
08:42 Wednesday 30th September, 2015
See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/

Lecture 5: The Method of Least Squares for

Simple Linear Regression

36-401, Fall 2015, Section B

15 September 2015

Contents

1 Recapitulation 1

2 In-Sample MSE vs. True MSE 2
2.1 Existence and Uniqueness . 3

3 Constant-Plus-Noise Representations 3

4 Predictions 7

5 Estimating σ2; Sum of Squared Errors 12

6 Residuals 12

7 Limitations of Least Squares 13

8 Least-Squares in R 14

9 Propagation of Error, alias “The Delta Method” 18

1 Recapitulation

Let’s recap from last time. The simple linear regression model is a statistical
model for two variables, X and Y . We use X — the predictor variable — to
try to predict Y , the target or response1. The assumptions of the model are:

1. The distribution of X is arbitrary (and perhaps X is even non-random).

2. If X = x, then Y = β0 + β1x + ε, for some constants (“coefficients”,
“parameters”) β0 and β1, and some random noise variable ε.

1Older terms would be “independent” and “dependent” variables, respectively. These
import an unwarranted suggestion of causality or even deliberate manipulation on the part of
X, so I will try to avoid them.

1

http://www.stat.cmu.edu/~cshalizi/mreg/

2

3. E [ε|X = x] = 0 (no matter what x is), Var [ε|X = x] = σ2 (no matter
what x is).

4. ε is uncorrelated across observations.

In a typical situation, we also possess observations (x1, y1), (x2, y2), . . . (xn, yn),
which we presume are a realization of the model. Our goals are to estimate the
parameters of the model, and to use those parameters to make predictions.

In the notes for the last lecture, we saw that we could estimate the param-
eters by the method of least squares: that is, of minimizing the in-sample
mean squared error:

M̂SE(b0, b1) ≡ 1

n

n∑
i=1

(yi − (b0 + b1xi))
2 (1)

In particular, we obtained the following results:

Normal or estimating equations The least-squares estimates solve the
normal or estimating equations:

y − β̂0 − β̂1x = 0 (2)

xy − β̂0x− β̂1x2 = 0 (3)

Closed-form solutions The solution to the estimating equations can be
given in closed form:

β̂1 =
cXY
s2X

(4)

β̂0 = y − β̂1x (5)

Unbiasedness The least-squares estimator is unbiased:

E
[
β̂0

]
= β0 (6)

E
[
β̂1

]
= β1 (7)

Variance shrinks like 1/n The variance of the estimator goes to 0 as n→∞,
like 1/n:

Var
[
β̂1

]
=

σ2

ns2X
(8)

Var
[
β̂0

]
=

σ2

n

(
1 +

x2

s2X

)
(9)

In these notes, I will try to explain a bit more of the general picture under-
lying these results, and to explain what it has to do with prediction.

08:42 Wednesday 30th September, 2015

3

2 In-Sample MSE vs. True MSE

The true regression coefficients minimize the true MSE, which is (under the
simple linear regression model):

(β0, β1) = argmin
(b0,b1)

E
[
(Y − (b0 + b1X))2

]
(10)

What we minimize instead is the mean squared error on the data:

(β̂0, β̂1) = argmin
(b0,b1)

1

n

n∑
i=1

(yi − (b0 + b1xi))
2 (11)

This is the in-sample or empirical version of the MSE. It’s clear that it’s a
sample average, so for any fixed parameters b0, b1, when the law of large numbers
applies, we should have

1

n

n∑
i=1

(yi − (b0 + b1xi))
2 → E

[
(Y − (b0 + b1X))2

]
(12)

as n→∞. This should make it plausible that the minimum of the function of the
left is going to converge on the minimum of the function on the right, but there
can be tricky situations, with more complex models, where this convergence
doesn’t happen.

To illustrate what I mean by this convergence, Figure 2 shows a sequence of
surfaces of the MSE as a function of (b0, b1). (The simulation code is in Figure
1.) The first row shows different in-sample MSE surfaces at a small value of
n; the next row at a larger value of n; the next row at a still larger value of
n. What you can see is that as n grows, these surfaces all become more similar
to each other, and the locations of the minima are also becoming more similar.
This isn’t a proof, but shows why it’s worth looking for a proof.

2.1 Existence and Uniqueness

On any given finite data set, it is evident from Eqs. 4–5 that there is always a
least-squares estimate, unless s2X = 0, i.e., unless the sample variance of X is
zero, i.e., unless all the xi have the same value. (Obviously, with only one value
of the x coordinate, we can’t work out the slope of a line!) Moreover, if s2X > 0,
then there is exactly one combination of slope and intercept which minimizes
the MSE in-sample.

One way to understand this algebraically is that the estimating equations
give us a system of two linear equations in two unknowns. As we remember
from linear algebra (or earlier), such systems have a unique solution, unless one
of the equations of the system is redundant. (See Exercise 2.)

Notice that this existence and uniqueness of a least-squares estimate assumes
absolutely nothing about the data-generating process. In particular, it does not
assume that the simple linear regression model is correct. There is always
some straight line that comes closest to our data points, no matter how wrong,
inappropriate or even just plain silly the simple linear model might be.

08:42 Wednesday 30th September, 2015

4 2.1 Existence and Uniqueness

Simulate from a linear model with uniform X and t-distributed noise

Inputs: number of points; intercept; slope; width of uniform X distribution

(symmetric around 0); degrees of freedom for t

Output: data frame with columns for X and Y

sim.linmod <- function(n, beta.0, beta.1, width, df) {
draw n points from a uniform distribution centered on 0

x <- runif(n, min=-width/2, max=width/2)

draw n points from a t distribution with the given number of degrees

of freedom

epsilon <- rt(n, df=df)

make y from a linear model

y <- beta.0 + beta.1*x + epsilon

return the data frame

return(data.frame(x=x, y=y))

}

Calculate in-sample MSE of a linear model

First define a function that works for just one slope/intercept pair at

time

Then "Vectorize" it to handle vectors of intercepts and slopes

Inputs: slope; intercept; data frame with "x" and "y" columns

Output: the in-sample MSE

Presumes: "y" is the target variable and "x" is the predictor

mse.insample <- function(b.0, b.1, data) { mean((data$y-(b.0+b.1*data$x))^2) }
mse.insample <- Vectorize(mse.insample, vectorize.args=c("b.0","b.1"))

Grids of possible intercepts and slopes

b.0.seq <- seq(from=-10,to=10, length.out=20)

b.1.seq <- seq(from=-10,to=10, length.out=20)

3d wire-mesh ("perspective") plot of a linear model's error surface

Input: data set; maximum value for Z axis (for comparability across plots)

Output: Transformation matrix for adding new points/lines to the plot,

invisibly --- see help(persp) under "Value". (Ignored here)

ATTN: hard-coded slope/intercept sequences less than ideal

in.sample.persp <- function(data, zmax=600) {
Calculate the in-sample MSE for every combination of

z <- outer(b.0.seq, b.1.seq, mse.insample, data=data)

persp(b.0.seq, b.1.seq, z, zlim=c(0,zmax), xlab="Intercept",

ylab="Slope", zlab="MSE", ticktype="detailed")

}

Figure 1: Code to simulate from a linear model with t-distributed noise and uniformly
distributed X (to emphasize here needs anything to be Gaussian); to calculate the MSE
of a linear model on a given data sample; and to plot the error surface on a given data
set.

08:42 Wednesday 30th September, 2015

5 2.1 Existence and Uniqueness

Intercept
−10 −5 0 5 10

S
lo

pe

−10
−5

0
5
10

M
S

E

0
100

200

300

400

500

600

Intercept
−10 −5 0 5 10

S
lo

pe

−10
−5

0
5
10

M
S

E

0
100

200

300

400

500

600

Intercept
−10 −5 0 5 10

S
lo

pe

−10
−5

0
5
10

M
S

E

0
100

200

300

400

500

600

Intercept
−10 −5 0 5 10

S
lo

pe

−10
−5

0
5
10

M
S

E

0
100

200

300

400

500

600

Intercept
−10 −5 0 5 10

S
lo

pe

−10
−5

0
5
10

M
S

E

0
100

200

300

400

500

600

Intercept
−10 −5 0 5 10

S
lo

pe

−10
−5

0
5
10

M
S

E

0
100

200

300

400

500

600

par(mfrow=c(3,2))

in.sample.persp(sim.linmod(n=10,beta.0=5,beta.1=-2,width=4,df=3))

in.sample.persp(sim.linmod(n=10,beta.0=5,beta.1=-2,width=4,df=3))

in.sample.persp(sim.linmod(n=100,beta.0=5,beta.1=-2,width=4,df=3))

in.sample.persp(sim.linmod(n=100,beta.0=5,beta.1=-2,width=4,df=3))

in.sample.persp(sim.linmod(n=1e5,beta.0=5,beta.1=-2,width=4,df=3))

in.sample.persp(sim.linmod(n=1e5,beta.0=5,beta.1=-2,width=4,df=3))

par(mfrow=c(1,1))

Figure 2: Error surfaces for the linear model Y = 5− 2X + ε, ε ∼ t3, X ∼ U(−2, 2),
at n = 10 (top row), n = 100 (middle) and n = 100000 (bottom). Each column is
an independent run of the model. Notice how these become increasingly similar as n
grows.

08:42 Wednesday 30th September, 2015

6

3 Constant-Plus-Noise Representations

In deriving the properties of the least-squares estimators, it is extremely helpful
to re-write them so that they have the form “constant + noise”, and especially
to try to write the noise as a sum of uncorrelated random variables. This sort
of “representation” of the estimator makes it much simpler to determine its
properties, because adding up constants and uncorrelated random variables is
what the rules of algebra from Lecture 1 make easy for us.

To this end, let’s be explicit about writing out β̂1 in the form of a constant
plus a sum of uncorrelated noise random variables.

Begin with the fact that β̂1 is the ratio of the sample covariance to the
sample variance of X:

β̂1 =
cXY
s2X

(13)

=
1
n

∑n
i=1 (xi − x)(yi − y)

s2X
(14)

=
1
n

∑n
i=1 (xi − x)yi − 1

n

∑n
i=1 (xi − x)y

s2X
(15)

At this point, we need to pause for a fundamental fact which we will use of-
ten: for any variable z, the average difference from the sample mean is zero:
n−1

∑
i zi − z = 0. To see this, break up the sum of the difference into a differ-

ence in sums:

1

n

n∑
i=1

zi − z =
1

n

n∑
i=1

zi −
1

n

n∑
i=1

z (16)

= z − nz

n
= 0 (17)

It follows that for any w which is constant in i,

1

n

n∑
i=1

(zi − z)w = 0 (18)

Thus
1

n

n∑
i=1

(xi − x)y = 0 (19)

So

β̂1 =
1
n

∑n
i=1 (xi − x)yi

s2X
(20)

So far, we have not used any of our modeling assumptions. We now do so.
Specifically, we use the assumption that

yi = β0 + β1xi + εi (21)

08:42 Wednesday 30th September, 2015

7

For reasons which should become clear momentarily, it will be more convenient
to write this in terms of how far xi is from the sample mean x:

yi = β0 + β1x+ β1(xi − x) + εi (22)

to substitute the above expression for yi into Eq. 20:

β̂1 =
1
n

∑n
i=1 (xi − x)(β0 + β1x+ β1(xi − x) + εi)

s2X
(23)

=
β0+β1x

n

∑n
i=1 (xi − x) + β1

n

∑n
i=1 (xi − x)2 + 1

n

∑n
i=1 (xi − x)εi

s2X
(24)

The first sum in the numerator is a constant times the average difference of xi
from x, so it’s zero (by Eq. 18). The second sum in the numerator is just s2X
again. In the third sum, because the εi are not constant, is not (necessarily)
zero. Simplifying:

β̂1 = β1 +

n∑
i=1

xi − x
ns2X

εi (25)

Notice the form of Eq. 25: it writes our random estimator as a constant plus a
weighted sum of the noise terms εi. In fact, by the fourth item in our listing of
assumptions for the simple linear regression model, it writes β̂1 as a constant
plus a weighted sum of uncorrelated noise terms.

It is now very easy to work out the expected value:

E
[
β̂1

]
= E

[
β1 +

n∑
i=1

xi − x
ns2X

εi

]
(26)

= β1 +

n∑
i=1

xi − x
s2X

E [εi] = β1 (27)

or the variance:

Var
[
β̂1

]
= Var

[
β1 +

n∑
i=1

xi − x
ns2X

εi

]
(28)

= Var

[
n∑
i=1

xi − x
ns2X

εi

]
(29)

=

n∑
i=1

(xi − x)2

n2s4X
Var [εi] (30)

= σ2 ns
2
X

n2s4X
=

σ2

ns2X
(31)

where the last line uses the modeling assumption that all of the εi have the same
variance. (The next-to-last line uses the assumption that they are uncorrelated.)

08:42 Wednesday 30th September, 2015

8

So far, this is just re-capitulating stuff we’ve done already, but the exact
same strategy works for any estimator (or test statistic, etc.) which we can
manipulate into constant-plus-noise form. It’s not always possible to do this
(though see the optional section 9, and, for the ambitious, van der Vaart 1998),
but it’s a very powerful strategy when it works. To illustrate its power, we’ll
now use it on predictions of the simple linear model, when estimated by least
squares.

4 Predictions

Remember that we got into all this mess not because we want to know the
numbers β0 and β1 for their own sake, but because we wanted to predict Y
from X. How do we make those predictions, and how good are they?

If we knew β0 and β1, and that X = x, then our prediction2 for Y would be
β0 + β1x. This is, assuming the simple linear regression model is true, exactly
E [Y |X = x], which we saw back in Lecture 1 is the best prediction we can make.
As x changes, this prediction changes, but that’s precisely what we want — the
predictions will just follow points on the line.

Since we do not know β0 and β1, we fake it — that is, we use our estimates
of the coefficients. At an arbitrary value of X, say x (sometimes called the
operating point), we predict that on average Y will be

m̂(x) = β̂0 + β̂1x (32)

This point prediction is called the fitted value3 at x.
Notice the fitted value m̂(x) is an estimate of E [Y |X = x]. The latter is a

perfectly deterministic quantity; it has the value β0+β1x, which is some number
or other, and we just happen not to know it. But m̂(x) is a function of our data,
which are random, hence m̂(x) is also random. It inherits its randomness from

β̂0 and β̂1, which in turn inherit theirs from y and cXY .
To analyze the randomness in m̂(x), we will represent it as constants plus a

weighted sum of uncorrelated noise terms. Using Eqs. 5,

m̂(x) = β̂0 + β̂1x (33)

= y − β̂1x+ β̂1x (34)

= y + (x− x)β̂1 (35)

2This is called a point prediction; think of it as “if you have to give one number, this
is the best single number to give.” We might also make interval predictions (e.g., “with
probability p, Y will be in the interval [l, u]”) or distributional predictions (e.g., “Y will
follow an N(m, , v) distribution”.

3The name originates from thinking of ε as purely measurement error, so that m̂(x) is our
best-fitting estimate of the true value at x.

08:42 Wednesday 30th September, 2015

9

Using Eq. 25 and the definition of a sample mean,

m̂(x) =
1

n

n∑
i=1

yi + (x− x)

(
β1 +

n∑
i=1

xi − x
ns2X

εi

)
(36)

=
1

n

n∑
i=1

(β0 + β1xi + εi) + (x− x)

(
β1 +

n∑
i=1

xi − x
ns2X

εi

)
(37)

= β0 + β1x+
1

n

n∑
i=1

εi + (x− x)β1 + (x− x)

n∑
i=1

xi − x
ns2X

εi (38)

= β0 + β1x+
1

n

n∑
i=1

(
1 + (x− x)

xi − x
s2X

)
εi (39)

where in the last line I’ve canceled β1x terms of opposite sign, and combined
terms in the εi. Also, the second line used the second assumption in the simple
linear regression model, that Y is a linear function of X plus noise.

Now we can check whether or not our predictions are biased:

E [m̂(x)] = E

[
β0 + β1x+

1

n

n∑
i=1

(
1 + (x− x)

xi − x
s2X

)
εi

]
(40)

= β0 + β1x+
1

n

n∑
i=1

(
1 + (x− x)

xi − x
s2x

)
E [εi] (41)

= β0 + β1x (42)

This is to say, no, under the simple linear model, the predictions of least squares
are unbiased.

Of course, our predictions are somewhat random, because (as I said) they’re
functions of the somewhat-random data we estimated the model on. What is
the variance of these predictions?

Var [m̂(x)] = Var

[
β0 + β1x+

1

n

n∑
i=1

(
1 + (x− x)

xi − x
s2X

)
εi

]
(43)

= Var

[
1

n

n∑
i=1

(
1 + (x− x)

xi − x
s2X

)
εi

]
(44)

=
1

n2

n∑
i=1

(
1 + (x− x)

xi − x
s2X

)2

Var [εi] (45)

=
σ2

n2

n∑
i=1

1 + 2(x− x)
xi − x
s2X

+ (x− x)2
(xi − x)2

s4X
(46)

=
σ2

n2

(
n+ 0 + (x− x)2

ns2X
ns4X

)
(47)

=
σ2

n

(
1 +

(x− x)2

s2X

)
(48)

08:42 Wednesday 30th September, 2015

10

Notice what’s going on here:

• The variance grows as σ2 grows: the more noise there is around the re-
gression line, the harder we find it to estimate the regression line, and the
more of that noise will propagate into our predictions.

• The larger n is, the smaller the variance: the more points we see, the more
exactly we can pin down the line, and so our predictions.

• The variance of our predictions is the sum of two terms. The first, which
doesn’t depend on x, is σ2/n, which is the variance of y (Exercise 3). Since
our line has to go through the center of the data, this just how much noise
there is in the height of that center.

• The other term does change with x, specifically with (x−x)2: the further
our operating point x is from the center of the data x, the bigger our
uncertainty. This is the uncertainty that comes with being unable to pin
down the slope precisely; it therefore shrinks with s2X , since it’s easier to
find the slope when the points have a wide spread on the horizontal axis.

Again, Eq. 48 is conditional on the xi. If those are random, we need to use
the law of total variance (as in the last lecture) to get the unconditional variance
of m̂(x).

Figure 3 illustrates how the spread in point predictions changes as we move
away from the mean of the x values.

08:42 Wednesday 30th September, 2015

11

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y

Create an empty plot (type="n" for "do Nothing")

plot(0,type="n",xlim=c(-10,10),ylim=c(-10,10),xlab="x",ylab="y")

Add the true regression line; exaggerate width so it stands out

abline(a=5, b=-2, lwd=5)

Repeat 10 times: do a simulation, fit a line to the sim., add the fitted

line to the plot

invisible(replicate(20, abline(lm(y ~ x, data=sim.linmod(n=10,beta.0=5,

beta.1=-2,width=4,df=3)),

col="grey")))

Figure 3: Scatter of estimated least-squares regression lines (thin, grey) around the
true regression line (thick, black). Notice how the estimated lines become more spread
out as we move away from the center of the distribution (here conveniently set at
X = 0).

08:42 Wednesday 30th September, 2015

12

5 Estimating σ2; Sum of Squared Errors

Under the simple linear regression model, it is easy to show (Exercise 5) that

E
[
(Y − (β0 + β1X))2

]
= σ2 (49)

This suggests that the minimal value of the in-sample MSE,

σ̂2 =
1

n

n∑
i=1

(yi − m̂(xi))
2 (50)

is a natural estimator for σ2. This is, in fact, a consistent estimator. (You can

prove this using the consistency of β̂0 and β̂1, and continuity.) It is, however, a
slightly biased estimator. Specifically (Exercise 6)

s2 =
n

n− 2
σ̂2 (51)

is an un-biased estimator of σ2, though one with a larger variance. Some people,
accordingly, use Eq. 51, rather than Eq. 50, as their definition of “MSE”.

This is mostly something to be aware of when different pieces of R code,
textbooks, papers, etc., differ in what they are calling “MSE”; to get sensible
results, you may need to apply conversion factors in one direction or the other.
As usual, if the difference between 1/n and 1/(n− 2) is large enough to make a
difference to your conclusions, you should really be asking yourself whether you
have enough data to be doing any statistics at all.

Sum of squared errors The sum of squared errors for a fitted regression is
just what it sounds like:

SSE =

n∑
i=1

(yi − m̂(xi))
2 =

n∑
i=1

(yi − (β̂0 + β̂1xi))
2 (52)

It’s mostly important as a historical relic, from the days when people fit regres-
sion models by hand, or with slide rules and adding machines, and so every bit
of arithmetic you could avoid was a win.

6 Residuals

The residual value at a data point is the difference between the actual value
of the response yi and the fitted value m̂(xi):

ei = yi − m̂(xi) = yi − (β̂0 + β̂1xi) (53)

This may look like re-arranging the basic equation for the linear regression
model,

εi = Yi − (β0 + β1xi) (54)

08:42 Wednesday 30th September, 2015

13

and it is similar, but it’s not the same. The right-hand side of Eq. 54 involves the
true parameters. The right-hand side of Eq. 53 involves the estimated parame-
ters, which are different. In particular, the estimated parameters are functions
of all the noise variables. Therefore

The residuals are not the noise terms; ei 6= εi

There are some ways in which the residuals are like the noise terms. For
example, the residuals are always uncorrelated with the xi:

1

n

n∑
i=1

ei(xi − x) = 0 (55)

However, this fact (and others like it, which you will get to prove in the home-
work) are consequences of the estimating equations, and are true whether or not
the simple linear regression model is actually true. Another consequence of the
estimating equations is that

1

n

n∑
i=1

ei = 0 (56)

This is reminiscent of E [ε] = 0, but generally n−1
∑n
i=1 εi 6= 0. In fact, Eq. 56

implies that the residuals are actually linearly dependent on each other, while
the εi are not.

Despite these differences, there is enough of a relationship between the εi
and the ei that a lot of our model-checking and diagnostics will be done in terms
of the residuals. You should get used to looking at them for basically any model
you estimate, or even think seriously about estimating.

7 Limitations of Least Squares

The results in this handout, and the last, almost exhaust the theory of statistical
inference for least squares estimates in the simple linear regression model4. Go-
ing beyond the mean and variance of parameter estimates or predicted values is
pretty much impossible, using just least squares and the simple linear regression
model.

In particular, we can’t get sampling distributions for anything — we can’t
say what probability law β̂1 follows, even as a function of the true parameters
β0, β1, σ

2. There are just too many possibilities which are compatible with the
model assumptions. Since, as you remember from your mathematical statistics
course, we need sampling distributions to form confidence intervals, evaluate
the properties of hypothesis tests, etc., etc., there is really not much more to
say about this combination of model and method.

4The main exception is a result called the Gauss-Markov theorem: the least squares
estimator has smaller variance than any other unbiased estimator which is a linear function
of the yi. This was more impressive when nobody had the computing power to use nonlinear
estimators. . .

08:42 Wednesday 30th September, 2015

14

Chebyshev If we absolutely must do some probability calculations under the
least-squares assumptions, the best we can usually do is to invoke Chebyshev’s
inequality (the extra credit problem in homework 1): for any random variable
Z with expected value µ and variance σ, and any r > 0,

P (|Z − µ| ≥ r) ≤ Var [Z]

r2
(57)

In particular, we can say that

P
(
|Z − µ| ≥ k

√
Var [Z]

)
≤ 1

k2
(58)

These probability bounds are very loose, so if we do try to use them to do hy-
pothesis tests, they have very little power (equivalently: the confidence intervals
we get are huge).

Asymptotic Gaussianity The right-hand side of Eq. 25 shows that β̂1 is β1
plus a weighted average of the εi. If we add to the simple linear regression model
the assumption that the εi are IID draws from a fixed, not-necessarily-Gaussian
distribution, we might then try to use the central limit theorem to show that
the weighted average tends towards a Gaussian as n→∞. This can be done in
some generality, but it needs more delicate probability theory than the rest of
what we are doing, and if the initial distribution of the εi is, say, appreciably
skewed, n might have to be truly huge before the Gaussian approximation is
any good5.

8 Least-Squares in R

The basic command for fitting a linear model by least squares in R is lm. It has
a huge number of options, and can do a lot more than we will ask it to here,
but for our purposes we use it as follows:

lm(y ~ x, data=df)

Here df is a data frame containing the data we want to fit a regression to,
and the first part, the formula, tells lm that we want to regress the column of
df called y on the column called x. By default6, lm always fits its regression
models by least squares.

What lm returns is a rather complicated object. If you just print it out, it
seems to be only the intercept and the slope:

Make a very small simulated data set from our running examing

toy.data <- sim.linmod(n=10, beta.0=5, beta.1=-2, width=4, df=3)

Fit the simple linear regression model to it by least squares

lm(y~x, data=toy.data)

5To those who think everything is Gaussian once n ≥ 30, all I can say is “Bless your heart.”
6There are ways to tweak this, some of which we’ll see later in the course.

08:42 Wednesday 30th September, 2015

15

##

Call:

lm(formula = y ~ x, data = toy.data)

##

Coefficients:

(Intercept) x

4.857 -2.175

In fact, lm has done lots of calculations as part of fitting the model, and
stored many of the results into the object it returns; R just doesn’t print all of
that, unless you make it. We can see some of what’s in there, though:

names(lm(y~x, data=toy.data))

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

(See help(lm), under “Value”, for the gory details.) It’s annoying (and slow
and error-prone) to keep having R re-estimate the model every time we want to
refer back to it, so we usually store the estimated model under a new variable
name:

Fit a linear model to the toy data, and store as toy.lm

The name of the estimated model needn't match that of the data, but it's

often a good idea

toy.lm <- lm(y~x, data=toy.data)

We can access some of what’s in the lm object by using special functions. A
couple in particular will become close and familiar friends. coefficients gives
us the vector of coefficients:

coefficients(toy.lm)

(Intercept) x

4.857223 -2.174934

fitted gives us the vector of fitted values, in the order which the data points
appeared:

fitted(toy.lm)

1 2 3 4 5 6 7

9.0800253 6.7603763 6.8558205 3.3152211 6.2856302 1.2357448 0.9678781

8 9 10

0.9695428 2.9113412 1.4778954

residuals gives us the vector of residuals (ditto order):

08:42 Wednesday 30th September, 2015

16

residuals(toy.lm)

1 2 3 4 5 6

0.33216288 -0.28195847 -0.16959613 0.56191598 -0.11683723 -0.65118228

7 8 9 10

0.60304673 1.01284494 0.04913496 -1.33953138

(How would you use residuals to calculate s2? To calculate n
n−2s

2?)
You might think that plot(toy.lm) would draw a picture of the fitted

model; instead, it goes through a bunch of diagnostic plots, which we will get
to later. If we want to add a line based on the model to an existing plot, we use
abline, as in Figure 4.

fitted gives us the model’s predictions at the particular xi where we hap-
pened to have data. In principle, though, the model has an opinion about what
E [Y |X = x] should be at every possible value of x. To extract that, we use a
function called predict. Naturally enough, we need to tell it both which model
we want to use (since we could have more than one floating around), and where
to make the predictions:

predict(object, newdata)

Here the first argument, what predict somewhat obscurely calls object,
is the estimated regression model, like our toy.lm. (It is not the name of the
estimating function, like lm.) The second argument, newdata, is a data frame
with a column whose name matches the column name of the predictor variable
in our original data frame. Thus

predict(toy.lm, newdata=data.frame(x=1:5))

1 2 3 4 5

2.6822890 0.5073551 -1.6675788 -3.8425127 -6.0174465

gives us the fitted model’s predictions at the integers from 1 to 5.
You might well think that if newdata were missing, then predict would

throw an error. You might very well think that.

predict(toy.lm)

1 2 3 4 5 6 7

9.0800253 6.7603763 6.8558205 3.3152211 6.2856302 1.2357448 0.9678781

8 9 10

0.9695428 2.9113412 1.4778954

predict(toy.lm, data=data.frame(x=1:5)) # What's wrong here?

1 2 3 4 5 6 7

9.0800253 6.7603763 6.8558205 3.3152211 6.2856302 1.2357448 0.9678781

8 9 10

0.9695428 2.9113412 1.4778954

08:42 Wednesday 30th September, 2015

17

●

●
●

●

●

●

●

●

●

●

−2 −1 0 1

0
2

4
6

8

Simulated ('toy') data

x

y

plot(y~x, data=toy.data, xlab="x",ylab="y", main="Simulated ('toy') data")

abline(toy.lm)

Figure 4: Using abline to add the line of an estimated linear regression model to a
plot.

08:42 Wednesday 30th September, 2015

18

For reasons best known to the designers of R7, when newdata is missing
or mal-formed, predict returns the fitted values on the original data. On the
other hand, you will get an error if newdata exists but doesn’t contain the right
column name:

predict(toy.lm, newdata=data.frame(zebra=1:5))

Error in eval(expr, envir, enclos): object ’x’ not found

Extraneous columns, however, are just ignored:

predict(toy.lm, newdata=data.frame(x=1:5, zebra=6:10))

1 2 3 4 5

2.6822890 0.5073551 -1.6675788 -3.8425127 -6.0174465

There is one further option to predict which is worth mentioning at this
time. If we set se.fit=TRUE, we get the standard errors of the fitted values,
i.e., the square roots of the variances8:

predict(toy.lm, newdata=data.frame(x=1:5), se.fit=TRUE)

$fit

1 2 3 4 5

2.6822890 0.5073551 -1.6675788 -3.8425127 -6.0174465

##

$se.fit

1 2 3 4 5

0.2508125 0.3602584 0.5074423 0.6678634 0.8339172

##

$df

[1] 8

##

$residual.scale

[1] 0.720964

Notice that what this gives us back is not a vector but a list, whose first two
entries are vectors. (We will come back to what the df means, but you should
already be able to guess what residual.scale might be.)

9 Propagation of Error, alias “The Delta Method”

An optional section, but a very useful one.

7Really, the designers of the predecessor language, S.
8If a homework problem asks you to calculate the variance of a predicted value, it’s (gen-

erally) asking you to do the character-building work of actually putting numbers into an
algebraic formula by yourself, though you can use this to check your work.

08:42 Wednesday 30th September, 2015

19

The constant-plus-sum-of-noise-terms trick is the core of an extremely handy
technique for getting approximate variances and standard errors for functions
of quantities which are themselves estimated with error. It is known variously
as “propagation of error” or (more obscurely) as “the delta method”.

Suppose we are trying to estimate some quantity θ. We compute an estimate
θ̂, based on our data. Since our data is more or less random, so is θ̂. One
convenient way of measuring the purely statistical noise or uncertainty in θ̂
is its standard deviation. This is the standard error of our estimate of θ.9

Standard errors are not the only way of summarizing this noise, nor a completely
sufficient way, but they are often useful.

Suppose that our estimate θ̂ is a function of some intermediate quantities

ψ̂1, ψ̂2, . . . , ψ̂p, which are also estimated:

θ̂ = f(ψ̂1, ψ̂2, . . . ψ̂p) (59)

For instance, θ might be the difference in expected values between two groups,
with ψ1 and ψ2 the expected values in the two groups, and f(ψ1, ψ2) = ψ1−ψ2.

If we have a standard error for each of the original quantities ψ̂i, it would seem
like we should be able to get a standard error for the derived quantity θ̂.
Propagation of error achieves this, by writing θ̂ in the constant-plus-noise form.

We start with a Taylor expansion. We’ll write ψ∗i for the true (population,

distribution, ensemble) value which is estimated by ψ̂i.

f(ψ∗1 , ψ
∗
2 , . . . ψ

∗
p) ≈ f(ψ̂1, ψ̂2, . . . ψ̂p) +

p∑
i=1

(ψ∗i − ψ̂i)
∂f

∂ψi

∣∣∣∣
ψ=ψ̂

(60)

f(ψ̂1, ψ̂2, . . . ψ̂p) ≈ f(ψ∗1 , ψ
∗
2 , . . . ψ

∗
p) +

p∑
i=1

(ψ̂i − ψ∗i)
∂f

∂ψi

∣∣∣∣
ψ=ψ̂

(61)

θ̂ ≈ θ∗ +

p∑
i=1

(ψ̂i − ψ∗i)f ′i(ψ̂) (62)

introducing f ′i as an abbreviation for ∂f
∂ψi

. The left-hand side is now the quantity

whose standard error we want. I have done this manipulation because now θ̂ is
a linear function (approximately!) of some random quantities whose variances
we know, and some derivatives which we can calculate.

Remember (from Lecture 1) the rules for arithmetic with variances: if X
and Y are random variables, and a, b and c are constants,

Var [a] = 0 (63)

Var [a+ bX] = b2Var [X] (64)

Var [a+ bX + cY] = b2Var [X] + c2Var [Y] + 2bcCov [X,Y] (65)

9It is not, of course, to be confused with the standard deviation of the data. It is not even
to be confused with the standard error of the mean, unless θ is the expected value of the data
and θ̂ is the sample mean.

08:42 Wednesday 30th September, 2015

20

While we don’t know f(ψ∗1 , ψ
∗
2 , . . . ψ

∗
p), it’s constant, so it has variance 0. Simi-

larly, Var
[
ψ̂i − ψ∗i

]
= Var

[
ψ̂i

]
. Repeatedly applying these rules to Eq. 62,

Var
[
θ̂
]
≈

p∑
i=1

(f ′i(ψ̂))2Var
[
ψ̂i

]
+ 2

p−1∑
i=1

p∑
j=i+1

f ′i(ψ̂)f ′j(ψ̂)Cov
[
ψ̂i, ψ̂j

]
(66)

The standard error for θ̂ would then be the square root of this.
If we follow this rule for the simple case of group differences, f(ψ1, ψ2) =

ψ1 − ψ2, we find that

Var
[
θ̂
]

= Var
[
ψ̂1

]
+ Var

[
ψ̂2

]
− 2Cov

[
ψ̂1, ψ̂2

]
(67)

just as we would find from the basic rules for arithmetic with variances. The
approximation in Eq. 66 comes from the nonlinearities in f .

If the estimates of the initial quantities are uncorrelated, Eq. 66 simplifies
to

Var
[
θ̂
]
≈

p∑
i=1

(f ′i(ψ̂))2Var
[
ψ̂i

]
(68)

and, again, the standard error of θ̂ would be the square root of this. The special
case of Eq. 68 is sometimes called the propagation of error formula, but I think
it’s better to use that name for the more general Eq. 66.

Exercises

To think through or practice on, not to hand in.

1. True MSE of a linear model Prove that the full-distribution MSE of a
linear model with intercept b0 and slope b1 is

Var [Y]+(E [Y])2−2b0E [Y]−2b1Cov [X,Y]−2b1E [X]E [Y]+2b1E [X]+b21Var [X]+b21(E [X])2

(69)

2. Show that if all xi = x, then the system of linear equations, Eqs. 2–3,
actually contains only one linearly-independent equation. Hint: Write the
system of equations as a matrix multiplying the vector whose entries are
(β̂0, β̂1), and consider the determinant of the matrix. (How does the de-
terminant of such a matrix relate to whether the equations are all linearly
independent?)

3. Show that, under the simple linear regression model, Var [y] = σ2/n. You
may treat the xi as fixed in this calculation.

4. Derive Eqs. 6 and 9 from the results in §4. (Hint: β̂0 = m̂(x) for what
value of x?) Is this a circular argument?

08:42 Wednesday 30th September, 2015

21 REFERENCES

5. Prove Eq. 49.

6. Express the right-hand side of Eq. 50 in terms of β0, β1, the xi and the
εi. Use this expression to find E

[
σ̂2
]
, and show that it equals n−2

n σ2.

References

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge, England:
Cambridge University Press.

08:42 Wednesday 30th September, 2015

	Recapitulation
	In-Sample MSE vs. True MSE
	Existence and Uniqueness

	Constant-Plus-Noise Representations
	Predictions
	Estimating 2; Sum of Squared Errors
	Residuals
	Limitations of Least Squares
	Least-Squares in R
	Propagation of Error, alias ``The Delta Method''

