1 = Cov [X,Y ] /Var [X] (23)

Some notes:

• In words, the optimal slope is the ratio between the covariance of X and
Y , and the variance of X. The slope increases the more X and Y tend
to fluctuate together, and gets pulled towards zero the more X fluctuates
period.

• You can apply the sanity check of seeing whether this gives the right units
for β1. (Spoiler: it does.)

• The expected values E [X] and E [Y ] play no role in the formula for β1 —
only the variance and covariance matter, and they don’t change when we
add or subtract constants. In particular, the optimal slope doesn’t change
if we use instead Y − E [Y ] and X − E [X].
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7 1.3 The Optimal Linear Predictor

The line β0 + β1x is the optimal regression line (of Y on X), or the
optimal linear predictor (of Y from X).

Important Morals

1. At no time did we have to assume that the relationship between X and Y
really is linear. We have derived the optimal linear approximation to the
true relationship, whatever that might be.

2. The best linear approximation to the truth can be awful. (Imagine E [Y |X = x] =
ex, or even = sinx.) There is no general reason to think linear approxi-
mations ought to be good.

3. At not time did we have to assume anything about the marginal distribu-
tions of the variables3, or about the joint distribution of the two variables
together4

4. At no time did we have to assume anything about the fluctuations Y
might show around the optimal regression line — that the fluctuations
are Gaussian, or symmetric, or that they just add on to the regression
line, etc.

5. In general, changing the distribution of X will change the optimal regres-
sion line, even if P (Y |X = x) doesn’t change. This is because changing
the distribution of X will (generally) change both Cov [X,Y ] and Var [X],
and the changes won’t (generally) cancel out.

6. At no time did we have to assume that X came before Y in time, or that
X causes Y , or that X is known precisely but Y only noisily, etc. It may
be more interesting to model Y as a linear function of X under those
circumstances, but the math doesn’t care about it at all.

I will expand on that first two points a little. There is a sort of reason to
think that linear models should work generally, which contains a kernel of truth,
but needs to be used carefully.

The true regression function, as I said, is µ(x). Suppose that this is a smooth
function, so smooth that we can expand it in a Taylor series. Pick then any
particular value x0. Then

µ(x) = µ(x0) + (x− x0)
dµ

dx

∣∣∣∣
x=x0

+
1

2
(x− x0)2

d2µ

dx2

∣∣∣∣
x=x0

+ . . . (24)

Because it’s tiresome to keep writing out the derivatives in this form, I’ll abbre-
viate them as µ′, µ′′, etc.

3OK, to be pedantic, we had to assume that E [X], E [Y ], Var [X] and Var [Y ] were all
well-defined and Var [X] > 0.

4Except, to keep being pedantic, that Cov [X,Y ] was well-defined.
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8 1.3 The Optimal Linear Predictor

For x close enough to x0, we can get away with truncating the series at first
order,

µ(x) ≈ µ(x0) + (x− x0)µ′ (25)

and so we could identify that first derivative with the optimal slope β1. (The
optimal intercept β0 would depend on µ(x0) and the distribution of x − x0.)
How close is enough? Close enough that all the other terms don’t matter, so,
e.g., the quadratic term has to be negligible, meaning

|x− x0|µ′ � |x− x0|2µ′′/2 (26)

2µ′/µ′′ � |x− x0| (27)

Unless the function is really straight, therefore, any linear approximation is only
going to be good over very short ranges.

It is possible to do a lot of “local” linear approximations, and estimate µ(x)
successfully that way — in fact, we’ll see how to do that in 402 (or read Simonoff
1996). But a justification for a global linear model, this is weak.

A better justification for using linear models is simply that they are com-
putationally convenient, and there are many situations where computation is at
a premium. If you have huge amounts of data, or you need predictions very
quickly, or your computing hardware is very weak, getting a simple answer can
be better than getting the right answer. In particular, this is a rationale for
using linear models to make predictions, rather than than for caring about their
parameters.

All of that said, we are going to spend most of this course talking about
doing inference on the parameters of linear models. There are a few reasons
this is not totally perverse.

• The theory of linear models is a special case of the more general theory
which covers more flexible and realistic models. But precisely because it
is such a special case, it allows for many simplifying short-cuts, which can
make it easier to learn, especially without advanced math. (We can talk
about points and lines, and not about reproducing-kernel Hilbert spaces.)
Learning linear models first is like learning to swim in a shallow pool,
rather than in the ocean with a gorgeous reef, deceptive currents, and the
occasional shark. (By the end of the year, you will know how to dive with
small sharks.)

• Because linear models are so simple, for most of the last two hundred odd
years they were the only sort of statistical model people could actually
use. This means that lots of applications of statistics, in science, in policy
and in industry, has been done on linear models. It also means that lots
of consumers of statisticians, in science, in policy and in industry, expect
linear models. It is therefore important that you understand thoroughly
both how they work and what their limitations are.

Throughout the rest of the course, we are going to tack back and forth be-
tween treating the linear model as exactly correct, and treating it as just a
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9 1.4 Probability versus Statistics

Figure 3: Statistician (right) receiving population moments from the Oracle (left).

more-or-less convenient, more-or-less accurate approximation. When we make
the stronger assumption that the linear model is right, we will be able to draw
stronger conclusions; but these will not be much more secure than that assump-
tion was to start with.

1.4 Probability versus Statistics

Everything I’ve gone over so far is purely mathematical. We have been pre-
tending (Figure 3) that we have gone to the Oracle, and in a mystic trance
they have revealed to us the full joint probability distribution of X and Y , or
at least the exact values of all of their moments. As in many mathematical
problems, therefore, we have idealized away everything inconvenient. In reality,
we never know the full probability distribution of the variables we are dealing
with5. Rather than exact knowledge from the Oracle, we have only a limited
number of noisy samples from the distribution. The statistical problem is that
of drawing inferences about the ideal predictor from this unpromising material.

2 Reminders from Basic Probability

The expectation (or expected value) of a continuous random variable X with
probability density function p(x) is

E [X] =

∫
xp(x)dx (28)

while the expectation of a discrete random variable with probability mass func-
tion p(x) is

E [X] =
∑
x

xp(x) (29)

5Even the idea that the variables we see are randomly generated from a probability distri-
bution is a usually-untestable assumption.
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10 2.1 Algebra with Expectations, Variances and Covariances

(Because everything is parallel for the discrete and continuous cases, I will not
keep writing out both forms; after tossing a coin, I will just write out the
integrals.)

The expectation of any function of a random variable f(X) is

E [f(X)] =

∫
f(x)p(x)dx (30)

(Of course, f(X) has its own distribution, with a density we might call pf ; can
you prove that that

∫
f(x)p(x)dx =

∫
hpf (h)dz?)

X − E [X] is the deviation or fluctuation of X from its expected value.
The variance of X is

Var [X] = E
[
(X − E [X])2

]
(31)

The covariance of X and Y is

Cov [X,Y ] = E [(X − E [X])(Y − E [Y ])] (32)

The covariance is positive when X and Y tend to be above or below their ex-
pected values together, and negative if one of them having a positive fluctuation
tends to go with the other having a negative fluctuation.

2.1 Algebra with Expectations, Variances and Covariances

We’re going to deal a lot with expectation values, variances and covariances.
There are some useful bits of algebra about these, which I will now remind you
of. You will commit them to memory (either deliberately or because you’ll use
them so often).

1. Linearity of expectations

E [aX + bY ] = aE [X] + bE [Y ] (33)

2. Variance identity

Var [X] = E
[
X2
]
− (E [X])

2
= E

[
(X − E [X])2

]
(34)

3. Covariance identity

Cov [X,Y ] = E [XY ]− E [X]E [Y ] = E [(X − E [X])(Y − E [Y ])] (35)

4. Covariance is symmetric

Cov [X,Y ] = Cov [Y,X] (36)

5. Variance is covariance with itself

Cov [X,X] = Var [X] (37)
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11 2.2 Convergence

6. Variance is not linear

Var [aX + b] = a2Var [X] (38)

7. Covariance is not linear

Cov [aX + b, Y ] = aCov [X,Y ] (39)

8. Variance of a sum

Var [X + Y ] = Var [X] + Var [Y ] + 2Cov [X,Y ] (40)

9. Variance of a big sum

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

n∑
j=1

Cov [Xi, Xj ] =

n∑
i=1

Var [Xi]+2

n−1∑
i=1

∑
j>i

Cov [Xi, Xj ]

(41)

10. Law of total expectation

E [X] = E [E [X|Y ]] (42)

Remember: E [X|Y ] is a function of Y ; it’s random.

11. Law of total variance

Var [X] = Var [E [X|Y ]] + E [Var [Y |X]] (43)

12. Independence implies zero covariance IfX and Y are independent, Cov [X,Y ] =
0. The reverse is not true; Cov [X,Y ] = 0 is even compatible with Y being
a function of X.

2.2 Convergence

The Law of Large Numbers Suppose that X1, X2, . . . Xn all have the same
expected value E [X], the same variance Var [X], zero covariance with each other.
Then

1

n

n∑
i=1

Xi → E [X] (44)

In particular, if the Xi all have the same distribution and are independent
(“independent and identically distributed”, IID) then this holds.

Note: There are forms of the law of large numbers which don’t even require
a finite variance, but they are harder to state. There are also ones which do not
require constant means, ore even a lack of covariance among the Xi, but they
are also harder to state.
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Central limit theorem If the Xi are IID, then as n → ∞, the distribution
of 1

n

∑n
i=1Xi approaches N (E [X] ,Var [X] /n), regardless of the distribution of

the Xi.
Mathematically, it is nicer to have the limit that we’re converging to not

change with n, so this is often stated as

√
n
Xn − E [X]

Var [X]
 N (0, 1) (45)

Note: There are versions of the central limit theorem which do not assume
independent or identically distributed variables being averaged, but they are
considerably more complicated to state.

3 Reminders from Basic Statistics: Estimation

We observe values X1, X2, . . . Xn from some distribution. We don’t know the
distribution, so we imagine writing it down with one or more unknown param-
eters, f(x; θ). A statistic is a function of the data, and the data alone. An
estimator is a statistic which takes a guess at the parameter θ, or some func-
tion of it, h(θ). (For instance we might want to estimate E

[
X2
]

= µ2 + σ2.)

We will generically write such an estimator as θ̂n, with the hat to distinguish it
from the true value of the parameter, and the subscript n to emphasize that it
will change as we get more data.

An estimator is a random variable; it inherits its distribution from that of
the data Xi. This is often called the sampling distribution of the estimator.

An estimator is consistent if θ̂n → θ, whatever the true θ might be. An
estimator which is not consistent is inconsistent, and usually not very good.

The bias of an estimator is E
[
θ̂n − θ

]
= E

[
θ̂n

]
− θ. An estimator is unbi-

ased if its bias is zero for all θ.
An estimator also has a variance, Var

[
θ̂
]
. The standard error of an esti-

mator is its standard deviation, the square root of the variance. We give it the
name “standard error” to remind ourselves that this is telling us about how pre-
cise our estimate is. N.B., there are more standard errors than just the standard
error in the mean (see below).

An estimator cannot be consistent unless its standard error goes to zero as n
grows. If both the standard error and the bias go to zero, that guarantees con-
sistency, but there are exceptional circumstances where asymptotically biased
estimators are still consistent.

Example: Sample Mean The expectation value E [X] is either a parameter
of a distribution, or a function of the parameters. The sample mean Xn =
n−1

∑n
i=1Xi is a statistic, since it is a function of the data alone. The sample

mean can be used as an estimator of E [X], and is a natural choice for this
role. If the Xi are IID, then the law of large numbers tells us that Xn is
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a consistent estimator of E [X]. The central limit theorem tells us that the
sampling distribution is asymptotically Gaussian.

It is easy to prove (so do so!) that E
[
Xn

]
= E [X], hence the mean is an

unbiased estimator of the expected value. Notice that Var
[
Xn

]
= Var [X1] /n,

which, as promised above, goes to zero as n→∞. The corresponding standard
deviation is σ/

√
n, which is the “standard error in the mean”. (Again, every

estimator of every quantity has its own standard error, which is not just this.)

Example: Shrunken Sample Mean As an alternative estimator, consider
n

n+λXn, where you get to set the number λ > 0 (but then you have to use the
same λ for all n). You should be able to convince yourself that (i) at every n
and every λ, it has a strictly smaller variance than Xn, and hence a strictly
smaller standard error; (ii) it is a biased estimator of E [X], with a bias which
depends on E [X], λ and n; (iii) for every E [X] and λ, the bias goes to zero as
n→∞; (iv) it is a consistent estimator of E [X]. This is an example of what is
called a “shrinkage” estimator, where the obvious estimate is “shrunk” towards
zero, so as to reduce variance.

References

Badii, Remo and Antonio Politi (1997). Complexity: Hierarchical Structures
and Scaling in Physics. Cambridge, England: Cambridge University Press.
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