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Throughout, we’ll assume that the Gaussian-noise multiple linear regression

model
Y = β0 + β1X1 + . . .+ βpXp + ε (1)

with ε ∼ N(0, σ2) independent of the Xis and independent across observations,
is completely correct. We will also use the least squares or maximum likelihood
estimates of the slopes,

β̂ = (xTx)−1xTy (2)

Under these assumptions, the estimator has a multivariate Gaussian distribu-
tion,

β̂ ∼MVN(β, σ2(xTx)−1) (3)
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2

The maximum likelihood estimate of σ2, σ̂2, is by

σ̂2 =
1

n
(y − xβ̂)T (y − xβ̂) (4)

This is slightly negatively biased, E
[
σ̂2
]

= n−p−1
n σ2, and has the sampling

distribution
nσ̂2

σ2
∼ χ2

n−p−1 (5)

σ̂2 n
n−p−1 is an unbiased estimator of σ2.

1 z− and t− Tests for Single Coefficients

Let’s write the true standard error of the estimator β̂i as se
[
β̂i

]
. From the

general theory about the variance of β̂,

se
[
β̂i

]
=
√
σ2(xTx)−1

i+1,i+1 (6)

(Why i+ 1?) Further, from the Gaussian distribution of β̂,

β̂i − βi
se
[
β̂i

] ∼ N(0, 1) (7)

If we know σ2, so that we can compute se
[
β̂i

]
, we can use this to either test

hypotheses about the exact value of βi, or to form confidence intervals. Specif-
ically, a 1− α CI would be

β̂i ± z(α/2)se
[
β̂i

]
(8)

with zp being the pth quantile of the standard Gaussian distribution.
If we use instead the unbiased estimate of σ2, σ̂2 n

n−p−1 , to obtain an estimate

ŝe
[
β̂i

]
, we find rather

β̂i − βi
ŝe
[
β̂i

] ∼ tn−p−1 (9)

The reasoning for this is exactly parallel to why we got tn−2 distributions for
simple linear regression, so I won’t rehearse it here. It follows that

β̂i ± tn−p−1(α/2)ŝe
[
β̂i

]
(10)

is a 1−α confidence interval for βi. This is implemented in the confint function,
when applied to the output of lm.

As n→∞, this becomes

β̂i ± z(α/2)σ̂
√

(xTx)−1
i+1,i+1 (11)

which is often a quite practical alternative to the t-based interval.
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3 1.1 What, Exactly, Is summary Testing?

1.1 What, Exactly, Is summary Testing?

When you run summary on the output of lm, part of what it delivers is a table
containing estimated coefficients and standard errors, along with a t-statistic
and a p-value for each one. It is important to be very clear about the hypothesis
being tested here. There is in fact a different null hypothesis for each row of
the table. The null hypothesis for βi is that

Y = β0 + β1X1 + . . . βi−1Xi− + 0Xi + βi+1Xi + . . .+ βpXp + ε (12)

with ε being mean-zero, constant-variance independent Gaussian noise. The
alternative hypothesis is that

Y = β0 + β1X1 + . . . βi−1Xi− + βiXi + βi+1Xi + . . .+ βpXp + ε (13)

with βi 6= 0, and the same assumptions about ε. This matters because whether
the null hypothesis is true or not depends on what other variables are included
in the model. The optimal coefficient on Xi might be zero with one set of
covariates and non-zero with another. The t test is, by its nature, incapable of
saying whether Xi should be included in the model or not.

(This is in addition to the usual cautions about whether testing βi = 0
is really informative, about not mistaking “detectably different from zero” for
“important”, and about how any βi 6= 0 will eventually have a p-value arbitrarily
close to 0.)

1.2 No, Really, Whether Coefficients Are Zero Changes
with the Covariates

Here is the simplest situation I know of which illustrates that the true (optimal
or population-level) coefficient of a given predictor variable changes with the
other variables included in the model. Suppose that the true model is

Y = β0 + β1X1 + β2X2 + ε (14)

with all the usual assumptions being met. Without knowing this, we instead
estimate the model

Y = γ0 + γ1X1 + η (15)

We know, from our study of the simple linear model, that the (optimal or
population) value of γ1 is

γ1 =
Cov [X1, Y ]

Var [X1]
(16)
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Substituting in for Y ,

γ1 =
Cov [X1, β0 + β1X1 + β2X2 + ε]

Var [X1]
(17)

=
Cov [X1, β0] + Cov [X1, β1X1] + Cov [X1, β2X2] + Cov [X1, ε]

Var [X1]
(18)

=
0 + β1Cov [X1, X1] + β2Cov [X1, X2] + 0

Var [X1]
(19)

= β1 + β2
Cov [X1, X2]

Var [X1]
(20)

Thus, even if β1 = 0, we can easily have γ1 6= 0, and vice versa. (See also
Exercise 1.)

2 Variance Ratio (F ) Tests for Multiple Coeffi-
cients Being Zero

If we want to test whether a group of multiple coefficients are all simultaneously
zero, the traditional approach is a variance ratio or F test. To lay everything
out, the null hypothesis is that

Y = β0 + β1X1 + . . .+ βqXq + 0Xq+1 + . . .+ 0Xp + ε (21)

while the alternative is

Y = β0 + β1X1 + . . .+ βqXq + βq+1Xq+1 + . . .+ βpXp + ε (22)

with at least one of the coefficients βq+1, . . . βp 6= 0. The null hypothesis, then,
is that in a linear model which includes all the predictors X1, . . . Xp, the optimal
coefficients for the last p− q variables are all zero.

For both models, we get an estimate of σ2, say σ̂2
null for the null model (with

coefficients fixed at zero) and σ̂2
full for the full model. Because the null model

is a special case of the full model, and we estimate parameters in each case by
minimizing the MSE, σ̂2

null ≥ σ̂2
full.

Following reasoning exactly parallel to the way we got the F test for the
simple linear regression model,

nσ̂2
full

σ2
∼ χ2

n−p−1 (23)

while, under the null hypothesis,

n(σ̂2
null − σ̂2

full)

σ2
∼ χ2

p−q (24)

and so (again under the null hypothesis)

(σ̂2
null − σ̂2

full)/(p− q)
σ̂2
full/(n− p− 1)

∼ Fp−q,n−p−1 (25)
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5 2.1 All Slopes at Once

We therefore reject the null hypothesis when the test statistic

F =
(σ̂2
null − σ̂2

full)/(p− q)
σ̂2
full/(n− p− 1)

(26)

is too large compared to the Fp−q,n−p−1 distribution. This is why this is called
an F test for this set of regression coefficients. If we’re not testing all the
coefficients at once, this is a partial F test.

The proper interpretation of this test is “Does letting the slopes forXq+1, . . . Xp

be non-zero reduce the MSE more than we would expect just by noise?” As n
grows, increasingly small improvements will become clearly detectable as not-
noise, so increasingly small but non-zero sets of coefficients will be detected as
significant by the F test.

Cautions The variance ratio test does not test any of the following:

• Whether some variable not among X1, . . . Xp ought to be included in the
model.

• Whether the relationship between Y and the Xi is linear.

• Whether the Gaussian noise assumption holds.

• Whether any of the other modeling assumptions hold.

2.1 All Slopes at Once

An obvious special case is the hypothesis that all the coefficients are zero. That
is, the null hypothesis is

Y = β0 + 0X1 + . . .+ 0Xp + ε (27)

with the alternative being the full model

Y = β0 + β1X1 + . . .+ βpXp + ε (28)

The estimate of σ2 under the null is the sample variance of Y , s2Y , so the test
statistic becomes

(s2Y − σ̂2
full)/p

σ̂2
full/(n− p− 1)

(29)

whose distribution under the null is Fp,n−p−1.
This full F test is often called a test of the significance of the whole regres-

sion. This is true, but has to be understood in a very specific sense. We are
testing whether, if Y is linearly regressed on X1, . . . Xp and only on those vari-
ables, the reduction in the MSE from actually estimating slopes over just using
a flat regression surface is bigger than we’d expect from pure noise. Once again,
the test has no power to detect violations of any of the modeling assumptions.
(See the discussion of the F test for simple linear regression in Lecture 10.)
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6 2.2 Variance Ratio Tests in R

2.2 Variance Ratio Tests in R

This is most easily done through the anova function. We fit the null model and
the full model, both with lm, and then pass them to the anova function:

mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")

mob.null <- lm(Mobility ~ Commute, data=mobility)

mob.full <- lm(Mobility ~ Commute + Latitude + Longitude, data=mobility)

anova(mob.null, mob.full)

## Analysis of Variance Table

##

## Model 1: Mobility ~ Commute

## Model 2: Mobility ~ Commute + Latitude + Longitude

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 727 1.3143

## 2 725 1.2952 2 0.019111 5.3491 0.004942

The second row tells us that the full model has two more parameters than
the null, that n(σ̂2

null − σ̂2
full) = 0.0191114, and then what the variance ratio or

F statistic and the corresponding p-value are. Here, we learn that the decrease
in the root-MSE which comes from adding latitude and longitude as predictors,
while very small (0.51 percentage points) is large enough that it is unlikely to
have arisen by capitalizing on noise1.

2.3 Variable Deletion via F Tests

It’s not uncommon to use F tests for variable deletion: pick your least favorite
set of predictors, test whether all of their βs are zero, and, if so, delete them
from the model (and re-estimate). Presuming that we can trust the modeling
assumptions, there are still a few points about this procedure which are slightly
dubious, or at least call for much more caution than is often exercised.

Statistical power The test controls the probability of rejecting when the null
is true — it guarantees that if βq = 0, we have a low probability of rejecting
that null hypothesis. For deletion to be reliable, however, we’d want a low prob-
ability of missing variables with non-zero coefficients, i.e., a low probability of
retaining the null hypothesis when it’s wrong, or high power to detect depar-
tures from the null. Power cannot be read off from the p-value, and grows with
the magnitude of the departure from the null. One way to get at this is, as
usual, to complement the hypothesis test with a confidence set for the coeffi-
cients in question. Ignoring variables whose coefficients are precisely estimated
to be close to zero is much more sensible than ignoring variables because their
coefficients can only be estimated very loosely.

1Once again, this presumes that the only two possibilities in the world are a completely-
correct linear-Gaussian model with just commuting time as a predictor, and a completely-
correct linear-Gaussian model with commuting time, latitude and longitude as predictors.
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7 2.4 Likelihood Ratio Tests

Non-transivitiy The variance ratio test checks whether the MSE of the
smaller model is significantly or detectably worse than the MSE of the full
model. One drawback to this is that a series of insignificant, undetectably-
small steps can add up to a significant, detectably-big change. In mathematical
jargon: “is equal to” is a transitive relation, so that if A = B and B = C,
A = C. But “insignificantly different from” is not a transitive relation, so if
A ≈ B and B ≈ C, we can’t conclude A ≈ C.

Concretely: a group of variables might show up as significant in a partial F
test, even though none of them was individually significant on a t test in the full
model2. Also, if we delete variables in stages, we can have a situation where at
each stage the increase in MSE is insignificant, but the difference between the
full model and the final model is highly significant.

2.4 Likelihood Ratio Tests

As with the F test for simple linear models, there is an alternative based on the
likelihood ratio. As with the simple model, the log-likelihood of the model, at
the maximum likelihood estimate, is

− n

2
(1 + log 2π)− n

2
log σ̂2 (30)

Hence the difference in log-likelihoods between the full model, with all p slopes
estimated, and the null model, with only q slopes estimated and the other p− q
fixed, is

Λ = −n
2

log σ̂2
full +

n

2
log σ̂2

null =
n

2
log

σ̂2
null

σ̂2
full

(31)

This is the log of the ratio of likelihoods (not the ratio of log likelihoods!) Under
the null hypothesis3,

2Λ ∼ χ2
p−q (32)

The same cautions apply to the likelihood ratio test as to the F test: it does
not check modeling assumptions.

One advantage of likelihood ratio tests is that exactly the same procedure
can be used to test the hypothesis that βq = 0 and to test βq = β∗

q , for any
other particular vector of parameters. For that matter, it can be used to test
cβ = r, where c is any non-random q× (p+ 1) matrix, and r is any non-random
q × 1 vector. Thus, for example, it can be used to test the hypothesis that two
slopes are equal, or that all slopes are equal, etc.

2This is yet another reason not to pay so much attention to the p-values reported by
summary.

3Strictly speaking, this only becomes exact as n → ∞. This issue is that deriving the χ2

distribution for Λ presumes every parameter’s maximum likelihood estimate has a Gaussian
distribution around its true value (see Lecture 10), and while this is true for the β̂is, it is only
approximately true for σ̂2. See Exercise 4.
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8 2.4 Likelihood Ratio Tests

Likelihood Ratio vs. F Tests For linear-Gaussian models, both the likeli-
hood ratio and the F statistic are functions of the ratio σ̂2

null/σ̂
2
full (Exercise

2). For fixed p and q, as n → ∞, the two tests deliver the same p-values when
σ̂2
null/σ̂

2
full is the same. At finite n, they are somewhat different, with the F

test usually giving a somewhat higher p value than the χ2 test, particularly if
p is close to n. Which test is more accurate is another question. The likeli-
hood ratio test can actually work for large n when the model is mis-specified, in
the sense of telling us which wrong model is closer to the truth (Vuong, 1989),
while the F test’s refinements over the χ2 very much depend on all the modeling
assumptions being right.
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Figure 1: Difference in p-values obtained from using a likelihood ratio test (black)
and an F test (blue) on the same data, with p = 10, q = 9, and n either 15 (solid)
or 60 (dotted). In general, the difference between the two tests goes to zero as n − p
grows. (See source file for code.)
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3 Confidence Sets for Multiple Coefficients

Suppose we want to do inference on two coefficients, say βi and βj , at once.
That means we need to come up with a two-dimensional confidence region C(α),
where we can say that P ((βi, βj) ∈ C(α)) = 1−α. This would involve the same
sort of trilemma as confidence intervals for single coefficients. That is, one of
three things must be true:

1. Both βi and βj are in C(α); or

2. We got data which was very (≤ α) improbable under all possible values
of the parameters; or

3. Our model is wrong.

If we trust our model, then, we can indeed be confident that both βi and βj are
simultaneously in C(α).

Clearly, nothing depends on wanting to do inference on just two coefficients
at once; we could consider any subset of them we like, up to all p+ 1 of them.

With one parameter, intervals are the most natural confidence sets to work
with. With more than one parameter, we have choices to make about the shape
of the confidence set. The two easiest ones to work with are rectangular boxes,
and ellipsoids.

3.1 Confidence Boxes or Rectangles

The natural thing to want to do is to take a confidence interval for each coef-
ficient and put them together into a confidence box or rectangle. For instance,
using the t-distribution CI for βi and βj , the box would be

(β̂i ± tn−p−1(α/2)ŝe
[
β̂i

]
)× (β̂j ± tn−p−1(α/2)ŝe

[
β̂j

]
) (33)

(And similarly for three or more parameters.) This is, however, not quite right as
I’ve written it. The problem is that while each interval covers its true coefficient
with high probability, both intervals simultaneously cover the pair of parameters
is a different story. Let me abbreviate the interval for βi as Ci(α), likewise the
interval for βj is Cj(α). We have

P (βi ∈ Ci(α)) = 1− α , P (βj ∈ Cj(α)) = 1− α (34)

but from this it does not follow that

P (βi ∈ Ci(α), βj ∈ Cj(α)) = 1− α (35)

To see this, let’s consider the complementary event: it’s

βi 6∈ Ci(α) ∨ βj 6∈ Cj(α) (36)
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11 3.1 Confidence Boxes or Rectangles

writing ∨ for logical-or4 By basic probability,

P (βi 6∈ Ci(α) ∨ βj 6∈ Cj(α)) = P (βi 6∈ Ci(α))+P (βj 6∈ Cj(α))−P (βi 6∈ Ci(α), βj 6∈ Cj(α))
(37)

Since Ci and Cj are 1− α-confidence sets,

P (βi 6∈ Ci(α) ∨ βj 6∈ Cj(α)) = 2α− P (βi 6∈ Ci(α), βj 6∈ Cj(α)) ≤ 2α (38)

So Ci(α) × Cj(α) isn’t itself a 1 − α confidence set; its real confidence level
could be as little as 1− 2α. If we had been looking at q coefficients at once, the
confidence level might have been as low as 1− qα.

This suggests, however, a very simple, if sometimes over-cautious, way of
building a confidence box. If we want the final box to have a 1 − α confi-
dence level, and we’re dealing with q coefficients at once, we calculate 1 − α/q
confidence levels for each coefficient, say Ci(α/q), and then set

C(α) = C1(α/q)× C2(α/q)× . . .× Cq(α/q) (39)

By our reasoning above, this final C(α) will cover all q parameters at once with
probability at least 1− α.

This trick of building a 1− α confidence box for q parameters at once from
q 1 − α/q confidence intervals is completely generic; it doesn’t just work on
regression coefficients, but for any parameters of any statistical model at all.
For more on it, see §4 below.

4That is, A ∨B means in ordinary English “A is true or B is true or both are true”.
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12 3.1 Confidence Boxes or Rectangles
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Figure 2: Grey lines: 95% confidence intervals for two coefficients, based on inverting
t tests, and so centered at the point estimate (dot). Black box: a 95% confidence
rectangle for both coefficients simultaneously. Notice that the grey lines do not touch
the sides of the rectangle; the latter correspond to 97.5% CIs for each coefficient. If we
did draw the rectangle corresponding to the grey lines, its actual confidence level could
be as low as 90%. (See source file for code.)
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13 3.2 Confidence Balls or Ellipsoids

3.2 Confidence Balls or Ellipsoids

An alternative to confidence boxes is to try to make confidence balls. To see
how this could work, suppose first that β̂i and β̂j were uncorrelated. Since

β̂i − βi
se
[
β̂i

] ∼ N(0, 1) (40)

(and likewise for βj), we would have5 β̂i − βi
se
[
β̂i

]
2

+

 β̂j − βj
se
[
β̂j

]
2

∼ χ2
2 (41)

Therefore, a simultaneous 1−α confidence region for (βi, βj) would be the region
where  β̂i − βi

se
[
β̂i

]
2

+

 β̂j − βj
se
[
β̂j

]
2

≤ χ2
2(1− α) (42)

A little geometry shows that this region is an ellipse, its axes parallel to the coor-

dinate axis with the length from end to end along one axis being 2se
[
β̂i

]
χ2
2(1−

α), and its length along the other axis being 2se
[
β̂j

]
χ2
2(1− α).

If we had q different uncorrelated coefficients, the confidence region would
be the set (β1, β2, . . . βq) where

q∑
i=1

 β̂i − βi
se
[
β̂i

]
2

≤ χ2
q(1− α) (43)

When q > 2, we call this region an “ellipsoid” rather than an “ellipse”, but it’s
the same idea.

Usually, of course, the different coefficient estimates are correlated with each
other, so we need to do something a bit different. If we write βq for the vector of
coefficients we’re interested in, and Σq for its variance-covariance matrix, then
the confidence region is the set of all βq where

(β̂q − βq)TΣ−1
q (β̂q − βq) ≤ χ2

q(1− α) (44)

This, too, is an ellipsoid, only now the axes point in the directions given by the
eigenvectors of Σq, and the length along each axis is proportional to the square
root of the corresponding eigenvalue. (See §3.2.2 for a derivation.)

Since Σq is a q× q sub-matrix of σ2(xTx)−1, we can’t actually use this. We
can, however, use the appropriate sub-matrix of σ̂2(xTx)−1 as an approxima-
tion, which becomes exact as n→∞. Similarly, if we use the unbiased estimate
of σ2, we replace χ2

q(1− α) with Fq,n−p−1(1− α).

5Because when Z1, . . . Zd are independent N(0, 1) variables,
∑

i Z
2
i ∼ χ2

d.
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14 3.2 Confidence Balls or Ellipsoids

3.2.1 Confidence Ellipsoids in R

The package ellipse (Murdoch and Chow, 2013) contains functions for plotting
2D confidence ellipses. The main function is also called ellipse, which happens
to have a specialized method for lm models. The usage is

my.model <- lm(y ~ x1+x2+x3)

plot(ellipse(my.model, which=c(1,2), level=0.95))

Here which is the vector of coefficient indices (it can only be of length 2)
and level is the confidence level. Notice that what ellipse actually returns
is a two-column array of coordinates, which can be plotted, or passed along to
other graphics functions (like points or lines). See Figure 3.

Three-dimensional confidence ellipsoids can be made with the rgl library
(Adler et al., 2014). While confidence ellipsoids exist in any number of dimen-
sions, they can’t really be visualized when q > 3.
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library(ellipse)

par(mfrow=c(3,2))

plot(ellipse(mob.full, which=c(1,2), level=1-0.05/6), type="l")

plot(ellipse(mob.full, which=c(1,3), level=1-0.05/6), type="l")

plot(ellipse(mob.full, which=c(1,4), level=1-0.05/6), type="l")

plot(ellipse(mob.full, which=c(2,3), level=1-0.05/6), type="l")

plot(ellipse(mob.full, which=c(2,4), level=1-0.05/6), type="l")

plot(ellipse(mob.full, which=c(3,4), level=1-0.05/6), type="l")

Figure 3: Confidence ellipses for every pair of coefficients in the model where eco-
nomic mobility is regressed on the prevalence of short commutes, latitude and longi-
tude. (Remember the intercept is the first coefficient.) Why do I use this odd-looking
confidence level?
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16 3.2 Confidence Balls or Ellipsoids

3.2.2 Where the χ2
q Comes From

To see why this should be so, we need to do some linear algebra, to turn a
Gaussian random vector with correlations and unequal variances into a Gaussian
random vector where the coordinates are all ∼ N(0, 1) and independent of each
other. The starting point is the fact that Σq is a square, symmetric, positive-
definite matrix. Therefore it can be written as follows:

Σq = VUVT (45)

where U is the diagonal matrix of eigenvalues, and V is the matrix whose
columns are the eigenvectors; VT is its transpose, and VTV = I. If we define

Σ
1/2
q = VU1/2, where U1/2 is the diagonal matrix with the square roots of the

eigenvalues, then

Var
[
Σ−1/2
q (β̂q − βq)

]
= Σ−1/2

q Var
[
β̂q − βq)

]
(Σ−1/2

q )T (46)

= U−1/2V−1VUVTVU−1/2 (47)

= U−1/2UU−1/2 (48)

= I (49)

where the last step works because U and U−1/2 are both diagonal matrices.
In other words, while the coordinates of β̂q − βq have unequal variances and

are correlated with each other, Σ
−1/2
q (β̂q − βq) is a random vector where each

coordinate has variance 1 and is uncorrelated with the others. Since the initial
vector was Gaussian, this too is Gaussian, hence

Σ−1/2
q (β̂q − βq) ∼MVN(0, I) (50)

Therefore (
Σ−1/2
q (β̂q − βq)

)T
Σ−1/2
q (β̂q − βq) ∼ χ2

q (51)

since it’s a sum of q squared, independent N(0, 1) variables.
On the other hand,(

Σ−1/2
q (β̂q − βq)

)T (
Σ−1/2
q (β̂q − βq)

)
(52)

= (β̂q − βq)T
(
Σ−1/2
q

)T
Σ−1/2
q (β̂q − βq)

= (β̂q − βq)TVU−1/2U−1/2V−1(β̂q − βq) (53)

= (β̂q − βq)TVU−1V−1(β̂q − βq) (54)

= (β̂q − βq)TΣ−1
q (β̂q − βq) (55)

Combining Eqs. 50 and 54,

(β̂q − βq)TΣ−1
q (β̂q − βq) ∼ χ2

q (56)

as was to be shown.
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4 Further Reading

Variance and likelihood ratio tests go back to the period of the 1910s–1930s; see
references in Lecture 10. Further exposition can be found in any textbook on
regression, or general mathematical statistics.

The trick in §3.1, of getting an over-all confidence level of 1−α for q parame-
ters simultaneously, by demanding the higher confidence level of 1−α/q for each
one separately, is one use of an important tool called Bonferroni correction
or Bonferroni adjustment6. For an account of the role of this general idea in
probability theory, see Galambos and Simonelli (1996). Bonferroni correction is
also often used for hypothesis testing: if we test q distinct hypotheses, and we
want to have the probability of making no false rejections be α, we can achieve
that by having each test be of size α/q. Indeed, we could give each test whatever
size we like, so long as the sum of the tests is α.

One sometimes encounters the mis-understanding that Bonferroni correction
requires the test statistics or confidence intervals to be statistically independent
(e.g., Ashby 2011); as you can see from the argument above, this is just wrong.
What is true is that Bonferroni correction is very cautious, and that one can
sometimes come up with less conservative ways of doing multiple inference if
one either uses more detailed information about how the statistics relate to
each other (as in §3.2), or one is willing to tolerate a certain number of false
positives. The latter idea leads to important work on multiple testing and
“false discovery control”, which is outside the scope of this course, but see
Benjamini and Hochberg (1995); Genovese and Wasserman (2004), and, for an
unforgettable demonstration of how ignoring multiple testing issues leads to
nonsense, Bennett et al. (2010).

5 Exercises

To think through or to practice on, not to hand in.

1. In the scenario of §1.2, is it possible for both ε and η to obey the Gaussian
noise assumption? That is, it is possible to have ε ∼ N(0, σ2

ε ), independent
of X1 and X2, and to have η ∼ N(0, σ2

η), independent of X1? Hint:
Suppose X1 and X2 are jointly Gaussian, and, for simplicity, that both
have mean 0.

2. (a) Show that the variance ratio test statistic (Eq. ??) depends on the
data only through the ratio σ̂2

null/σ̂
2
full.

(b) Show that as σ̂2
null → σ̂2

full,

log
σ̂2
null

σ̂2
full

→
σ̂2
null − σ̂2

full

σ̂2
full

(57)

6Computer scientists, and some mathematicians, call it a “union bound” — can you explain
why?
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3. Lecture 8 argued that every confidence set comes from inverting a hy-
pothesis test. What is the hypothesis test corresponding to the confidence
boxes of §3.1? That is, find an explicit form of the test statistic and of
the rejection region.

4. Let Xn ∼ χ2
n−p, with fixed p.

(a) Show that Xn/n approaches a constant a, and find a.

(b) Show that (Xn − a)/
√
n approaches a Gaussian distribution, and

find the expectation and variance. Hint: show that the moment
generating functions converge.

(c) Combine the previous results to write the limiting distribution of
Xn/n as a Gaussian, whose parameters (may) change with n.
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