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When we say that there are no interactions between Xi and Xj , we mean
that

∂E [Y |X = x]

∂dxi

is not a function of xi. Said another way, there are no interactions if and only if

E [Y |X = x] = α+

p∑
i=1

fi(xi)

so that each coordinate of X makes its own separate, additive contribution to Y .
The standard multiple linear regression model of course includes no interactions
between any of the predictor variables.

General considerations of probability theory, mathematical modeling, statis-
tical theory, etc., give us no reason whatsoever to anticipate that interactions
are rare, or that when they exist they are small. You might be so lucky as to
not have any to deal with, but you should not presume you will be lucky.

Diagnosing the presence of interactions See Lecture 15 for some ideas
about how to do this. One trick not mentioned there is to plot the residuals from
an interaction-free model against the product of two predictors, e.g., against
X1X2. This, however, presumes a particular form for the interaction, gone over
in the next section.

1 The Conventional Form of Interactions in Lin-
ear Models

The usual way of including interactions in a linear model is to add a product
term, as, e.g.,

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε (1)

Once we add such a term, we estimate β3 in exactly the same way we’d estimate
any other coefficient.

Interpretation In the model of Eq. 1, it is no longer correct to interpret β1 as
E [Y |X1 = x1 + 1, X2 = x2]−E [Y |X1 = x1, X2 = x2]. That difference is, rather
β1 + β3X2. Similarly, β2 is no longer the expected difference in Y between two
otherwise-identical cases where X2 differs by 1. The fact that we can’t give one
answer to “how much does the response change when we change this variable?”,
that the correct answer to that question always involves the other variable, is
what interaction means.

What we can say is that β1 is the slope with regard to X1 when X2 = 0,
and likewise β2 is how much we expect Y to change for a one-unit change in X2

when X1 = 0. β3 is the rate at which the slope on X1 changes as X2 changes,
and likewise the rate at which the slope on X2 changes with X1 (see Exercise 1
for why it’s both).
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3 1.1 Why Product Interactions?

Diagnostics and inference Diagnostics for a product term goes just like it
would for any other: the residuals should have the same distribution no matter
what the value of XiXj happens to be; all the usual plots can be made using
XiXj as the predictor variable. Inference, too, works exactly the same way.

Terminology The coefficients which go with the linear terms, β1 and β2
above, are often called the “main effects”, while β3 would be an “interaction
effect”. I think this terminology is misleading in at least two ways. First,
by talking about “effects” at all, it carries causal implications which are not
usually warranted by a regression. Second, it implies that the linear terms,
being “main”, are bigger or more important than the interactions, and again
there’s usually no reason to think that. Why we don’t use names like “linear
coefficients” and “product coefficients”, I couldn’t say.

Products without linear terms considered dubious It is very rare to find
models where there is a product term XiXj without both the linear terms Xi

and Xj . If, say, the Xi term was missing, it would mean that Y was completely
insensitive to Xi when Xj = 0, but only then. This is weird, and indeed flies
in the face of one of the best justifications for using product interactions (§1.1).
There’s no intrinsic reason it couldn’t happen, but you should expect models
like that to receive additional scrutiny.

1.1 Why Product Interactions?

Most texts on linear regression do not even attempt to justify using interaction
terms that look like X1X2, as opposed to X1X2

1+|X1X2| , or X1H(X2 − c), etc., etc. H is the
Heaviside
step function,

H(x) =

{
1 x ≥ 0
0 x < 0

.

Here is the best justification I can find.
Suppose that the real regression function E [Y |X = x] = µ(x) is a smooth

function of all the coordinates of x. Because it is smooth, we should be able to
do a Taylor expansion around any particular point, say x∗:

µ(x) ≈ µ(x∗)+

p∑
i=1

(xi − x∗i )
∂µ

∂xi

∣∣∣∣
x=x∗

+
1

2

p∑
i=1

p∑
j=1

(xi − x∗i )(xj − x∗j )
∂2µ

∂xixj

∣∣∣∣
x=x∗

The first term, µ(x∗), is a constant. The next sum will give us linear terms in
all the xi (plus more constants). The double sum after that will give us terms
for each product xixj , plus all the squares x2i , plus more constants. Thus, if
the true regression function is smooth, and we only see a small range of values
for each predictor variable, using product terms is reasonable — provided we
also include quadratic terms for each variable. (See Lecture 16 on polynomial
regression for how to do that.)

Non-product interactions If have a particular sort of non-product interac-
tion term in mind, say X1X2

1+|X1X2| , there is not particular difficulty in estimating
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it; just form a new column of predictors with the appropriate values, and es-
timate a coefficient on it like any other. Interpretation may, however, become
even more tricky, and there is also the issue of deciding on what sort of in-
teraction. In 402, we will see ways of discovering reasonable interaction terms
automatically, by two-dimensional smoothing.

2 Interaction of Categorical and Numerical Vari-
ables

If we multiply the indicator variable for a binary category, say XB , with an
ordinary numerical variable, say X1, we get a different slope on Xi for each
category:

Y = β0 + β1X1 + β1BXBX1 + ε (2)

When XB = 0, the slope on X1 is β1, but when XB = 1, the slope on X1 is
β1+β1B ; the coefficient for the interaction is the difference in slopes between the
two categories. This is just like the way the coefficients on categorical variables
back in Lecture 16 (“adjusted effects”) were differences between the intercepts
for the categories.

In fact, look closely at Eq. 2. It says that the categories share a common
intercept, but their regression lines are not parallel (unless β1B = 0). We could
expand the model by letting each category have its own slope and its own
intercept:

Y = β0 + βBXB + β1X1 + β1BXBX1 + ε

This model, where “everything is interacted with the category”, is very close
to just running two separate regressions, one per category. It does, however,
insist on having a single noise variance σ2 (which separate regressions wouldn’t
accomplish). It also let you form confidence intervals for βB and β1B ; if one or
the other of these is tightly focused around 0, you might consider dropping that
term and re-estimating1. Also, if there were additional predictors in the model
which were not interacted with the category, e.g.,

Y = β0 + βBXB + β1X1 + β1BXBX1 + β2X2 + ε

then this would definitely not be the same as running two separate regressions.
As with linear terms for categorical variables (“adjusted effects”), everything

works much the same for variables with more than two levels: we add one
indicator variable for all but one (reference or baseline) level of the category,
we interact the indicators with the other predictor or predictors of interest, and
the coefficients are differences to the slopes.

1You could get the same effect with two separate regressions, by getting a confidence interval
for the difference in the two estimates of the slope or the two estimates of the intercept, but
the answer would come to the same as what you’d get from the joint regression with full
interactions.
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5 2.1 Interactions of Categorical Variables with Each Other

2.1 Interactions of Categorical Variables with Each Other

Nothing stops the variable you interact a categorical with from being another
categorical. When that happens, you get terms which only apply to individuals
which belong to both categories, e.g., to plumbers in Ohio.

Categorical interactions vs. group or conditional means Suppose we
have two binary categorical variables, with corresponding indicator variables
XB and XC . If we fit a model of the form

Y = β0 + β1XB + β2XC + β3XBXC + ε

then we can make the following identifications:

E [Y |XB = 0, XC = 0] = β0 (3)

E [Y |XB = 1, XC = 0] = β0 + β1 (4)

E [Y |XB = 0, XC = 1] = β0 + β2 (5)

E [Y |XB = 1, XC = 1] = β0 + β1 + β2 + β3 (6)

Conversely, these give us four equations in four unknowns, so if we know the
group or conditional means on the left-hand sides, we could solve these equations
for the βs (Exercise 2).

Notice that if our only predictor variables were these two categorical vari-
ables, we’d have one parameter for each distinct value of X — the model is
saturated — and we’d have very little ability to tell that the model was wrong,
regardless of how big n might be. One way we might check it would be to look
at the distribution of residuals for each distinct group — by assumption they
should all be the same. Of course if we have additional predictor variables, we
can check the residuals against them.

3 Higher-Order Interactions

Nothing stops us from considering interactions among three or more variables,
rather than just two. Again, the conventional form for this is a product,
XiXjXk. Again, the best justification for this I’ve ever seen is a higher-order
Taylor expansion, which suggests using terms like X2

iXj and X3
i as well. Again,

there is nothing special about diagnostics or inference for higher-order interac-
tion terms. Trying to describe their interpretation in words gets extra tricky,
however.

4 Product Interactions in R

The lm function is set up to comprehend multiplicative or product interactions
in model formulas. Pure product interactions are denoted by :, so the formula
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lm(y ~ x1:x2)

corresponds to the model Y = β0 + βX1X2 + ε. (Intercepts are included by
default in R.) Since it is relatively rare to include just a product term without
linear terms, it’s more common to use the symbol *, which expands out to both
sets of terms. That is,

lm(y ~ x1*x2)

is equivalent to

lm(y ~ x1+x2+x1:x2)

and both estimate the model Y = β0 + β1X1 + β2X2 + β3X1X2 + ε. This
special sense of * in formulas over-rides its ordinary sense of multiplication; if you
wanted to specify a regression on, say 1000X2, you’d have to write I(1000*x2)

rather than 1000*x2. Also notice that R thinks, not unreasonably, that x1:x1

is just the same as x1; if you want higher powers of a variable, use I(x1^2) or
poly(x1,2).

The : will apply to combinations of variables. Thus

(x1+x2):(x3+x4)

is equivalent to

x1:x3 + x1:x4 + x2:x3 + x2:x4

Similarly for *. This

(x1+x2)*(x3+x4)

expands out to this:

x1 + x2 + x3 + x4 + x1:x3 + x1:x4 + x2:x3 + x2:x4

The reason you can’t just write x1^2 in your model formula is that the
power operator also has a special meaning in formulas, of repeatedly *-ing its
argument with itself. That is, this

(x1+x2+x3)^2

is equivalent to

(x1+x2+x3)*(x1+x2+x3)

which in turn is equivalent to
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7 4.1 Economic Mobility vs. Commuting, Again

x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3

(Remember that x1:x1 is just x1.)
I find these operators in formulas most useful when I want to interact lots

of variables with a category:

lm(y ~ (x1+x2+x3+x5)*xcat + x4)

is a lot more compact than writing everything out, as

lm(y ~ xcat + x1 + x2 + x3 + x5 + x1:xcat + x2:xcat + x3:xcat + x5:xcat + x4)

and it’s also something I’m a lot less likely to get wrong. Even writing out
the whole formula term by term would be a lot less work, and lead to many
fewer errors, than creating all the interacted columns by hand.

poly and interactions If you want to use poly to do polynomial regression,
as in Lecture 16, and we want interactions, we can do it:

lm(y ~ poly(x1, x2, degree=2))

This creates linear terms for both variables (which it gives names ending
1.0 and 0.1), quadratic terms for both variables (names ending in 2.0 and
0.2), and their product term (whose name ends in 1.1). We have to explicitly
name the degree argument; otherwise, poly doesn’t know when we’ve stopped
giving it columns we want to interact. If we set degree higher than 2, we’ll get
interactions between powers of the variables, and if we gave it k > 2 variables,
we’d get all possible 2, 3, . . . k-way interactions.

4.1 Economic Mobility vs. Commuting, Again

Let’s continue with the data from the first DAP.

mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")

As in Lecture 16, on categorical variables, we’ll introduce a new binary
category, indicating whether each state was or was not a part of the Confederacy
in the Civil War. (See that lecture for detailed comments.)

# The states of the Confederacy

Confederacy <- c("AR", "AL", "FL", "GA", "LA", "MS", "NC", "SC", "TN", "TX", "VA")

mobility$Dixie <- mobility$State %in% Confederacy

In that lecture, we allowed this new indicator variable to change the inter-
cept; you will recall that that term was negative and highly significant. Here,
we’ll let being in the South affect the slope on Commute as well, that is, we
introduce an interaction between Commute and Dixie:
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mob.dixie <- lm(Mobility ~ Commute*Dixie, data=mobility)

signif(coefficients(summary(mob.dixie)),3)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.01880 0.00683 2.7600 5.95e-03

## Commute 0.19500 0.01340 14.5000 2.93e-42

## DixieTRUE -0.02120 0.01190 -1.7700 7.64e-02

## Commute:DixieTRUE -0.00131 0.02830 -0.0461 9.63e-01

(See also Exercise 3.)
The coefficient for the interaction is negative, suggesting that increasing the

fraction of workers with short commutes predicts a smaller difference in rates of
mobility in the South than it does in the rest of the country. This coefficient is
not significantly different from zero, but, more importantly, we can be confident
it is small, compared to the base-line value of the slope on Commute:

signif(confint(mob.dixie),3)

## 2.5 % 97.5 %

## (Intercept) 0.00543 0.03220

## Commute 0.16900 0.22200

## DixieTRUE -0.04470 0.00225

## Commute:DixieTRUE -0.05680 0.05420

Thus, even if the South does have a different slope than the rest of the
country, it is not a very different slope.

The difference in the intercept, however, is more substantial. It, too, is not
significant at the 5% level, but that is because (as we see from the confidence
interval) it might be quite large and negative (−2 percentage points, when the
mean is about 10% and the largest value is 47%), or perhaps just barely positive
— it’s not so precisely measured, but it’s either lowering the expected rate of
mobility or adding to it trivially.

Of course, we should really do all our diagnostics here before paying much
attention to these inferential statistics, but I offer this by way of illustration of
the functions. As a further illustraiton, see Exercise 4.

5 Exercises

To think through or to practice on, not to hand in.

1. Consider an apparently different, and perhaps more-interpretable, model
than Eq. 1, namely

Y = α0 + (α1 + α2X2)X1 + (α3 + α4X1)X2 + ε

Show that this can always be re-written in the same form as Eq. 1, and
express the latter’s β0, β1, β2 in terms of the αs of this model. Can models
of the form of Eq. 1 always be re-written in this form? If so, express the
α parameters in terms of the βs; if not, give a counter-example.
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2. Solve Eqs. 3–6 for the βs.

3. Check that we get the same set of terms, with the same coefficients, as in
§4.1, if we fit our model with

lm(Mobility ~ Commute+Dixie+Commute:Dixie, data=mobility)

Why does this happen?

4. Using the mobility data, regress Mobility on

(a) Latitude and longitude (only);

(b) Latitude, longitude, and their product (only);

(c) Latitude, longitude, their product, and their squares (only).

For each model, make maps2 of the fitted values and the residuals. De-
scribe the resulting geographic patterns, and compare them (qualitatively)
to a map of the actual values of Mobility. Can you explain why the maps
of fitted values look like they do, based on the terms included in the model?

2See the hint on the DAP 1 assignment for help with making such maps.
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