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An outlier is a data point which is very far, somehow, from the rest of
the data. They are often worrisome, but not always a problem. When we are
doing regression modeling, in fact, we don’t really care about whether some data
point is far from the rest of the data, but whether it breaks a pattern the rest of
the data seems to follow. Here, we’ll first try to build some intuition for when
outliers cause trouble in linear regression models. Then we’ll look at some ways
of quantifying how much influence particular data points have on the model;
consider the strategy of pretending that inconvenient data doesn’t exist; and
take a brief look at the robust regression strategy, of replacing least squares
estimates with others which are less easily influenced.

1 Outliers Are Data Points Which Break a Pat-
tern

Consider Figure 1. The points marked in red and blue are clearly not like the
main cloud of the data points, even though their x and y coordinates are quite
typical of the data as a whole: the x coordinates of those points aren’t related
to the y coordinates in the right way, they break a pattern. On the other hand,
the point marked in green, while its coordinates are very weird on both axes,
does not break that pattern — it was positioned to fall right on the regression
line.
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Figure 1: Points marked with a red × and a blue triangle are outliers for the regression
line through the main cloud of points, even though their x and y coordinates are quite
typical of the marginal distributions (see rug plots along axes). The point marked by
the green square, while an outlier along both axes, falls right along the regression line.
(See the source file online for the figure-making code.)
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(Intercept) x

black only -0.0174 1.96

black+blue -0.0476 1.93

black+red 0.1450 1.69

black+green -0.0359 2.00

all points -0.0108 1.97

Table 1: Estimates of the simple regression line from the black points in Figure 1,
plus re-estimates adding in various outliers.

What affect do these different outliers have on a simple linear model here?
Table 1 shows the estimates we get from using just the black points, from adding
only one of the three outlying points to the black points, and from using all the
points. As promised, adding the red or blue points shifts the line, while adding
the green point changes hardly anything at all.

If we are worried that outliers might be messing up our model, we would like
to quantify how much the estimates change if we add or remove individual data
points. Fortunately, we can quantify this using only quantities we estimated on
the complete data, especially the hat matrix.

02:14 Friday 13th November, 2015



5 1.1 Examples with Simple Linear Regression

1.1 Examples with Simple Linear Regression

To further build intuition, let’s think about what happens with simple linear
regression for a moment; that is, our model is

Y = β0 + β1X + ε (1)

with a single real-valued predictor variable X. When we estimate the coefficients
by least squares, we know that

β̂0 = y − β̂1x (2)

Let us turn this around. The fitted value at X = x is

β̂0 + β̂1x = y (3)

Suppose we had a data point, say the ith point, where X = x. Then the actual
value of yi almost wouldn’t matter for the fitted value there — the regression
line has to go through y at x, never mind whether yi there is close to y or far
away. If xi = x, we say that yi has little leverage over m̂i, or little influence on
m̂i. It has some influence, because yi is part of what we average to get y, but
that’s not a lot of influence.

Again, with simple linear regression, we know that

β̂1 =
cXY

s2X
(4)

the ratio between the sample covariance of X and Y and the sample variance
of X. How does yi show up in this? It’s

β̂1 =
n−1

∑n
i=1 (xi − x)(yi − y)

s2X
(5)

Notice that when xi = x, yi doesn’t actually matter at all to the slope. If xi is
far from x, then yi− y will contribute to the slope, and its contribution will get
bigger (whether positive or negative) as xi − x grows. yi will also make a big
contribution to the slope when yi − y is big (unless, again, xi = x).

Let’s write a general formula for the predicted value, at an arbitrary point
X = x.

m̂(x) = β̂0 + β̂1x (6)

= y − β̂1x+ β̂1x (7)

= y + β̂1(x− x) (8)

= y +
1

n

∑n
i=1 (xi − x)(yi − y)

s2X
(x− x) (9)

So, in words:

• The predicted value is always a weighted average of all the yi.
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• As xi moves away from x, yi gets more weight (possibly a large negative
weight). When xi = x, yi only matters because it contributes to the global
mean y.

• The weights on all data points increase in magnitude when the point x
where we’re trying to predict is far from x. If x = x, only y matters.

All of this is still true of the fitted values at the original data points:

• If xi is at x, yi only matters for the fit because it contributes to y.

• As xi moves away from x, in either direction, it makes a bigger contribution
to all the fitted values.

Why is this happening? We get the coefficient estimates by minimizing the
mean squared error, and the MSE treats all data points equally:

1

n

n∑
i=1

(yi − m̂(xi))
2 (10)

But we’re not just using any old function m̂(x); we’re using a linear function.
This has only two parameters, so we can’t change the predicted value to match
each data point — altering the parameters to bring m̂(xi) closer to yi might
actually increase the error elsewhere. By minimizing the over-all MSE with a
linear function, we get two constraints,

y = β̂0 + β̂1x (11)

and ∑
i

ei(xi − x) = 0 (12)

The first of these makes the regression line insensitive to yi values when xi is
close to x. The second makes the regression line very sensitive to residuals when
xi − x is big — when xi − x is large, a big residual (ei far from 0) is harder to
balance out than if xi − x were smaller.

So, let’s sum this up.

• Least squares estimation tries to bring all the predicted values closer to
yi, but it can’t match each data point at once, because the fitted values
are all functions of the same coefficients.

• If xi is close to x, yi makes little difference to the coefficients or fitted
values — they’re pinned down by needing to go through the mean of the
data.

• As xi moves away from x, yi − y makes a bigger and bigger impact on
both the coefficients and on the fitted values.
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If we worry that some point isn’t falling on the same regression line as
the others, we’re really worrying that including it will throw off our estimate
of the line. This is going to be a concern when xi is far from x, or when the
combination of xi−x and yi−y makes that point has a disproportionate impact
on the estimates. We should also be worried if the residual values are too big,
but when asking what’s “too big”, we need to take into account the fact that
the model will try harder to fit some points than others. A big residual at a
point of high leverage is more of a red flag than an equal-sized residual at point
with little influence.

All of this will carry over to multiple regression models, but with more
algebra to keep track of the different dimensions.

2 Influence of Individual Data Points on Esti-
mates

Recall that our least-squares coefficient estimator is

β̂ = (xTx)−1xTy (13)

from which we get our fitted values as

m̂ = xβ̂ = x(xTx)−1xTy = Hy (14)

with the hat matrix H ≡ x(xTx)−1xT . This leads to a very natural sense in
which one observation might be more or less influential than another:

∂β̂k
∂yi

=
(
(xTx)−1xT

)
ki

(15)

and
∂m̂k

∂yi
= Hii (16)

If yi were different, it would change the estimates for all the coefficients and
for all the fitted values. The rate at which the kth coefficient or fitted value
changes is given by the kith entry in these matrices — matrices which, notice,
are completely defined by the design matrix x.

2.1 Leverage

Hii is the influence of yi on its own fitted value; it tells us how much of m̂i is just
yi. This turns out to be a key quantity in looking for outliers, so we’ll give it
a special name, the leverage. It is sometimes also written hi. Once again, the
leverage of the ith data point doesn’t depend on yi, only on the design matrix.

Because the general linear regression model doesn’t assume anything about
the distribution of the predictors, other than that they’re not collinear, we can’t
say definitely that some values of the leverage break model assumptions, or even
are very unlikely under the model assumptions. But we can say some things
about the leverage.
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Average leverages We showed in the homework that the trace of the hat
matrix equals the number of coefficients we estimate:

tr H = p+ 1 (17)

But the trace of any matrix is the sum of its diagonal entries,

tr H =

n∑
i=1

Hii (18)

so the trace of the hat matrix is the sum of each point’s leverage. The average
leverage is therefore p+1

n . We don’t expect every point to have exactly the same
leverage, but if some points have much more than others, the regression function
is going to be pulled towards fitting the high-leverage points, and the function
will tend to ignore the low-leverage points.

Leverage vs. geometry Let’s center all the predictor variables, i.e., subtract
off the mean of each predictor variable. Call this new vector of predictor vari-
ables Z, with the n × p matrix z. This will not change any of the slopes, and
will fix the intercept to be y. The fitted values then come from

m̂i = y +
1

n
(xi − x)Var [X]

−1
zTy (19)

This tells us that yi will have a lot of leverage if (xi − x)Var [X]
−1

(xi − x)T is
big1. If the data point falls exactly at the mean of the predictors, yi matters
only because it contributes to the over-all mean y. If the data point moves away
from the mean of the predictors, not all directions count equally. Remember
the eigen-decomposition of Var [X]:

Var [X] = VUVT (20)

where V is the matrix whose columns are the eigenvectors of Var [X], VT =
V−1, and U is the diagonal matrix of the eigenvalues of Var [X]. Each eigenvalue
gives the variance of the predictors along the direction of the corresponding
eigenvector. It follows that

Var [X]
−1

= VU−1V (21)

So if the data point is far from the center of the predictors along a high-variance
direction, that doesn’t count as much as being equally far along a low-variance
direction2. Figure 2 shows a distribution for two predictor variables we’re very
familiar with, together with the two eigenvectors from the variance matrix, and
the corresponding surface of leverages.

1This sort of thing — take the difference between two vectors, multiply by an inverse
variance matrix, and multiply by the difference vector again — is called a Mahalanobis
distance. As we will see in a moment, it gives more attention to differences along coordinates
where the variance is small, and less attention to differences along coordinates where the
variance is high.

2I have an unfortunate feeling that I said this backwards throughout the afternoon.
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Figure 2: Left: The geographic coordinates of the communities from the mobility

data, along with their mean, and arrows marking the eigenvectors of the variance-
covariance matrix (lengths scaled by the eigenvalues). Right: leverages for each point
when regressing rates of economic mobility (or anything else) on latitude and longitude.
See online for the code.
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You may convince yourself that with one predictor variable, all of this col-
lapses down to just 1/n+ (xi−x)2/ns2X (Exercise 1). This leads to plots which
may be easier to grasp (Figure 3).

One curious feature of the leverage is, and of the hat matrix in general, is
that it doesn’t care what we are regressing on the predictor variables; it could
be economic mobility or sightings of Bigfoot, and the same design matrix will
give us the same hat matrix and leverages.

To sum up: The leverage of a data point just depends on the value of the
predictors there; it increases as the point moves away from the mean of the
predictors. It increases more if the difference is along low-variance coordinates,
and less for differences along high-variance coordinates.

3 Studentized Residuals

We return once more to the hat matrix, the source of all knowledge.

m̂ = Hy (22)

The residuals, too, depend only on the hat matrix:

e = y − m̂ = (I−H)y (23)

We know that the residuals vary randomly with the noise, so let’s re-write this
in terms of the noise (Exercise 2).

e = (I−H)ε (24)

Since E [ε] = 0 and Var [ε] = σ2I, we have

E [e] = 0 (25)

and
Var [e] = σ2(I−H)(I−H)T = σ2(I−H) (26)

If we also assume that the noise is Gaussian, the residuals are Gaussian, with
the stated mean and variance.

What does this imply for the residual at the ith data point? It has expecta-
tion 0,

E [ei] = 0 (27)

and it has a variance which depends on i through the hat matrix:

Var [ei] = σ2(I−H)ii = σ2(1−Hii) (28)

In words: the bigger the leverage of i, the smaller the variance of the residual
there. This is yet another sense in which points with high leverage are points
which the model tries very hard to fit.

Previously, when we looked at the residuals, we expected them to all be of
roughly the same magnitude. This rests on the leverages Hii being all about the
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Fraction of workers with short commute

H
ii

H.mob.lm <- hatvalues(lm(Mobility~Commute,data=mobility))

plot(mobility$Commute, H.mob.lm, ylim=c(0,max(H.mob.lm)),

xlab="Fraction of workers with short commute",

ylab=expression(H[ii]))

abline(h=2/nrow(mobility),col="grey")

rug(mobility$Commute,side=1)

Figure 3: Leverages (Hii) for a simple regression of economic mobility (or anything
else) against the fraction of workers with short commutes. The grey line marks the
average we’d see if every point was exactly equally influential. Note how leverage
increases automatically as Commute moves away from its mean in either direction.
(See below for the hatvalues function.
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same size. If there are substantial variations in leverage across the data points,
it’s better to scale the residuals by their expected size.

The usual way to do this is through the standardized or studentized
residuals

ri ≡
ei

σ̂
√

1−Hii

(29)

Why “studentized”? Because we’re dividing by an estimate of the standard
error, just like in “Student’s” t-test for differences in means3

All of the residual plots we’ve done before can also be done with the studen-
tized residuals. In particular, the studentized residuals should look flat, with
constant variance, when plotted against the fitted values or the predictors.

4 Leave-One-Out

Suppose we left out the ith data point altogether. How much would that change
the model?

4.1 Fitted Values and Cross-Validated Residuals

Let’s take the fitted values first. The hat matrix, H, is an n × n matrix. If
we deleted the ith observation when estimating the model, but still asked for a
prediction at xi, we’d get a different, n × (n − 1) matrix, say H(−i). This in
turn would lead to a new fitted value:

m̂(−i)(xi) =
(Hy)i −Hiiyi

1−Hii
(30)

Basically, this is saying we can take the old fitted value, and then subtract off
the part of it which came from having included the observation yj in the first
place. Because each row of the hat matrix has to add up to 1 (Exercise 3), we
need to include the denominator (Exercise 4).

The leave-one-out residual is the difference between this and yi:

e
(−i)
i ≡ yi − m̂(−i)(xi) (31)

That is, this is how far off the model’s prediction of yi would be if it didn’t
actually get to see yi during the estimation, but had to honestly predict it.

Leaving out the data point i would give us an MSE of σ̂2
(−i), and a little

work says that

ti ≡
e
(−i)
i

σ̂(−i)

√
1 + xT

i (xT
(−i)x(−i))−1xi

tn−p−2 (32)

3The distribution here is however not quite a t-distribution, because, while ei has a Gaus-
sian distribution and σ̂ is the square root of a χ2-distributed variable, ei is actually used
in computing σ̂, hence they’re not statistically independent. Rather, r2i /(n − p − 1) has a

β( 1
2
, 1
2

(n− p− 2)) distribution (Seber and Lee, 2003, p. 267). This gives us studentized resid-
uals which all have the same distribution, and that distribution does approach a Gaussian as
n→∞ with p fixed.
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13 4.2 Cook’s Distance

(The −2 here is because these predictions are based on only n− 1 data points.)
These are called the cross-validated, or jackknife, or externally studen-
tized, residuals. (Some people use the name “studentized residuals” only for
these, calling the others the “standardized residuals”.) Fortunately, we can
compute this without having to actually re-run the regression:

ti =
e
(−i)
i

σ̂(−i)

√
1 + xT

i (xT
(−i)x(−i))−1xi

(33)

=
ei

σ̂(−i)

√
1−Hii

(34)

= ri

√
n− p− 2

n− p− 1− r2i
(35)

4.2 Cook’s Distance

Omitting point i will generally change all of the fitted values, not just the fitted
value at that point. We go from the vector of predictions m̂ to m̂(−i). How big
a change is this? It’s natural (by this point!) to use the squared length of the
difference vector,

‖m̂− m̂(−i)‖2 = (m̂− m̂(−i))T (m̂− m̂(−i)) (36)

To make this more comparable across data sets, it’s conventional to divide this
by (p + 1)σ̂2, since there are really only p + 1 independent coordinates here,
each of which might contribute something on the order of σ̂2. This is called the
Cook’s distance or Cook’s statistic for point i:

Di =
(m̂− m̂(−i))T (m̂− m̂(−i))

(p+ 1)σ̂2
(37)

As usual, there is a simplified formula, which evades having to re-fit the regres-
sion:

Di =
1

p+ 1
e2i

Hii

(1−Hii)2
(38)

Notice that Hii/(1−Hii)
2 is a growing function of Hii (Figure 4). So this says

that the total influence of a point over all the fitted values grows with both its
leverage (Hii) and the size of its residual when it is included (e2i ).

4.3 Coefficients

The leave-one-out idea can also be applied to the coefficients. Writing β̂(−i) for
the vector of coefficients we get when we drop the ith data point. One can show
(Seber and Lee, 2003, p. 268) that

β̂(−i) = β̂ − (xTx)−1xT
i ei

1−Hii
(39)
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)2

curve(x/(1-x)^2, from=0, to=1, xlab="Leverage H",

ylab=expression(H/(1-H)^2))

Figure 4: Illustration of the function H/(1 − H)2 relating leverage H to Cook’s
distance. Notice that leverage must be ≥ 0 and ≤ 1, so this is the whole relevant range
of the curve.
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15 4.4 Leave-More-Than-One-Out

Cook’s distance can actually be computed from this, since the change in the
vector of fitted values is x(β̂(−i) − β̂), so

Di =
((β̂(−i) − β̂)TxTx(β̂(−i) − β̂)

(p+ 1)σ̂2
(40)

4.4 Leave-More-Than-One-Out

Sometimes, whole clusters of nearby points might be potential outliers. In such
cases, removing just one of them might change the model very little, while
removing them all might change it a great deal. Unfortunately there are

(
n
k

)
=

O(nk) groups of k points you could consider deleting at once, so while looking
at all leave-one-out results is feasible, looking at all leave-two- or leave-ten- out
results is not. Instead, you have to think.

5 Practically, and with R

We have three ways of looking at whether points are outliers:

1. We can look at their leverage, which depends only on the value of the
predictors.

2. We can look at their studentized residuals, either ordinary or cross-validated,
which depend on how far they are from the regression line.

3. We can look at their Cook’s statistics, which say how much removing each
point shifts all the fitted values; it depends on the product of leverage and
residuals.

The model assumptions don’t put any limit on how big the leverage can get
(just that it’s ≤ 1 at each point) or on how its distributed across the points
(just that it’s got to add up to p + 1). Having most of the leverage in a few
super-inferential points doesn’t break the model, exactly, but it should make us
worry.

The model assumptions do say how the studentized residuals should be dis-
tributed. In particular, the cross-validated studentized residuals should follow
a t distribution. This is something we can test, either for specific points which
we’re worried about (say because they showed up on our diagnostic plots), or
across all the points4.

Because Cook’s distance is related to how much the parameters change, the
theory of confidence ellipsoids (Lecture 18) can be used to get some idea of how

4Be careful about testing all the points. If you use a size α test and everything is fine,
you’d see about αn rejections. A good, if not necessarily optimal, way to deal with this is to
lower the threshold to α/n for each test — another example of the Bonferroni correction from
Lecture 18.
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16 5.1 In R

big a Di is worrying5. Cook’s original rule-of-thumb translates into worrying
when (p + 1)Di is bigger than about χ2

p+1(0.1), though the 0.1 is arbitrary6.
However, this is not really a hypothesis test.

5.1 In R

Almost everything we’ve talked — leverages, studentized residuals, Cook’s statis-
tics — can be calculated using the influence function. However, there are more
user-friendly functions which call that in turn, and are probably better to use.

Leverages come from the ‘hatvalues‘ function, or from the ‘hat‘ component
of what ‘influence‘ returns:

mob.lm <- lm(Mobility~Commute, data=mobility)

hatvalues(mob.lm)

influence(mob.lm)$hat # Same as previous line

The standardized, or internally-studentized, residuals ri are available with
rstandard:

rstandard(mob.lm)

residuals(mob.lm)/sqrt(1-hatvalues(mob.lm)) # Same as previous line

The cross-validated or externally-studentized residuals ti are available with
rstudent:

rstudent(mob.lm) # Too tedious to calculate from rstandard though you could

Cook’s statistic is calculated with cooks.distance:

cooks.distance(mob.lm)

Often the most useful thing to do with these is to plot them, and look at
the most extreme points. (One might also rank them, and plot them against
ranks.) Figure 5 does so. The standardized and studentized residuals can also
be put into our usual diagnostic plots, since they should average to zero and
have constant variance when plotted against the fitted values or the predictors.
(I omit that here because in this case, 1/

√
1−Hii is sufficiently close to 1 that

it makes no visual difference.)
We can now look at exactly which points have the extreme values, say the

10 most extreme residuals, or largest Cook’s statistics:

5Remember we saw that for large n, (β̂−β)T Σ−1(β̂−β) ∼ χ2
p+1, where Σ is the variance

matrix of the coefficient estimates. But that’s σ2(xT x)−1, so we get σ−2(β̂−β)T xT x(β̂−β) ∼
χ2
p+1. Now compare with Eq. 40.
6More exactly, he used an F distribution to take account of small-n uncertainties in σ̂2,

and suggested worrying when Di was bigger than Fp+1,n−p−1(0.1). This will come to the
same thing for large n.
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par(mfrow=c(2,2))

mob.lm <- lm(Mobility~Commute,data=mobility)

plot(hatvalues(mob.lm), ylab="Leverage")

abline(h=2/nrow(mobility), col="grey")

plot(rstandard(mob.lm), ylab="Standardized residuals")

plot(rstudent(mob.lm), ylab="Cross-validated studentized residuals")

abline(h=qt(0.025,df=nrow(mobility)-2),col="red")

abline(h=qt(1-0.025,df=nrow(mobility)-2),col="red")

plot(cooks.distance(mob.lm), ylab="Cook's statistic")

abline(h=qchisq(0.1,2)/2,col="grey")

Figure 5: Leverages, two sorts of standardized residuals, and Cook’s distance statistic
for each point in a basic linear model of economic mobility as a function of the fraction
of workers with short commutes. The horizontal line in the plot of leverages shows the
average leverage. The lines in studentized residual plot shows a 95% t-distribution
sampling interval. (What is the grey line in the plot of Cook’s distances?) Note the
clustering of extreme residuals and leverage around row 600, and another cluster of
points with extreme residuals around row 400.
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18 5.2 plot

mobility[rank(-abs(rstudent(mob.lm)),)<=10,]

## X Name Mobility State Commute Longitude Latitude

## 374 375 Linton 0.29891303 ND 0.646 -100.16075 46.31258

## 376 378 Carrington 0.33333334 ND 0.656 -98.86684 47.59698

## 382 384 Bowman 0.46969697 ND 0.648 -103.42526 46.33993

## 383 385 Lemmon 0.35714287 ND 0.704 -102.42011 45.96558

## 385 388 Plentywood 0.31818181 MT 0.681 -104.65381 48.64743

## 388 391 Dickinson 0.32920793 ND 0.659 -102.61354 47.32696

## 390 393 Williston 0.33830845 ND 0.702 -103.33987 48.25441

## 418 422 Miller 0.31506848 SD 0.697 -99.27758 44.53313

## 420 424 Gettysburg 0.32653061 SD 0.729 -100.19547 45.05100

## 608 618 Nome 0.04678363 AK 0.928 -162.03012 64.47514

mobility[rank(-abs(cooks.distance(mob.lm)))<=10,]

## X Name Mobility State Commute Longitude Latitude

## 376 378 Carrington 0.33333334 ND 0.656 -98.86684 47.59698

## 382 384 Bowman 0.46969697 ND 0.648 -103.42526 46.33993

## 383 385 Lemmon 0.35714287 ND 0.704 -102.42011 45.96558

## 388 391 Dickinson 0.32920793 ND 0.659 -102.61354 47.32696

## 390 393 Williston 0.33830845 ND 0.702 -103.33987 48.25441

## 418 422 Miller 0.31506848 SD 0.697 -99.27758 44.53313

## 420 424 Gettysburg 0.32653061 SD 0.729 -100.19547 45.05100

## 607 617 Kotzebue 0.06451613 AK 0.864 -159.43781 67.02818

## 608 618 Nome 0.04678363 AK 0.928 -162.03012 64.47514

## 614 624 Bethel 0.05186386 AK 0.909 -158.38213 61.37712

5.2 plot

We have not used the plot function on an lm object yet. This is because
most of what it gives us is in fact related to residuals (Figure 6). The first
plot is of residuals versus fitted values, plus a smoothing line, with extreme
residuals marked by row number. The second is a Q-Q plot of the standardized
residuals, again with extremes marked by row number. The third shows the
square root of the absolute standardized residuals against fitted values (ideally,
flat); the fourth plots standardized residuals against leverage, with contour lines
showing equal values of Cook’s distance. There are many options, described in
help(plot.lm).
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19 5.2 plot
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Figure 6: The basic plot function applied to our running example model.
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6 Responses to Outliers

There are essentially three things to do when we’re convinced there are outliers:
delete them; change the model; or change how we estimate.

6.1 Deletion

Deleting data points should never be done lightly, but it is sometimes the right
thing to do.

The best case for removing a data point is when you have good reasons to
think it’s just wrong (and you have no way to fix it). Medical records which
give a patient’s blood pressure as 0, or their temperature as 200 degrees, are
just impossible and have to be errors7. Those points aren’t giving you useful
information about the process you’re studying8, so getting rid of them makes
sense.

The next best case is if you have good reasons to think that the data point
isn’t wrong, exactly, but belongs to a different phenomenon or population from
the one you’re studying. (You’re trying to see if a new drug helps cancer patients,
but you discover the hospital has included some burn patients and influenza
cases as well.) Or the data point does belong to the right population, but also
somehow to another one which isn’t what you’re interested in right now. (All
of the data is on cancer patients, but some of them were also sick with the flu.)
You should be careful about that last, though. (After all, some proportion of
future cancer patients are also going to have the flu.)

The next best scenario after that is that there’s nothing quite so definitely
wrong about the data point, but it just looks really weird compared to all the
others. Here you are really making a judgment call that either the data really
are mistaken, or not from the right population, but you can’t put your finger
on a concrete reason why. The rules-of-thumb used to identify outliers, like
“Cook’s distance shouldn’t be too big”, or “Tukey’s rule”9, are at best of this
sort. It is always more satisfying, and more reliable, if investigating how the
data were gathered lets you turn cases of this sort into one of the two previous
kinds.

The least good case for getting rid of data points which isn’t just bogus is
that you’ve got a model which almost works, and would work a lot better if you
just get rid of a few stubborn points. This is really a sub-case of the previous
one, with added special pleading on behalf of your favorite model. You are here
basically trusting your model more than your data, so it had better be either a
really good model or really bad data.

Beyond this, we get into what can only be called ignoring inconvenient facts
so that you get the answer you want.

7This is true whether the temperature is in degrees Fahrenheit, degrees centigrade, or
kelvins.

8Unless it’s the very process of making errors of measurement and recording.
9Which flags any point more than 1.5 times the inter-quartile range above the third quartile,

or below the first quartile, on any dimension.
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6.2 Changing the Model

Outliers are points that break a pattern. This can be because the points are
bad, or because we made a bad guess about the pattern. Figure 7 shows data
where the cloud of points on the right are definite outliers for any linear model.
But I drew those points following a quadratic model, and they fall perfectly
along it (as they should). Deleting them, in order to make a linear model work
better, would have been short-sighted at best.

The moral of Figure 7 is that data points can look like outliers because
we’re looking for the wrong pattern. If when we find apparent outliers and we
can’t convince ourselves that data is erroneous or irrelevant, we should consider
changing our model, before, or as well as, deleting them.

6.3 Robust Linear Regression

A final alternative is to change how we estimate our model. Everything we’ve
done has been based on ordinary least-squares (OLS) estimation. Because the
squared error grows very rapidly with the error, OLS can be very strongly
influenced by a few large “vertical” errors10. We might, therefore, consider
using not a different statistical model, but a different method of estimating its
parameters. Estimation techniques which are less influenced by outliers in the
residuals than OLS are called robust estimators, or (for regression models)
robust regression.

Usually (though not always), robust estimation, like OLS, tries to minimize11

some average of a function of the errors:

β̃ = argmin
b

1

n

n∑
i=1

ρ(yi − xib) (41)

Different choices of ρ, the loss function, yield different estimators. ρ(u) = |u|
is least absolute deviation (LAD) estimation12. ρ(u) = u2 is OLS again. A
popular compromise is to use Huber’s loss function13

ρ(u) =

{
u2 |u| ≤ c
2c|u| − c2 |u| ≥ c (42)

Notice that Huber’s loss looks like squared error for small errors, but like abso-
lute error for large errors14. Huber’s loss is designed to be continuous at c, and

10Suppose there are 100 data points, and we start with parameter values where e1 > 10,
while e2 through e100 = 0. Changing to a new parameter value where ei = 1 for all i actually
reduces the MSE, even though it moves us away from perfectly fitting 99% of the data points.

11Hence the name “M -estimators”.
12For minimizing absolute error, the scenario suggested in the previous footnote seems like

a horrible idea, the average loss function goes from 0.1 to 1.0.
13Often written ψ, since that’s the symbol Huber used when he introduced it. Also, some

people define it as 1/2 of the way I have here; this way, though, it’s identical to squared error
for small u.

14If we set c = 1 in our little scenario, the average loss would go from 0.19 to 1.0, a definite
worsening.
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Figure 7: The points in the upper-right are outliers for any linear model fit through
the main body of points, but dominate the line because of their very high leverage;
they’d be identified as outliers. But all points were generated from a quadratic model.

02:14 Friday 13th November, 2015



23

have a continuous first derivative there as well (which helps with optimization).
We need to pick the scale c at which it switches over from acting like squared
error to acting like absolute error; this is usually done using a robust estimate
of the noise standard deviation σ.

Robust estimation with Huber’s loss can be conveniently done with the rlm

function in the MASS package, which, as the name suggests, is designed to work
very much like lm.

library(MASS)

summary(rlm(Mobility~Commute,data=mobility))

##

## Call: rlm(formula = Mobility ~ Commute, data = mobility)

## Residuals:

## Min 1Q Median 3Q Max

## -0.148719 -0.019461 -0.002341 0.021093 0.332347

##

## Coefficients:

## Value Std. Error t value

## (Intercept) 0.0028 0.0043 0.6398

## Commute 0.2077 0.0091 22.7939

##

## Residual standard error: 0.0293 on 727 degrees of freedom

Robust linear regression is designed for the situation where it’s still true
that Y = Xβ + ε, but the noise ε is not very close to Gaussian, and indeed is
sometimes “contaminated” by wildly larger values. It does nothing to deal with
non-linearity, or correlated noise, or even some points having excessive leverage
because we’re insisting on a linear model.

7 Exercises

1. Prove that in a simple linear regression

Hii =
1

n

(
1 +

(xi − x)2

s2X

)
(43)

2. Show that (I−H)xc = 0 for any matrix c.

3. Every row of the hat matrix has entries that sum to 1.

(a) Show that if all of the yi are equal, say c, then β̂0 = c and all the
estimated slopes are 0.

(b) Using the previous part, show that 1, the n×1 matrix of all 1s, must
be an eigenvector of the hat matrix with eigenvalue 1, H1 = 1.

(c) Using the previous part, show that the sum of each row of H must
be 1,

∑n
j=1Hij = 1 for all i.
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4. Fitted values after deleting a point

(a) (Easier) Presume that H(−i) can be found by setting H
(−i)
jk = Hjk/(1−

Hji). Prove Eq. 30.

(b) (Challenging) Let x(−i) be x with its ith row removed. By construc-
tion, H(−i), the n × (n − 1) matrix which gives predictions at all of
the original data points, is

H(−i) = x((x(−i))Tx(−i))
−1

(x(−i))T (44)

Show that this matrix has the form claimed in the previous problem.

5. (Challenging) Derive Eq. 38 for Cook’s statistic from the definition. Hint:

First, derive a formula for m̂
(−i)
j in terms of the hat matrix. Next, sub-

stitute in to the definition of Di. Finally, you will need to use properties
of the hat matrix to simplify.
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