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Having gone over the Gaussian-noise simple linear regression model, over

ways of estimating its parameters and some of the properties of the model, and
over how to check the model’s assumptions, we are now ready to begin doing
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some serious statistical inference within the model1. In previous lectures, we
came up with point estimators of the parameters and the conditional mean
(prediction) function, but we weren’t able to say much about the margin of un-
certainty around these estimates. In this lecture we will focus on supplementing
point estimates with reliable measures of uncertainty. This will naturally lead
us to testing hypotheses about the true parameters — again, we will want hy-
pothesis tests which are unlikely to get the answer wrong, whatever the truth
might be.

To accomplish all this, we first need to understand the sampling distribution
of our point estimators. We can find them, mathematically, but they involve the
unknown true parameters in inconvenient ways. We will therefore work to find
combinations of our estimators and the true parameters with fixed, parameter-
free distributions; we’ll get our confidence sets and our hypothesis tests from
them.

Throughout this lecture, I am assuming, unless otherwise noted, that all
of the assumptions of the Gaussian-noise simple linear regression model hold.
After all, we checked those assumptions last time...

1 Sampling Distribution of β̂0, β̂1 and σ̂2

The Gaussian-noise simple linear regression model has three parameters: the
intercept β0, the slope β1, and the noise variance σ2. We’ve seen, previously,
how to estimate all of these by maximum likelihood; the MLE for the βs is the
same as their least-squares estimates. These are

β̂1 =
cXY
s2X

=

n∑
i=1

xi − x
ns2X

yi (1)

β̂0 = y − β̂1x (2)

σ̂2 =
1

n

n∑
i=1

(yi − (β̂0 + β̂1xi))
2 (3)

We have also seen how to re-write the first two of these as a deterministic
part plus a weighted sum of the noise terms ε:

β̂1 = β1 +

n∑
i=1

xi − x
ns2X

εi (4)

β̂0 = β0 +
1

n

n∑
i=1

(
1− xxi − x

s2X

)
εi (5)

Finally, we have our modeling assumption that the εi are independent Gaus-
sians, εi ∼ N(0, σ2).

1Presuming, of course, that the model’s assumptions, when thoroughly checked, do in fact
hold good.
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3 1.1 Reminders of Basic Properties of Gaussian Distributions

1.1 Reminders of Basic Properties of Gaussian Distribu-
tions

Suppose U ∼ N(µ, σ2). By the basic algebra of expectations and variances,
E [a+ bU ] = a + bµ, while Var [a+ bU ] = b2σ2. This would be true of any
random variable; a special property of Gaussians2 is that a + bU ∼ N(a +
bµ, b2σ2).

Suppose U1, U2, . . . Un are independent Gaussians, with means µi and vari-
ances σ2

i . Then
n∑
i=1

Ui ∼ N(
∑
i

µi,
∑
i

σ2
i )

That the expected values add up for a sum is true of all random variables; that
the variances add up is true for all uncorrelated random variables. That the
sum follows the same type of distribution as the summands is a special property
of Gaussians3.

1.2 Sampling Distribution of β̂1

Since we’re assuming Gaussian noise, the εi are independent Gaussians, εi ∼
N(0, σ2). Hence (using the first basic property of Gaussians)

xi − x
ns2X

εi ∼ N(0,

(
xi − x
ns2X

)2

σ2)

Thus, using the second basic property of Gaussians,

n∑
i=1

xi − x
ns2X

εi ∼ N(0, σ2
n∑
i=1

(
xi − x
ns2X

)2

) (6)

= N(0,
σ2

ns2X
) (7)

Using the first property of Gaussians again,

β̂1 ∼ N(β1,
σ2

ns2X
) (8)

This is the distribution of estimates we’d see if we repeated the experiment
(survey, observation, etc.) many times, and collected the results. Every partic-

ular run of the experiment would give a slightly different β̂1, but they’d average
out to β1, the average squared difference from β1 would be σ2/ns2X , and a his-
togram of them would follow the Gaussian probability density function (Figure
2).

2There some other families of distributions which have this property; they’re called
“location-scale” families.

3There are some other families of distributions which have this property; they’re called
“stable” families.
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4 1.3 Sampling Distribution of β̂0

# Simulate a Gaussian-noise simple linear regression model

# Inputs: x sequence; intercept; slope; noise variance; switch for whether to

# return the simulated values, or run a regression and return the coefficients

# Output: data frame or coefficient vector

sim.gnslrm <- function(x, intercept, slope, sigma.sq, coefficients=TRUE) {
n <- length(x)

y <- intercept + slope*x + rnorm(n,mean=0,sd=sqrt(sigma.sq))

if (coefficients) {
return(coefficients(lm(y~x)))

} else {
return(data.frame(x=x, y=y))

}
}

# Fix an arbitrary vector of x's

x <- seq(from=-5, to=5, length.out=42)

Figure 1: Code setting up a simulation of a Gaussian-noise simple linear regression
model, along a fixed vector of xi values.

It is a bit hard to use Eq. 8, because it involves two of the unknown param-
eters. We can manipulate it a bit to remove one of the parameters from the
probability distribution,

β̂1 − β1 ∼ N(0,
σ2

ns2X
)

but that still has σ2 on the right hand side, so we can’t actually calculate
anything. We could write

β̂1 − β1
σ2/
√
ns2X

∼ N(0, 1)

but now we’ve got two unknown parameters on the left-hand side, which is also
awkward.

1.3 Sampling Distribution of β̂0

Starting from Eq. 5 rather than Eq. 4, an argument exactly parallel to the one
we just went through gives

β̂0 ∼ N(β0,
σ2

n

(
1 +

x2

s2X

)
)

It follows, again by parallel reasoning, that

β̂0 − β0√
σ2

n

(
1 + x2

s2X

) ∼ N(0, 1)
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5 1.3 Sampling Distribution of β̂0
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# Run the simulation 10,000 times and collect all the coefficients

# What intercept, slope and noise variance does this impose?

many.coefs <- replicate(1e4, sim.gnslrm(x=x, 5, -2, 0.1, coefficients=TRUE))

# Histogram of the slope estimates

hist(many.coefs[2,], breaks=50, freq=FALSE, xlab=expression(hat(beta)[1]),

main="")

# Theoretical Gaussian sampling distribution

theoretical.se <- sqrt(0.1/(length(x)*var(x)))

curve(dnorm(x,mean=-2,sd=theoretical.se), add=TRUE,

col="blue")

Figure 2: Simulating 10,000 runs of a Gaussian-noise simple linear regression model,
calculating β̂1 each time, and comparing the histogram of estimates to the theoretical
Gaussian distribution (Eq. 8, in blue).
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6 1.4 Sampling Distribution of σ̂2

The right-hand side of this equation is admirably simple and easy for us to cal-
culate, but the left-hand side unfortunately involves two unknown parameters,
and that complicates any attempt to use it.

1.4 Sampling Distribution of σ̂2

It is mildly challenging, but certainly not too hard, to show that

E
[
σ̂2
]

=
n− 2

n
σ2

As I have said before, this will be a problem on a future assignment, so I will
not give a proof, but I will note that the way to proceed is to write

σ̂2 =
1

n

n∑
i=1

e2i ;

then to write each residual ei as a weighted sum of the noise terms ε; to use
E
[
e2i
]

= Var [ei] + (E [ei])
2; and finally to sum up over i.

Notice that this implies that E
[
σ̂2
]

= 0 when n = 2. This is because any
two points in the plane define a (unique) line, so if we have only two data points,
least squares will just run a line through them exactly, and have an in-sample
MSE of 0. In general, we get the factor of n − 2 from the fact that we are
estimating two parameters.

We can however be much more specific. When εi ∼ N(0, σ2), it can be
shown that

nσ̂2

σ2
∼ χ2

n−2

Notice, by the way, that this equation involves no unknown parameters on the
right-hand side, and only one on the left-hand side. It lets us calculate the
probability that σ̂2 is within any given factor of σ2. If, for instance, we wanted
to know the probability that σ̂2 ≥ 7σ2, this will let us find it.

I will offer only a hand-waving explanation; I am afraid I am not aware of
any truly elementary mathematical explanation — every one I know of either
uses probability facts which are about as obscure as the result to be shown, or
linear-algebraic facts about the properties of idempotent matrices4, and we’ve
not seen, yet, how to write linear regression in matrix form. I do however want
to re-assure you that there are actual proofs, and I promise to include one in
these notes once we’ve seen how to connect what we’re doing to matrices and
linear algebra.

I am afraid I do not have even a hand-waving explanation of a second im-
portant property of σ̂2: it is statistically independent of β̂0 and β̂1. This is not
obvious — after all, all three of these estimators are functions of the same noise
variables ε — but it is true, and, again, I promise to provide a genuine proof in
these notes once we’ve gone over the necessary math.

4Where M2 = M .
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7 1.4 Sampling Distribution of σ̂2

1.4.1 The Hand-Waving Explanation for n− 2

Let’s think for a moment about a related (but strictly different!) quantity from
σ̂2, namely

1

n

n∑
i=1

ε2i

This is a weighted sum of independent, mean-zero squared Gaussians, which is
where the connection to χ2 distributions comes in.

Some reminders about χ2 If Z ∼ N(0, 1), then Z2 ∼ χ2
1 by definition

(of the χ2
1 distribution). From this, it follows that E

[
χ2
1

]
= 1, Var

[
χ2
1

]
=

E
[
Z4
]
− (E

[
Z2
]
)2 = 2. If Z1, Z2, . . . Zd ∼ N(0, 1) and are independent, then

the χ2
d distribution is defined to be the distribution of

∑d
i=1 Z

2
i . By simple

algebra, it follows that E
[
χ2
d

]
= d while Var

[
χ2
d

]
= 2d.

Back to the sum of squared noise terms εi isn’t a standard Gaussian,
but εi/σ is, so ∑n

i=1 ε
2
i

σ2
=

n∑
i=1

(
εi
σ

)2 ∼ χ2
n

The numerator here is like nσ̂2 =
∑
i e

2
i , but of course the residuals ei are not

the same as the noise terms εi.
The reason we end up with a χ2

n−2 distribution, rather than a χ2
n distribution,

is that we’re estimating two parameters from the data removes two degrees of
freedom, so two of the εi end up making no real contribution to the sum of
squared errors. (Again, if n = 2, we’d be able to fit the two data points exactly
with the least squares line.) If we had estimated more or fewer parameters, we
would have had to adjust the number of degrees of freedom accordingly.

(There is also a geometric interpretation: the sum of squared errors,
∑n
i=1 e

2
i ,

is the squared length of the n-dimensional vector of residuals, (e1, e2, . . . en).
But the residuals must obey the two equations

∑
i ei = 0,

∑
i xiei = 0, so the

residual vector actually is confined to an (n − 2)-dimensional linear subspace.
Thus we only end up adding up (n− 2) independent contributions to its length.
If we estimated more parameters, we’d have more estimating equations, and so
more constraints on the vector of residuals.)
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8 1.5 Standard Errors of β̂0 and β̂1

1.5 Standard Errors of β̂0 and β̂1

The standard error of an estimator is its standard deviation5. We’ve just seen
that the true standard errors of β̂0 and β̂1 are, respectively,

se
[
β̂1

]
=

σ

sx
√
n

(9)

se
[
β̂0

]
=

σ√
nsX

√
s2X + x2 (10)

Unfortunately, these standard errors involve the unknown parameter σ2 (or its
square root σ, equally unknown to us).

We can, however, estimate the standard errors. The maximum-likelihood
estimates just substitute σ̂ for σ:

ŝe
[
β̂1

]
=

σ̂

sx
√
n

(11)

ŝe
[
β̂0

]
=

σ̂

sX
√
n

√
s2X + x2 (12)

For later theoretical purposes, however, things will work out slightly nicer if
we use the de-biased version, n

n−2 σ̂
2:

ŝe
[
β̂1

]
=

σ̂

sx
√
n− 2

(13)

ŝe
[
β̂0

]
=

σ̂

sx
√
n− 2

√
s2X + x2 (14)

These standard errors — approximate or estimated though they be — are one
important way of quantifying how much uncertainty there is around our point
estimates. However, we can’t use them, alone to say anything terribly precise6

about, say, the probability that β1 is in the interval [β̂1 − ŝe
[
β̂1

]
, β̂1 − ŝe

[
β̂1

]
],

which is the sort of thing we’d want to be able to give guarantees about the
reliability of our estimates.

2 Sampling distribution of (β̂ − β)/ŝe
[
β̂
]

It should take only a little work with the properties of the Gaussian distribution
to convince yourself that

β̂1 − β1
se
[
β̂1

] ∼ N(0, 1)

5We don’t just call it the standard deviation because we want to emphasize that it is, in
fact, telling us about the random errors our estimator makes.

6Exercise to think through: Could you use Chebyshev’s inequality (the extra credit problem
from Homework 1) here?
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the standard Gaussian distribution. If the Oracle told us σ2, we’d know se
[
β̂1

]
,

and so we could assert that (for example)

P
(
β1 − 1.96se

[
β̂1

]
≤ β̂1 ≤ β1 + 1.96se

[
β̂1

])
(15)

= P
(
−1.96se

[
β̂1

]
≤ β̂1 − β1 ≤ 1.96se

[
β̂1

])
(16)

= P

−1.96 ≤ β̂1 − β1
se
[
β̂1

] ≤ 1.96

 (17)

= Φ(1.96)− Φ(−1.96) = 0.95 (18)

where Φ is the cumulative distribution function of the N(0, 1) distribution.
Since the oracles have fallen silent, we can’t use this approach. What we can

do is use the following fact7:

Proposition 1 If Z ∼ N(0, 1), S2 ∼ χ2
d, and Z and S2 are independent, then

Z√
S2/d

∼ td

(I call this a proposition, but it’s almost a definition of what we mean by a
t distribution with d degrees of freedom. Of course, if we take this as the
definition, the proposition that this distribution has a probability density ∝
(1 + x2/d)−(d+1)/2 would become yet another proposition to be demonstrated.)

Let’s try to manipulate (β̂1 − β1)/ŝe
[
β̂1

]
into this form.

7When I messed up the derivation in class today, I left out dividing by d in the denominator.
As I mentioned at the end of that debacle, this was stupid. As d → ∞, td converges on the
standard Gaussian distribution N(0, 1). (Notice that E

[
d−1χ2

d

]
= 1, while Var

[
d−1χ2

d

]
=

2/d, so d−1χ2
d → 1.) Without the normalizing factor of d inside the square root, however,

looking just at Z/S, we’ve got a random variable whose distribution doesn’t change with d
being divided by something whose magnitude grows with d, so Z/S → 0 as d → ∞, not
→ N(0, 1). I apologize again for my error.
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β̂1 − β1
ŝe
[
β̂1

] =
β̂1 − β1

σ

σ

ŝe
[
β̂1

] (19)

=
β̂1−β1

σ

ŝe[β̂1]
σ

(20)

=
N(0, 1/ns2X)

σ̂
sxσ
√
n−2

(21)

=
sXN(0, 1/ns2X)

σ̂
σ
√
n−2

(22)

=
N(0, 1/n)

σ̂
σ
√
n−2

(23)

=

√
nN(0, 1/n)
√
nσ̂

σ
√
n−2

(24)

=
N(0, 1)√
nσ̂2

σ2
1

n−2

(25)

=
N(0, 1)√

χ2
n−2/(n− 2)

(26)

= tn−2 (27)

where in the last step I’ve used the proposition I stated (without proof) above.
To sum up:

Proposition 2 Using the ŝe
[
β̂1

]
of Eq. 13,

β̂1 − β1
ŝe
[
β̂1

] ∼ tn−2 (28)

Notice that we can compute ŝe
[
β̂1

]
without knowing any of the true parameters

— it’s a pure statistic, just a function of the data. This is a key to actually
using the proposition for anything useful.

By exactly parallel reasoning, we may also demonstrate that

β̂0 − β0
ŝe
[
β̂0

] ∼ tn−2
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3 Sampling Intervals for β̂; hypothesis tests for
β̂

Let’s trace through one of the consequences of Eq. 28. For any k > 0,

P
(
β1 − kŝe

[
β̂1

]
≤ β̂1 ≤ β1 + kŝe

[
β̂1

])
(29)

= P
(
kŝe
[
β̂1

]
≤ β̂1 − β1 ≤ kŝe

[
β̂1

])
(30)

= P

k ≤ β̂1 − β1
ŝe
[
β̂1

] ≤ k
 (31)

=

∫ k

−k
tn−2(u)du (32)

where by a slight abuse of notation I am writing tn−2(u) for the probability
density of the t distribution with n − 2 degrees of freedom, evaluated at the
point u.

It should be evident that if you pick any α between 0 and 1, I can find a
k(n, α) such that ∫ k(n,α)

−k(n,α)
tn−2(u)du = 1− α

I therefore define the (symmetric) 1 − α sampling interval for β̂1, when the
true slope is β1, as

[β1 − k(n, α)ŝe
[
β̂1

]
, β1 + k(n, α)ŝe

[
β̂1

]
] (33)

If the true slope is β1, then β̂1 will be within this sampling interval with
probability 1 − α. This leads directly to a test of the null hypothesis that the
slope β1 = β∗1 : reject the null if β̂1 is outside the sampling interval for β∗1 , and

retain the null when β̂1 is inside that sampling interval. This test is called the
Wald test, after the great statistician Abraham Wald8.

By construction, the Wald test’s probability of rejection under the null hy-
pothesis — the size, or type I error rate, or false alarm rate of the test
— is exactly α. Of course, the other important property of a hypothesis test is
its power — the probability of rejecting the null when it is false. From Eqn.
28, it should be clear that if the true β1 6= β∗1 , the probability that β̂1 is inside
the sampling interval for β∗1 is < 1−α, with the difference growing as |β1 − β∗1 |
grows. An exact calculation could be done (it’d involve what’s called the “non-
central t distribution”), but is not especially informative. The point is that the
power is always > α, and grows with the departure from the null hypothesis.

8As is common with eponyms in the sciences, Wald was not, in fact, the first person to use
the test, but he made one of the most important early studies of its properties, and he was
already famous for other reasons.
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If you were an economist, psychologist, or something of their ilk, you have a
powerful drive — almost a spinal reflex not involving the higher brain regions
— to test whether β1 = 0. Under the Wald test, you would reject that point
null hypothesis when |β̂1| exceeds a certain number of standard deviations. As
an intelligent statistician in control of your own actions, you would read the
section on “statistical significance” below, before doing any such thing.

All of the above applies, mutatis mutandis, to β̂0−β0

ŝe[β̂0]
.

4 Building Confidence Intervals from Sampling
Intervals

Once we know how to calculate sampling intervals, we can plot the sampling
interval for every possible value of β1 (Figure 3). They’re the region marked

off by two parallel lines, one k(n, α)ŝe
[
β̂1

]
above the main diagonal and one

equally far below the main diagonal.
The sampling intervals (as in Figure 3) are theoretical constructs — mathe-

matical consequences of the assumptions in the the probability model that (we

hope) describes the world. After we gather data, we can actually calculate β̂1.
This is a random quantity, but it will have some particular value on any data
set. We can mark this realized value, and draw a horizontal line across the
graph at that height (Figure 4).

The β̂1 we observed is within the sampling interval for some (possible or
hypothetical) values of β1, and outside the sampling interval for others. We
define the confidence set, with confidence level 1− α, as{

β1 : β̂1 ∈ [β1 − k(n, α)ŝe
[
β̂1

]
, β1 + k(n, α)ŝe

[
β̂1

]
]
}

(34)

This is precisely the set of β1 which we retain when we run the Wald test
with size α. In other words: we test every possible β1; if we’d reject that Confidence set

= Test all the
hypotheses!

null hypothesis, that value of β1 gets removed from the hypothesis test; if we’d
retain that null, β1 stays in the confidence set9. Figure 5 illustrate a confidence
set, and shows (unsurprisingly) that in this case the confidence set is indeed a
confidence interval. Indeed, a little manipulation of Eq. 34 gives us an explicit
formula for the confidence set, which is an interval:

[β̂1 − k(n, α)ŝe
[
β̂1

]
, β̂1 + k(n, α)ŝe

[
β̂1

]
The correct interpretation of a confidence set is that it offers us a dilemma.

One of two10 things must be true:

9Cf. the famous Sherlock Holmes line “When you have eliminated the impossible, whatever
remains, however improbable, must be the truth.” In forming the confidence set, we are
eliminating the merely unlikely, rather than the absolutely impossible. This is because, not
living in a detective story, we get only noisy and imperfect evidence.

10Strictly speaking, there is a third option: our model could be wrong. Hence the importance
of model checking before doing within-model inference.
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lm.sim <- lm(y~x, data=sim.gnslrm(x=x, 5, -2, 0.1, coefficients=FALSE))

hat.sigma.sq <- mean(residuals(lm.sim)^2)

se.hat.beta.1 <- sqrt(hat.sigma.sq/(var(x)*(length(x)-2)))

alpha <- 0.02

k <- qt(1-alpha/2, df=length(x)-2)

plot(0, xlim=c(-3,-1),ylim=c(-3,-1),type="n",

xlab=expression(beta[1]),

ylab=expression(hat(beta)[1]), main="")

abline(a=k*se.hat.beta.1,b=1)

abline(a=-k*se.hat.beta.1,b=1)

abline(a=0,b=1,lty="dashed")

beta.1.star <- -1.73

segments(x0=beta.1.star,y0=k*se.hat.beta.1+beta.1.star,

x1=beta.1.star,y1=-k*se.hat.beta.1+beta.1.star,

col="blue")

Figure 3: Sampling intervals for β̂1 as a function of β1. For compatibility with the
earlier simulation, I have set n = 42, s2X = 9, and (from one run of the model)
σ̂2 = 0.081; and, just because α = 0.05 is cliched, α = 0.02. Equally arbitrarily, the
blue vertical line illustrates the sampling interval when β1 = −1.73.
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plot(0, xlim=c(-3,-1),ylim=c(-3,-1),type="n",

xlab=expression(beta[1]),

ylab=expression(hat(beta)[1]), main="")

abline(a=k*se.hat.beta.1,b=1)

abline(a=-k*se.hat.beta.1,b=1)

abline(a=0,b=1,lty="dashed")

beta.1.hat <- coefficients(lm.sim)[2]

abline(h=beta.1.hat,col="grey")

Figure 4: As in Figure 3, but with the addition of a horizontal line marking the
observed value of β̂1 on a particular realization of the simulation (in grey).
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plot(0, xlim=c(-3,-1),ylim=c(-3,-1),type="n",

xlab=expression(beta[1]),

ylab=expression(hat(beta)[1]), main="")

abline(a=k*se.hat.beta.1,b=1)

abline(a=-k*se.hat.beta.1,b=1)

abline(a=0,b=1,lty="dashed")

beta.1.hat <- coefficients(lm.sim)[2]

abline(h=beta.1.hat,col="grey")

segments(x0=beta.1.hat-k*se.hat.beta.1, y0=beta.1.hat,

x1=beta.1.hat+k*se.hat.beta.1, y1=beta.1.hat,

col="red")

Figure 5: As in Figure 4, but with the confidence set marked in red. This is the
collection of all β1 where β̂1 falls within the 1− α sampling interval.

18:19 Friday 25th September, 2015



16

1. The true β1 is inside the confidence set.

2. β̂1 is outside the sampling interval of the true β1.

We know that the second option has probability at most α, no matter what the
true β1 is, so we may rephrase the dilemma. Either

1. The true β1 is inside the confidence set, or

2. We’re very unlucky, because something whose probability is ≤ α hap-
pened.

Since, most of the time, we’re not very unlucky, the confidence set is, in fact, a
reliable way of giving a margin of error for the true parameter β1.

Width of the confidence interval Notice that the width of the confidence
interval is 2k(n, α)ŝe

[
β̂1

]
. This tells us what controls the width of the confidence

interval:

1. As α shrinks, the interval widens. (High confidence comes at the price of
big margins of error.)

2. As n grows, the interval shrinks. (Large samples mean precise estimates.)

3. As σ2 increases, the interval widens. (The more noise there is around the
regression line, the less precisely we can measure the line.)

4. As s2X grows, the interval shrinks. (Widely-spread measurements give us
a precise estimate of the slope.)

What about β0? By exactly parallel reasoning, a 1 − α confidence interval

for β0 is [β̂0 − k(n, α)ŝe
[
β̂0

]
, β̂0 + k(n, α)ŝe

[
β̂0

]
].

What about σ2? See Exercise 1.

What α should we use? It’s become conventional to set α = 0.05. To be
honest, this owes more to the fact that the resulting k tends to 1.96 as n→∞,
and 1.96 ≈ 2, and most psychologists and economists could multiply by 2, even
in 1950, than to any genuine principle of statistics or scientific method. A 5%
error rate corresponds to messing up about one working day in every month,
which you might well find high. On the other hand, there is nothing which stops
you from increasing α. It’s often illuminating to plot a series of confidence sets,
at different values of α.
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What about power? The coverage of a confidence set is the probability
that it includes the true parameter value. This is not, however, the only virtue
we want in a confidence set; if it was, we could just say “Every possible param-
eter is in the set”, and have 100% coverage no matter what. We would also like
the wrong values of the parameter to have a high probability of not being in
the set. Just as the coverage is controlled by the size / false-alarm probability
/ type-I error rate α of the hypothesis test, the probability of excluding the
wrong parameters is controlled by the power / miss probability / type-II error
rate. Test with higher power exclude (correctly) more parameter values, and
give smaller confidence sets.

4.1 Confidence Sets and Hypothesis Tests

I have derived confidence sets for β by inverting a specific hypothesis test, the
Wald test. There is a more general relationship between confidence sets and
hypothesis tests.

1. Inverting any hypothesis test gives us a confidence set.

2. If we have a way of constructing a 1 − α confidence set, we can use it to
test the hypothesis that β = β∗: reject when β∗ is outside the confidence
set, retain the null when β∗ is inside the set.

I will leave it as a pair of exercises (2 and 3) to that inverting a test of size α
gives a 1 − α confidence set, and that inverting a 1 − α confidence set gives a
test of size α.

4.2 Large-n Asymptotics

As n→∞, σ̂2 → σ2. It follows (by continuity) that ŝe
[
β̂
]
→ se

[
β̂
]
. Hence,

β̂ − β

ŝe
[
β̂
] → N(0, 1)

which considerably simplifies the sampling intervals and confidence sets; as n
grows, we can forget about the t distribution and just use the standard Gaussian
distribution. Figure 6 plots the convergence of k(n, α) towards the k(∞, α) we’d
get from the Gaussian approximation. As you can see from the figure, by the
time n = 100 —a quite small data set by modern standards — the difference
between the t distribution and the standard-Gaussian is pretty trivial.
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0
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4
6

8
10

Sample size (n)

k(
n,

 α
)

α = 0.01
α = 0.05
α = 0.5

curve(qt(0.995,df=x-2),from=3,to=1e4,log="x", ylim=c(0,10),

xlab="Sample size (n)", ylab=expression(k(n,alpha)),col="blue")

abline(h=qnorm(0.995),lty="dashed",col="blue")

curve(qt(0.975,df=x-2), add=TRUE)

abline(h=qnorm(0.975),lty="dashed")

curve(qt(0.75,df=x-2), add=TRUE, col="orange")

abline(h=qnorm(0.75), lty="dashed", col="orange")

legend("topright", legend=c(expression(alpha==0.01), expression(alpha==0.05),

expression(alpha==0.5)),

col=c("blue","black","orange"), lty="solid")

Figure 6: Convergence of k(n, α) as n → ∞, illustrated for α = 0.01, α = 0.05 and
α = 0.5. (Why do I plot the 97.5th percentile when I’m interested in α = 0.05?)
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5 Statistical Significance: Uses and Abuses

5.1 p-Values

The test statistic for the Wald test,

T =
β̂1 − β∗1
ŝe
[
β̂1

]
has the nice, intuitive property that it ought to be close to zero when the null
hypothesis β1 = β∗1 is true, and take large values (either positive or negative)
when the null hypothesis is false. When a test statistic works like this, it makes
sense to summarize just how bad the data looks for the null hypothesis in a
p-value: when our observed value of the test statistic is Tobs, the p-value is

P = P (|T | ≥ |Tobs|)

calculating the probability under the null hypothesis. (I write a capital P here
as a reminder that this is a random quantity, though it’s conventional to write
the phrase “p-value” with a lower-case p.) This is the probability, under the
null, of getting results which are at least as extreme as what we saw. It should
be easy to convince yourself that rejecting the null in a level-α test is the same
as getting a p-value < α.

It is not too hard (Exercise 4) to show that P has a uniform distribution
over [0, 1] under the null hypothesis.

5.2 p-Values and Confidence Sets

When our test lets us calculate a p-value, we can form a 1−α confidence set by
taking all the β’s where the p-value is ≥ α. Conversely, if we have some way of
making confidence sets already, we can get a p-value for the hypothesis β = β∗;
it’s the largest α such that β∗ is in the 1− α confidence set.

5.3 Statistical Significance

If we test the hypothesis that β1 = β∗1 and reject it, we say that the difference
between β1 and β∗1 is statistically significant. Since, as I mentioned, many
professions have an overwhelming urge to test the hypothesis β1 = 0, it’s com-
mon to hear people say that “β1 is statistically significant” when they mean “β1
is difference from 0 is statistically significant”.

This is harmless enough, as long as we keep firmly in mind that “significant”
is used here as a technical term, with a special meaning, and is not the same as
“important”, “relevant”, etc. When we reject the hypothesis that β1 = 0, what
we’re saying is “It’s really implausibly hard to fit this data with a flat line, as
opposed to one with a slope”. This is informative, if we had serious reasons to
think that a flat line was a live option.
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20 5.3 Statistical Significance

It is incredibly common for researchers from other fields, and even some
statisticians, to reason as follows: “I tested whether β1 = 0 or not, and I
retained the null; therefore β1 is insignificant, and I can ignore it.” This is, of
course, a complete fallacy.

To see why, it is enough to realize that there are (at least) two reasons why
our hypothesis test might retain the null β1 = 0:

1. β1 is, in fact, zero,

2. β1 6= 0, but ŝe
[
β̂1

]
is so large that we can’t tell anything about β1 with

any confidence.

There is a very big difference between data which lets us say “we can be quite
confident that the true β1 is, if not perhaps exactly 0, then very small”, and
data which only lets us say “we have no earthly idea what β1 is, and it may
as well be zero for all we can tell”11. It is good practice to always compute
a confidence interval, but it is especially important to do so when you retain
the null, so you know whether you can say “this parameter is zero to within
such-and-such a (small) precision”, or whether you have to admit “I couldn’t
begin to tell you what this parameter is”.

Substantive vs. statistical significance Even a huge β1, which it would be
crazy to ignore in any circumstance, can be statistically insignificant, so long as

ŝe
[
β̂1

]
is large enough. Conversely, any β1 which isn’t exactly zero, no matter

how close it might be to 0, will become statistically significant at any threshold

once ŝe
[
β̂1

]
is small enough. Since, as n→∞,

ŝe
[
β̂1

]
→ σ

sX
√
n

we can show that ŝe
[
β̂1

]
→ 0, and β̂1

ŝe[β̂1]
→ ±∞, unless β1 is exactly 0 (see

below).
Statistical significance is a weird mixture of how big the coefficient is, how

big a sample we’ve got, how much noise there is around the regression line,
and how spread out the data is along the x axis. This has so little to do
with “significance” in ordinary language that it’s pretty unfortunate we’re stuck
with the word; if the Ancestors had decided to say “statistically detectable” or
“statistically distinguishable from 0”, we might have avoided a lot of confusion.

If you confuse substantive and statistical significance in this class, it will go
badly for you.

11Imagine hearing what sounds like the noise of an animal in the next room. If the room is
small, brightly lit, free of obstructions, and you make a thorough search of it with unimpaired
vision and concentration, not finding an animal in it is, in fact, good evidence that there was
no animal there to be found. If on the other hand the room is dark, large, full of hiding places,
and you make a hurried search while distracted, without your contact lenses and after a few
too many drinks, you could easily have missed all sorts of things, and your negative report
has little weight as evidence. (In this parable, the difference between a large |β1| and a small
|β1| is the difference between looking for a Siberian tiger and looking for a little black cat.)
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5.4 Appropriate Uses of p-Values and Significance Testing

I do not want this section to give the impression that p-values, hypothesis
testing, and statistical significance are unimportant or necessarily misguided.
They’re often used badly, but that’s true of every statistical tool from the sam-
ple mean on down the line. There are certainly situations where we really do
want to know whether we have good evidence against some exact statistical
hypothesis, and that’s just the job these tools do. What are some of these
situations?

Model checking Our statistical models often make very strong, claims about
the probability distribution of the data, with little wiggle room. The simple lin-
ear regression model, for instance, claims that the regression function is exactly
linear, and that the noise around this line has exactly constant variance. If we
test these claims and find very small p-values, then we have evidence that there’s
a detectable, systematic departure from the model assumptions, and we should
re-formulate the model.

Actual scientific interest Some scientific theories make very precise predic-
tions about coefficients. According to Newton, the gravitational force between
two masses is inversely proportional to the square of the distance between them,
∝ r−2. The prediction is exactly ∝ r−2, not ∝ r−1.99 nor ∝ r−2.05. Measuring
that exponent and finding even tiny departures from 2 would be big news, if we
had reason to think they were real and not just noise12. One of the most suc-
cessful theories in physics, quantum electrodynamics, makes predictions about
some properties of hydrogen atoms with a theoretical precision of one part in
a trillion; finding even tiny discrepancies between what the theory predicts and
what we estimate would force us to rethink lots of physics13. Experiments to
detect new particles, like the Higgs boson, essentially boil down to hypothe-
sis testing, looking for deviations from theoretical predictions which should be
exactly zero if the particle doesn’t exist.

Outside of the natural sciences, however, it is harder to find examples of
interesting, exact null hypothesis which are, so to speak, “live options”. The best
I can come up with are theories of economic growth and business cycles which
predict that the share of national income going to labor (as opposed to capital)
should be constant over time. Otherwise, in the social sciences, there’s usually
little theoretical reason to think that certain regression coefficients should be
exactly zero, or exactly one, or anything else.

Neutral models A partial exception is the use of neutral models, which
comes out of genetics and ecology. The idea here is to check whether some
mechanism is at work in a particular situation — say, whether some gene is

12In fact, it was big news: Einstein’s theory of general relativity.
13Feynman (1985) gives a great conceptual overview of quantum electrodynamics. Cur-

rently, theory agrees with experiment to the limits of experimental precision, which is only
about one part in a billion (https://en.wikipedia.org/wiki/Precision_tests_of_QED).
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subject to natural selection. One constructs two models; one incorporates all
the mechanisms (which we think are) at work, including the one under investi-
gation, and the other incorporate all the other mechanisms, but “neutralizes”
the one of interest. (In a genetic example, the neutral model would probably
incorporate the effects of mutation, sexual repdouction, the random sampling
of which organisms become the ancestors of the next generation, perhaps mi-
gration, etc. The non-neutral model would include all this plus the effects of
natural selection.) Rejecting the neutral model in favor of the non-neutral one
then becomes evidence that the disputed mechanism is needed to explain the
data.

In the cases where this strategy has been done well, the neutral model is
usually a pretty sophisticated stochastic model, and the “neutralization” is not
as simple as just setting some slope to zero. Nonetheless, this is a situation where
we do actually learn something about the world by testing a null hypothesis.

6 Any Non-Zero Parameter Becomes Significant
with Enough Information

(This section is optional, but strongly recommended.)
Let’s look more close at what happens to the test statistic when n→∞, and

so at what happens to the p-value. Throughout, we’ll be testing the null hypoth-
esis that β1 = 0, since this is what people most often do, but the same reasoning
applies to departures from any fixed value of the slope. (Everything carries over
with straightforward changes to testing hypotheses about the intercept β0, too.)

We know that β̂1 ∼ N(β1, σ
2/ns2X). This means14

β̂1 ∼ β1 +N(0, σ2/ns2X) (35)

= β1 +
σ

sX
√
n
N(0, 1) (36)

= β1 +O(1/
√
n) (37)

where O(f(n)) is read “order-of f(n)”, meaning that it’s a term whose size
grows like f(n) as n → ∞, and we don’t want (or need) to keep track of the

details. Similarly, since n ˆsigma
2
/σ2 ∼ χ2

n−2, we have15

nσ̂2 ∼ σ2χ2
n−2 (38)

σ̂2 ∼ σ2χ
2
n−2
n

(39)

14If seeing something like σ
sX
√
n
N(0, 1), feel free to introduce random variables Zn ∼ N(0, 1)

(though not necessarily independent ones), and modify the equations accordingly.
15Again, feel free to introduce the random variable Ξn, which just so happens to have a

χ2
n−2 distribution.
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Since E
[
χ2
n−2
]

= n− 2 and Var
[
χ2
n−2
]

= 2(n− 2),

E
[
χ2
n−2
n

]
=

n− 2

n
→ 1 (40)

Var

[
χ2
n−2
n

]
=

2(n− 2)

n2
→ 0 (41)

with both limits happening as n→∞. In fact Var
[
χ2
n−2

n

]
= O(1/n), so

σ̂2 = σ2
(
1 +O(1/

√
n)
)

(42)

Taking the square root, and using the fact16 that (1+x)a ≈ 1+ax when |x| � 1,

σ̂ = σ
(
1 +O(1/

√
n)
)

(43)

Put this together to look at our test statistic:

β̂1

ŝe
[
β̂1

] =
β1 +O(1/

√
n)

σ(1+O(1/
√
n))

sX
√
n

(44)

=
√
n

β1 +O(1/
√
n)

(σ/sX) (1 +O(1/
√
n))

(45)

=
√
n

β1
σ/sX

(
1 +O(1/

√
n)
)

(46)

=
√
n

β1
σ/sX

+O(1) (47)

In words: so long as the true β1 6= 0, the test statistic is going to go off to ±∞,
and the rate at which it escapes towards infinity is going to be proportional
to
√
n. When we compare this against the null distribution, which is N(0, 1),

eventually we’ll get arbitrarily small p-values.
We can actually compute what those p-values should be, by two bounds on

the standard Gaussian distribution17:(
1

x
− 1

x3

)
1√
2π
e−x

2/2 < 1− Φ(x) <
1

x

1√
2π
e−x

2/2 (48)

Thus

Pn = P

(
|Z| ≥

∣∣∣∣∣ β̂1
σ̂/
√
nsX

a

∣∣∣∣∣
)

(49)

= 2P

(
Z ≥

∣∣∣∣∣ β̂1
σ̂/
√
nsX

∣∣∣∣∣
)

(50)

≤ 2√
2π

e
− 1

2

β̂21
σ̂2/ns2

X∣∣∣ β̂1

σ̂/
√
nsX

∣∣∣ (51)

16From the binomial theorem, back in high school algebra.
17See Feller (1957), Chapter VII, §1, Lemma 2. For a brief proof online, see http://www.

johndcook.com/normalbounds.pdf.
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To clarify the behavior, let’s take the logarithm and divide by n:

1

n
logPn ≤ 1

n
log

2√
2π

(52)

− 1

n
log

∣∣∣∣∣ β̂1
σ̂/
√
nsX

∣∣∣∣∣
− 1

2n

β̂2
1

σ̂2/ns2X

=
log
√

2π

n
(53)

+
log
∣∣∣ β̂1

σ̂/sx

∣∣∣
n

− log n

2n

− β̂2
1

2σ̂2/s2X

Take the limit as n→∞:

lim
n→∞

1

n
logPn ≤ lim

n

log
√

2π

n
(54)

+ lim
n

log β̂1

σ̂/sx

n

− lim
n

log n

2n

− lim
n

β̂2
1

2σ̂2/s2X

Since β̂1/(σ̂/sX)→ β1/(σ/sX), and n−1 log n→ 0,

lim
n→∞

1

n
logPn ≤ − β2

1

2σ2/s2X
(55)

I’ve only used the upper bound on 1−Φ(x) from Eq. 48; if we use the lower
bound from that equation, we get (Exercise 5)

lim
n→∞

1

n
logPn ≥ −

β2
1

2σ2/s2X
(56)

Putting the upper and lower limits together,

lim
n→∞

1

n
logPn = − β2

1

2σ2/s2X
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Turn the limit around: at least for large n,

Pn ≈ e
−n β21

2σ2/s2
X (57)

Thus, any β1 6= 0 will (eventually) give exponentially small p-values. This is
why, as a saying among statisticians have it, “the p-value is a measure of sample
size”: any non-zero coefficient will become arbitrarily statistically significant
with enough data. This is just another way of saying that with enough data,
we can (and will) detect even arbitrarily small coefficients, which is what we
want. The flip-side, however, is that it’s just senseless to say that one coefficient
is important because it has a really small p-value and another is unimportant
because it’s got a big p-value. As we can see from Eq. 57, the p-value runs
together the magnitude of the coefficient (|β1|), the sample size (n), the noise
around the regression line (σ2), and how spread out the data is along the x axis
(s2X), the last of these because they control how precisely we can estimate β1.
Saying “this coefficient must be really important, because we can measure it
really precisely” is not smart.

7 Confidence Sets and p-Values in R

When we estimate a model with lm, R makes it easy for us to extract the
confidence intervals of the coefficients:

confint(object, level=0.95)

Here object is the name of the fitted model object, and level is the con-
fidence level; if you want 95% confidence, you can omit that argument. For
instance:

library(gamair); data(chicago)

death.temp.lm <- lm(death ~ tmpd, data=chicago)

confint(death.temp.lm)

## 2.5 % 97.5 %

## (Intercept) 128.8783687 131.035734

## tmpd -0.3096816 -0.269607

confint(death.temp.lm, level=0.90)

## 5 % 95 %

## (Intercept) 129.0518426 130.8622598

## tmpd -0.3064592 -0.2728294

If you want p-values for the coefficients18, those are conveniently computed
as part of the summary function:

18And, really, why do you?
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coefficients(summary(death.temp.lm))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 129.9570512 0.55022802 236.18763 0.00000e+00

## tmpd -0.2896443 0.01022089 -28.33845 3.23449e-164

Notice how this actually gives us an array with four columns: the point
estimate, the standard error, the t statistic, and finally the p-value. Each row
corresponds to a different coefficient of the model. If we want, say, the p-value
of the intercept, that’s

coefficients(summary(death.temp.lm))[1,4]

## [1] 0

The summary function will also print out a lot of information about the
model:

summary(death.temp.lm)

##

## Call:

## lm(formula = death ~ tmpd, data = chicago)

##

## Residuals:

## Min 1Q Median 3Q Max

## -42.275 -9.018 -0.754 8.187 305.952

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 129.95705 0.55023 236.19 <2e-16 ***

## tmpd -0.28964 0.01022 -28.34 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.22 on 5112 degrees of freedom

## Multiple R-squared: 0.1358,Adjusted R-squared: 0.1356

## F-statistic: 803.1 on 1 and 5112 DF, p-value: < 2.2e-16

As my use of coefficients(summary(death.temp.lm)) above suggests,
the summary function actually returns a complex object, which can be stored
for later access, and printed. Controlling how it gets printed is done through
the print function:

print(summary(death.temp.lm), signif.stars=FALSE, digits=3)

##

## Call:

## lm(formula = death ~ tmpd, data = chicago)

18:19 Friday 25th September, 2015



27 7.1 Coverage of the Confidence Intervals: A Demo

##

## Residuals:

## Min 1Q Median 3Q Max

## -42.27 -9.02 -0.75 8.19 305.95

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 129.9571 0.5502 236.2 <2e-16

## tmpd -0.2896 0.0102 -28.3 <2e-16

##

## Residual standard error: 14.2 on 5112 degrees of freedom

## Multiple R-squared: 0.136,Adjusted R-squared: 0.136

## F-statistic: 803 on 1 and 5112 DF, p-value: <2e-16

Here I am indulging in two of my pet peeves. It’s been conventional (at least
since the 1980s) to decorate this sort of regression output with stars beside the
coefficients which are significant at various traditional levels. Since (as we’ve
just seen at tedious length) statistical significance has almost nothing to do
with real importance, this just clutters the print-out to no advantage19. Also,
summary has a bad habit of using far more significant20 digits than is justified
by the precision of the estimates; I’ve reined that in.

7.1 Coverage of the Confidence Intervals: A Demo

Here is a little computational demonstration of how the confidence interval for
a parameter is a random parameter, and how it covers the true parameter value
with the probability we want. I’ll repeat many simulations of the model from
Figure 2, calculate the confidence interval on each simulation, and plot those. I’ll
also keep track of how often, in the first m simulations, the confidence interval
covers the truth; this should converge to 1− α as m grows.

19In fact, I strongly recommend running options(show.signif.stars=FALSE) at the begin-
ning of your R script, to turn off the stars forever.

20A different sense of “significant”!
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# Run 1000 simulations and get the confidence interval from each

CIs <- replicate(1000, confint(lm(y~x,data=sim.gnslrm(x=x,5,-2,0.1,FALSE)))[2,])

# Plot the first 100 confidence intervals; start with the lower limits

plot(1:100, CIs[1,1:100], ylim=c(min(CIs),max(CIs)),

xlab="Simulation number", ylab="Confidence limits for slope")

# Now the lower limits

points(1:100, CIs[2,1:100])

# Draw line segments connecting them

segments(x0=1:100, x1=1:100, y0=CIs[1,1:100], y1=CIs[2,1:100], lty="dashed")

# Horizontal line at the true coefficient value

abline(h=-2, col="grey")
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# For each simulation, check whether the interval covered the truth

covered <- (CIs[1,] <= -2) & (CIs[2,] >= -2)

# Calculate the cumulative proportion of simulations where the interval

# contained the truth, plot vs. number of simulations.

plot(1:length(covered), cumsum(covered)/(1:length(covered)),

xlab="Number of simulations",

ylab="Sample coverage proportion", ylim=c(0,1))

abline(h=0.95, col="grey")
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8 Further Reading

There is a lot of literature on significance testing and p-values. They are often
quite badly abused, leading to a harsh reaction against them, which in some
cases goes as badly wrong as the abuses being complained of21. I find the
work of D. Mayo and collaborators particularly useful here (Mayo, 1996; Mayo
and Cox, 2006; Mayo and Spanos, 2006). You may also want to read http:

//bactra.org/weblog/1111.html, particularly if you find §6 interesting, or
confusing.

The correspondence between confidence sets and hypothesis tests goes back
to Neyman (1937), which was the first formal, conscious introduction of confi-
dence sets. (As usual, there are precursors.) That every confidence set comes
from inverting a hypothesis test is a classical result in statistical theory, which
can be found in, e.g., Casella and Berger (2002). (See also Exercises 2 and 3
below.) Some confusion on this point seems to arise from people not realizing

that “does β̂1 fall inside the sampling interval for β∗1?” is a test of the hypothesis
that β1 = β∗1 .

In later lectures, we will look at how to get confidence sets for multiple
parameters at once (when we do multiple linear regression), and how to get
confidence sets by simulation, without assuming Gaussian noise (when we in-
troduce the bootstrap).

Exercises

To think through or to practice on, not to hand in.

1. Confidence interval for σ2: Start with the observation that nσ̂2/σ2 ∼
χ2
n−2.

(a) Find a formula for the 1−α sampling interval for σ̂2, in terms of the
CDF of the χ2

n−2 distribution, α, n and σ2. (Some of these might
not appear in your answer.) Is the width of your sampling interval
the same for all σ2, the way the width of the sampling interval for
β̂1 doesn’t change with β1?

(b) Fix α = 0.05, n = 40, and plot the sampling intervals against σ2.

(c) Find a formula for the 1 − α confidence interval for σ2, in terms of
σ̂2, the CDF of the χ2

n−2 distribution, α and n.

2. Suppose we start a way of testing the hypothesis β = β∗ which can be ap-
plied to any β∗, and which has size (false alarm / type I error) probability
α for β∗. Show that the set of β retained by their tests is a confidence
set, with confidence level 1 − α. What happens if the size is ≤ α for all
β∗ (rather than exactly α)?

21Look, for instance, at the exchange between McCloskey (2002); McCloskey and Ziliak
(1996) and Hoover and Siegler (2008).
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3. Suppose we start from a way of creating confidence sets which we know
has confidence level 1 − α. We test the hypothesis β = β∗ by rejecting
when β∗ is outside the confidence set, and retaining when β∗ is inside the
confidence set. Show that the size of this test is α. What happens if the
initial confidence level is ≥ 1− α, rather exactly 1− α?

4. Prove that the p-value P is uniformly distributed under the null hypothe-
sis. You may, throughout, assume that the test statistic T has a continuous
distribution.

(a) Show that if Q ∼ Unif(0, 1), then P = 1−Q has the same distribu-
tion.

(b) Let X be a continuous random variable with CDF F . Show that
F (X) ∼ Unif(0, 1). Hint: the CDF of the uniform distribution
FUnif(0,1)(x) = x.

(c) Show that P , as defined, is 1− F|T |(|Tobs|).
(d) Using the previous parts, show that P ∼ Unif(0, 1).

5. Use Eq. 48 to show Eq. 56, following the derivation of Eq. 55.
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