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1 Generalization and Optimism

We estimated our model by minimizing the mean squared error on our data:

β̂ = argmin
b

1

n
(y − xb)T (y − xb)

Different linear models will amount to different choices of the design matrix
x — we add or drop variables, we add or drop interactions or polynomial terms,
etc., and this adds or removes columns from the design matrix. We might
consider doing selecting among models themselves by minimizing the MSE. This
is a very bad idea, for a fundamental reason:

Every model is too optimistic about how well it will actually
predict.

Let’s be very clear about what it would mean to predict well. The most
challenging case would be that we see a new random point, with predictor values
X1, . . . Xp and response Y , and our old β̂ has a small expected squared error:

E


Y −

β̂0 +

p∑
j=1

Xj β̂j

2


Here both Y and the X’s are random (hence the capital letters), so we might be
asking the model for a prediction at a point it never saw before. (Of course if we
have multiple identically distributed (X,Y ) pairs, say q of them, the expected
MSE over those q points is just the same as the expected squared error at one
point.)

An easier task would be to ask the model for predictions at the same values
of the predictor variables as before, but with different random noises. That is,
we fit the model to

Y = xβ + ε

and now Tyche1 reach into her urn and gives us

Y′ = xβ + ε′

where ε and ε′ are independent but identically distributed. The design matrix
is the same, the true parameters β are the same, but the noise is different2. We
now want to see if the coefficients we estimated from (x,Y) can predict (x,Y′).
Since the only thing that’s changed is the noise, if the coefficients can’t predict
well any more, that means that they were really just memorizing the noise, and
not actually doing anything useful.

1Look her up.
2If we really are in an experimental setting, we really could get a realization of Y′ just by

running the experiment a second time. With surveys or with observational data, it would be
harder to actually realize Y′, but mathematically at least it’s unproblematic.
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Our out-of-sample expected MSE, then, is

E
[
n−1(Y′ − xβ̂)T (Y′ − xβ̂)

]
It will be convenient to break this down into an average over data points,

and to abbreviate xβ̂ = m̂, the vector of fitted values. Notice that since the
predictor variables and the coefficients aren’t changing, our predictions are the
same both in and out of sample — at point i, we will predict m̂i.

In this notation, then, the expected out-of-sample MSE is

E

[
1

n

n∑
i=1

(Y ′i − m̂i)
2

]
We’ll compare this to the expected in-sample MSE,

E

[
1

n

n∑
i=1

(Yi − m̂i)
2

]
Notice that m̂i is a function of Yi (among other things), so those are dependent
random variables, while m̂i and Y ′i are completely statistically independent3.

Break this down term by term. What’s the expected value of the ith in-
sample squared error?

E
[
(Yi − m̂i)

2
]

= Var [Yi − m̂i] + (E [Yi − m̂i])
2

(1)

= Var [Yi] + Var [m̂i]− 2Cov [Yi, m̂i] + (E [Yi]− E [m̂i])
2
(2)

The covariance term is not (usually) zero, because, as I just said, m̂i is a function
of, in part, Yi.

On the other hand, what’s the expected value of the ith squared error on
new data?

E
[
(Y ′i − m̂i)

2
]

= Var [Yi′ − m̂i] + (E [Y ′i − m̂i])
2

(3)

= Var [Y ′i ] + Var [m̂i]− 2Cov [Y ′i , m̂i] + (E [Y ′i ]− E [m̂i])
2
(4)

Y ′i is independent of Yi, but has the same distribution. This tells us that
E [Y ′i ] = E [Yi], Var [Y ′i ] = Var [Yi], but Cov [Y ′i , m̂i] = 0. So

E
[
(Y ′i − m̂i)

2
]

= Var [Yi] + Var [m̂i] + (E [Yi]− E [m̂i])
2

(5)

= E
[
(Yi − m̂i)

2
]

+ 2Cov [Yi, m̂i] (6)

Averaging over data points,

E

[
1

n

n∑
i=1

(Y ′i − m̂i)
2

]
= E

[
1

n

n∑
i=1

(Yi − m̂i)
2

]
+

2

n

n∑
i=1

Cov [Yi, m̂i]

3That might sound weird, but remember we’re holding x fixed in this exercise, so what we
mean is that knowing m̂i doesn’t give us an extra information about Y ′

i beyond what we’d
get from knowing the values of the X variables.
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Clearly, we need to get a handle on that sum of covariances.
For a linear model, though, Cov [Yi, m̂i] = σ2Hii (Exercise 1). So, for linear

models,

E

[
1

n

n∑
i=1

(Y ′i − m̂i)
2

]
= E

[
1

n

n∑
i=1

(Yi − m̂i)
2

]
+

2

n
σ2 trH

and we know that with p predictors and one intercept, trH = p+ 1 (Homework
5). Thus, for linear models,

E

[
1

n

n∑
i=1

(Y ′i − m̂i)
2

]
= E

[
1

n

n∑
i=1

(Yi − m̂i)
2

]
+

2

n
σ2(p+ 1)

Of course, we don’t actually know the expectation on the right-hand side,
but we do have a sample estimate of it, which is the in-sample MSE. If the law
of large numbers is still our friend,

E

[
1

n

n∑
i=1

(Y ′i − m̂i)
2

]
≈ 1

n

n∑
i=1

(Yi − m̂i)
2 +

2

n
σ2(p+ 1)

The second term on the right, (2/n)σ2(p+1), is the optimism of the model
— the amount by which its in-sample MSE systematically under-estimates its
true expected squared error. Notice that this:

• Grows with σ2: more noise gives the model more opportunities to seem
to fit well by capitalizing on chance.

• Shrinks with n: at any fixed level of noise, more data makes it harder to
pretend the fit is better than it really is.

• Grows with p: every extra parameter is another control which can be
adjusted to fit to the noise.

Minimizing the in-sample MSE completely ignores the bias from optimism,
so it is guaranteed to pick models which are too large and predict poorly out
of sample. If we could calculate the optimism term, we could at least use an
unbiased estimate of the true MSE on new data.

Of course, we do not actually know σ2.

2 Mallow’s Cp Statistic

The Mallows Cp statistic just substitutes in a feasible estimator of σ2, which is
σ̂2 from the largest model we consider. This will be an unbiased estimator of σ2

if the real model is smaller (contains a strict subset of the predictor variables),
but not vice versa4.

4This assumes the largest model must contain the truth!
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5 2.1 R2 and Adjusted R2

That is, for a linear model with p+ 1 coefficients fit by OLS,

Cp ≡=
1

n

n∑
i=1

(Yi − m̂i)
2 +

2

σ̂2
n(p+ 1) (7)

The selection rule is to pick the model which minimizes Cp.
We can think of Cp as having two parts,

Cp = MSE + (penalty)

From one point of view, the penalty is just an estimate of the bias. From another
point of view, it’s a cost we’re imposing on models for having extra parameters.
Every new parameter has got to pay that cost by reducing the MSE by at least
a certain amount; if it doesn’t, the extra parameter isn’t worth it.

(Before this, we’ve only been dealing with one model, so we’ve not had to
distinguish carefully between the in-sample MSE and the maximum likelihood
estimate of σ2. With multiple models floating around, though, each can have
its own MSE, but there is only one true σ2, and we need an estimate of it.)

For comparing models, we really care about differences:

∆Cp = MSE1 −MSE2 +
2

n
σ̂2(p1 − p2) (8)

(The extra term for the intercept, being common to both models, doesn’t con-
tribute.)

Alternate form of Cp You will find many references which define Cp some-
what differently:

nMSE

σ̂2
− n+ 2p (9)

and say that the optimal value is close to p, not close to 0. To see that this selects
exactly the same models as the rule given above, take a difference between two
models, with MSE’s MSE1,MSE2 and p1, p2 predictors. We get

n(MSE1 −MSE2)

σ̂2
+ 2(p1 − p2)

Dividing by n and multiplying by σ̂2 gives us back Eq. 8. There are reasons to
assert that Eq. 9 should indeed be close to p for the right model (if the Gaussian
noise assumption holds), but Eq. 7 is a good estimate of the out-of-sample error,
and a good model selection rule, much more broadly.

2.1 R2 and Adjusted R2

Recall that

R2 = 1− MSE

s2Y
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Picking a model by maximizing R2 is thus equivalent to picking a model by min-
imizing MSE. It is therefore stupid for exactly the same reasons that minimizing
MSE across models is stupid.

Recall that the adjusted R2 is

R2
adj = 1−

MSE n
n−p−1

s2Y

That is, it’s R2 with the unbiased estimator of σ2. Maximizing adjusted R2

therefore corresponds to minimizing that unbiased estimator. What does that
translate to?

MSE
n

n− p− 1
= MSE

1

1− (p+ 1)/n
(10)

≈ MSE

(
1 +

p+ 1

n

)
(11)

= MSE +MSE
p+ 1

n
(12)

where the approximation becomes exact as n → ∞ with p fixed5. Even for
the completely right model, where MSE is a consistent estimator of σ̂2, the
correction or penalty is only half as big as we’ve seen it should be. Selecting
models using adjusted R2 is not completely stupid, as maximizing R2 is, but it
is still not going to work very well.

3 Akaike Information Criterion (AIC)

The great Japanese statistician Hirotugu Akaike proposed a famous model se-
lection rule which also has the form of “in-sample performance plus penalty”.
What has come to be called the Akaike information criterion (AIC) is

AIC(S) ≡ LS − dim(S)

where LS is the log likelihood of the model S, evaluated at the maximum like-
lihood estimate, and dim(S) is the dimension of S, the number of adjustable
parameters it has. Akaike’s rule is to pick the model which maximizes AIC6.

The reason for this definition is that Akaike showed AIC/n is an unbiased
estimate of the expected log-probability the estimated parameters will give to
a new data point which it hasn’t seen before, if the model is right. This is the
natural counterpart of expected squared error for more general distributions

5Use the binomial theorem to expand 1/(1−u) as 1 +u+u2 + . . ., and truncate the series
at first order. (If u is small, u2 is tiny, and the higher powers microscopic.)

6Actually, in his original paper (Akaike, 1973), he proposed using twice this, to simplify
some calculations involving chi-squared distributions. Many subsequent authors have since
kept the factor of 2, which of course will not change which model is selected. Also, some
authors define AIC as negative of this, and then minimize it; again, clearly the same thing.
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7 3.1 Why −dim(S)?

than the Gaussian. IF we do specialize to linear-Gaussian models, then we’ve
seen (Lecture 10) that

L = −n
2

(1 + log 2π)− n

2
logMSE

and the dimension of the model is p + 2 (because σ2 is also an adjustable
parameter). Notice that −n

2 (1+log 2π) doesn’t involve the parameters at all. If
we compare AICs for two models, with mean squared errors in-sample of MSE1

and MSE2, and one with p1 predictors and the other with p2, the difference in
AICs will be

∆AIC = −n
2

logMSE1 +
n

2
logMSE2 − (p1 − p2)

To relate this to Cp, let’s write MSE2 = MSE1 + ∆MSE. Then

∆AIC = −n
2

logMSE1 +
n

2
logMSE1

(
1 +

∆MSE

MSE1

)
− (p1 − p2) (13)

= −n
2

log

(
1 +

∆MSE

MSE1

)
− (p1 − p2) (14)

Now let’s suppose that model 1 is actually the correct model, so MSE1 = σ̂2,
and that ∆MSE is small compared to σ̂2, so7

∆AIC ≈ −n
2

∆MSE

σ̂2
− (p1 − p2) (15)

−2σ̂2

n
∆AIC ≈ ∆MSE +

2

n
σ̂2(p1 − p2) = ∆Cp (16)

So, if one of the models we’re looking at is actually the correct model, and the
others aren’t too different from it, picking by maximizing AIC will give the same
answer as picking by minimizing Cp.

Other Uses of AIC AIC can be applied whenever we have a likelihood. It
is therefore used for tasks like comparing models of probability distributions, or
predictive models where the whole distribution is important. Cp, by contrast,
really only makes sense if we’re trying to do regression and want to use squared
error.

3.1 Why −dim(S)?

Akaike had a truly brilliant argument for subtracting a penalty equal to the
number of parameters from the log-likelihood, which is too pretty not to at
least sketch here.8

Generically, say that the parameter vector is θ, and its true value is θ∗. (For
linear regression with Gaussian noise, θ consists of all p+1 coefficients plus σ2.)

7Taylor expand log 1 + u around 1 to get log 1 + u ≈ u, for u close to 0.
8Nonetheless, this subsection is optional.
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8 3.1 Why −dim(S)?

The length of this vector, which is dim(S), is let’s say d. (For linear regression

with Gaussian noise, d = p + 2.) The maximum likelihood estimate is θ̂. We
know that the derivative of the likelihood is zero at the MLE:

∇L(θ̂) = 0

Let’s do a Taylor series expansion of ∇L(θ) around the true parameter value
θ∗:

∇L(θ) = ∇L(θ∗) + (θ − θ∗)∇∇L(θ∗)

Here ∇∇L(θ∗) is the d× d matrix of second partial derivatives of L, evaluated
at θ∗. This is called the Hessian, and would traditionally be written H, but
that would lead to confusion with the hat matrix, so I’ll call it K. Therefore
the Taylor expansion for the gradient of the log-likelihood is

∇L(θ) = ∇L(θ∗) + (θ − θ∗)K

Applied to the MLE,
0 = ∇L(θ∗) + (θ̂ − θ∗)K

or
θ̂ = θ∗ −K−1∇L(θ∗)

What is the expected log-likelihood, on new data, of θ̂? Call this expected
log-likelihood ` (using a lower-case letter to indicate that it is non-random).
Doing another Taylor series,

`(θ) ≈ `(θ∗) + (θ − θ∗)T∇`(θ∗) +
1

2
(θ − θ∗)T∇∇`(θ∗)(θ − θ∗)

However, it’s not hard to show that the expected log-likelihood is always9 max-
imized by the true parameters, so ∇`(θ∗) = 0. (The same argument also shows
E [∇L(θ∗)] = 0.) Call the Hessian in this Taylor expansion k. (Again, notice
the lower-case letter for a non-random quantity.) We have

`(θ) ≈ `(θ∗) +
1

2
(θ − θ∗)Tk(θ − θ∗)

Apply this to the MLE:

`(θ̂) ≈ `(θ∗) +
1

2
∇L(θ∗)K−1kK−1∇L(θ∗)

Taking expectations,

E
[
`(θ̂)

]
≈ `(θ∗) +

1

2
trK−1kK−1J

where Var [∇L(θ∗)] = J. For large n, K converges on k, so this simplifies to

E
[
`(θ̂)

]
≈ `(θ∗) +

1

2
trk−1J

9Except for quite weird models.
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This still leaves things in terms of `(θ∗), which of course we don’t know, but

now we do another Taylor expansion, this time of L around θ̂:

L(θ∗) ≈ L(θ̂) +
1

2
(θ∗ − θ̂)T∇∇L(θ̂)(θ∗ − θ̂)

so

L(θ∗) ≈ L(θ̂) +
1

2
(K−1∇L(θ∗))T∇∇L(θ̂)(K−1∇L(θ∗))

For large n, ∇∇L(θ̂)→ ∇∇L(θ∗)→ k. So, again taking expectations,

`(θ∗) ≈ E
[
L(θ̂
]

+
1

2
trk−1J

Putting these together,

E
[
`(θ̂)

]
≈ E

[
L(θ̂
]

+ trk−1J

An unbiased estimate is therefore

L(θ̂) + trk−1J

Finally, a fundamental result (the “Fisher identity”) says that for well-
behaved models, if the model is correct, then

Var [∇L(θ∗)] = −∇∇`(θ∗)

or J = −k. Hence, if the model is correct, our unbiased estimate is just

L(θ̂)− tr I

and of course tr I = d.
There, as you’ll notice, several steps where we’re making a bunch of approx-

imations. Some of these approximations (especially those involving the Taylor
expansions) can be shown to be OK asymptotically (i.e., as n → ∞) by more
careful math. The last steps, however, where we invoke the Fisher identity,
are rather more dubious. (After all, all of the models we’re working with can
hardly contain the true distribution.) A somewhat more robust version of AIC
is therefore to use as the criterion

L(θ̂) + trKJ

4 Leave-one-out Cross-Validation (LOOCV)

When looking at influential points and outliers, we considered omitting one
point from the data set, estimating the model, and then trying to predict that

one data point. The leave-one-out fitted value for data point i is m̂
(−i)
i , where
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10 4.1 Short-cut Based on Leverage

the subscript (−i) indicates that point i was left out in calculating this fit. The
leave-one-out cross-validation score of the model is

LOOCV =
1

n

n∑
i=1

(Yi − m̂(−i)
i )2

(Many more old-fashioned regression textbooks look at nLOOCV , and call it
PRESS, “predictive residual sum of squares”.)

The story for cross-validation is pretty compelling: we want to know if our
model can generalize to new data, so see how well it generalizes to new data.
Leaving out each point in turn ensures that that the set of points on which we
try to make predictions is just as representative of the whole population as the
original sample was. Fortunately, this is one of those cases where a compelling
story is actually true: LOOCV is an unbiased estimate of the generalization
error.

4.1 Short-cut Based on Leverage

Re-estimating the model n times would be seriously time-consuming, but there
is fortunately a short-cut:

LOOCV =
1

n

n∑
i=1

(
Yi − m̂i

1−Hii

)2

The numerator inside the square is just the residual of the model fit to the full
data. This gets divided by 1 − Hii, which is also something we can calculate
with just one fit to the model. (The denominator says that the residuals for
high-leverage points count more, and those for low-leverage points count less. If
the model is going out of its way to match Yi (high leverage Hii) and it still can’t
fit it, that’s worse than the same sized residual at a point the model doesn’t
really care about (low leverage).)

The gap between LOOCV and the MSE can be thought of as a penalty,
just like with Cp or AIC. The penalty doesn’t have such a nice mathematical
expression, but it’s well-defined and easy for us to calculate.

It also converges to the penalty Cp applies as n grows. To help see this, first
observe that the Hii must be getting small. (We know that

∑
iHii = p + 1.)

Then10 (1−Hii)
−2 ≈ 1− 2Hii, and

LOOCV ≈ 1

n

n∑
i=1

(Yi − m̂i)
2(1− 2Hii) ≈MSE + 2σ2 trH

Cross-validation with log-likelihood The leave-one-out idea can also be
applied for any model where we make a probabilistic prediction. Instead of
measuring mean squared error, we measure the negative log probability density

10Use the binomial theorem again.
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11 4.2 Summing Up Cp, AIC, LOOCV

the model assigns to the actual left-out point. (Negative, so that a lower score
is still better.) With Gaussian noise, this comes to the same thing as the MSE,
of course.

4.2 Summing Up Cp, AIC, LOOCV

Under a very broad range of circumstances, there are theorems which say,
roughly, the following:

As n→∞, the expected out-of-sample MSE of the model picked
by leave-one-out cross-validation is close to that of the best model
considered.

The condition for these results do not require that any of the models considered
be true, or that the true model have Gaussian noise or even be linear.

As we’ve seen, for large n leave-one-out and Mallow’s Cp become extremely
similar, and will pick the same model, and so will AIC, if one of the models is
right. So they will also pick models which predict almost as well as the best of
the models we’re working with. Since Cp and AIC involve less calculation than
leave-one-out, they have advantages when n is large. Against this, there don’t
seem to be any situations where Cp or AIC pick models with good predictive
performance but leave-one-out does not. The best way to think about Cp and
AIC is that they are fast approximations to the more fundamental quantity,
which is leave-one-out.

On the other hand, one can also prove the following:

As n → ∞, if the true model is among those being compared,
LOOCV, Cp and AIC will all tend to pick a strictly larger model
than the truth.

That is, all three criteria tend to prefer models which are bigger than the true
model, even when the true model is available to them. They are “not consistent
for model selection”.

The problem is that while these methods give unbiased estimates of the gen-
eralization error, that doesn’t say anything about the variance of the estimates.
Models with more parameters have higher variance, and the penalty applied by
these methods isn’t strong enough to overcome the chance of capitalizing on
that variance.

5 Other Model Selection Criteria

While many, many other model selection criteria have been proposed, two are
particularly important.

5.1 k-Fold Cross-Validation

In leave-one-out cross-validation, we omitted each data point in turn, and tried
to predict it. K-fold cross-validation is somewhat different, and goes as follows.
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12 5.2 BIC

• Randomly divide the data into k equally-sized parts, or “folds”.

• For each fold

– Temporarily hold back that fold, calling it the “testing set”.

– Call the other k − 1 folds, taken together, the “training set”.

– Estimate each model on the training set.

– Calculate the MSE of each model on the testing set.

• Average MSEs over folds.

We then pick the model with the lowest MSE, averaged across testing sets.
The point of this is just like the point of leave-one-out: the models are

compared only on data which they didn’t get to see during estimation. Indeed,
leave-one-out is the special case of k-fold cross-validation where k = n. The
disadvantage of doing that is that in leave-one-out, all of the training sets are
very similar (they share n − 2 data points), so averaging over folds does very
little to reduce variance. For moderate k — people typically use 5 or 10 —
k-fold CV tends to produce very good model selection results.

Like leave-one-out CV, k-fold cross-validation can be applied to any loss func-
tion, such as the proportion of cases mis-classified, or negative log-likelihood.

5.2 BIC

A more AIC-like criterion is the “Bayesian11 information criterion” introduced
by Schwarz (1978). The name is quite misleading12, but irrelevant; it’s got the
exact same idea of penalizing the log-likelihood with the number of parameters,
but using a penalty which gets bigger with n:

BIC(S) = LS −
log n

2
dim(S)

This is a stronger penalty than AIC applies, and this has consequences:

As n → ∞, if the true model is among those BIC can select
among, BIC will tend to pick the true model.

Of course there are various conditions attached to this, some of them quite
technical, but it’s generally true for IID samples, for regression modeling, for
many sorts of time series model, etc. Unfortunately, the model selected by
BIC will tend to predict less well than the one selected by leave-one-out cross-
validation or AIC.

11Bayesianism is the idea that we ought to have probabilities for parameter values and for
models, and not just for random variables (or, said another way, to treat parameters and
models as also random variables), and update those probabilities as we see more events using
Bayes’s rule. It is a controversial position within statistics and philosophy of science, with
many able and learned supporters, and equally able and learned opponents. (It is also the only
position in statistics and philosophy of science I know of which has an online cult dedicated to
promoting it, alongside reading certain works of Harry Potter fanfic, and trying not to think
about the possibility a future superintelligent computer will simulate your being tortured.)

12The truly Bayesian position is not to select a model at all, but rather to maintain a
probability distribution over all models you think possible.
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6 Stepwise Model Selection

One way to automatically select a model is to begin with the largest model you
can, and then prune it, which can be done in several ways:

• Eliminate the least-significant coefficient.

• Pick your favorite model selection criterion, consider deleting each coeffi-
cient in turn, and pick the sub-model with the best value of the criterion.

Having eliminated a variable, one then re-estimates the model, and repeats the
procedure. Stop when either all the remaining coefficients are significant (under
the first option), or nothing can be eliminated without worsening the criterion.

(What I’ve described is backwards stepwise model selection. Forward
stepwise model selection starts with the intercept-only model and adds variables
in the same fashion. There are, naturally, forward-backward hybrids.)

Stepwise model selection is a greedy procedure: it takes the move which
does the most to immediately improve the criterion, without considering the
consequences down the line. There are very, very few situations where it is
consistent for model selection, or (in its significance-testing version) where it
even does a particularly good job of coming up with predictive models, but it’s
surprisingly popular.

7 Inference after Selection

All of the inferential statistics we have done in earlier lectures presumed that
our choice of model was completely fixed, and not at all dependent on the data.
If different data sets would lead us to use different models, and our data are
(partly) random, then which model we’re using is also random. This leads to
some extra uncertainty in, say, our estimate of the slope on X1, which is not
accounted for by our formulas for the sampling distributions, hypothesis tests,
confidence sets, etc.

A very common response to this problem, among practitioners, is to ignore
it, or at least hope it doesn’t matter. This can be OK, if the data-generating
distribution forces us to pick one model with very high probability, or if all of
the models we might pick are very similar to each other. Otherwise, ignoring it
leads to nonsense.

Here, for instance, I simulate 200 data points where the Y variable is a
standard Gaussian, and there are 100 independent predictor variables, all also
standard Gaussians, independent of each other and of Y :

n <- 200; p <- 100

y <- rnorm(n)

x <- matrix(rnorm(n*p),nrow=n)

df <- data.frame(y=y,x)

mdl <- lm(y~., data=df)
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Of the 100 predictors, 5 have t-statistics which are significant at the 0.05
level or less. (The expected number would be 5.) If I select the model using
just those variables13, I get the following:

stars <- 1+which(coefficients(summary(mdl))[-1,4]<0.05) # Why 1+?

mdl.2 <- lm(y~., data=df[,c(1,stars)])

summary(mdl.2)

##

## Call:

## lm(formula = y ~ ., data = df[, c(1, stars)])

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.53035 -0.75081 0.03042 0.58347 2.63677

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.03084 0.07092 0.435 0.6641

## X21 -0.13821 0.07432 -1.860 0.0644

## X25 0.12472 0.06945 1.796 0.0741

## X41 0.13696 0.07279 1.882 0.0614

## X83 -0.03067 0.07239 -0.424 0.6722

## X88 0.14585 0.07040 2.072 0.0396

##

## Residual standard error: 0.9926 on 194 degrees of freedom

## Multiple R-squared: 0.06209,Adjusted R-squared: 0.03792

## F-statistic: 2.569 on 5 and 194 DF, p-value: 0.02818

Notice that final over-all F statistic: it’s testing whether including those
variables fits better than an intercept-only model, and saying it thinks it does,
with a definitely significant p-value. This is the case even though, by construc-
tion, the response is completely independent of all predictors. This is not a fluke:
if you re-run my simulation many times, your p-values in the full F test will not
be uniformly distributed (as they would be on all 100 predictors), but rather
will have a distribution strongly shifted over to the left. Similarly, if we looked
at the confidence intervals, they would be much too narrow.

These issues do not go away if the true model isn’t “everything is independent
of everything else”, but rather has some structure. Because we picked the
model to predict well on this data, if we then run hypothesis tests on that same
data, they’ll be too likely to tell us everything is significant, and our confidence
intervals will be too narrow. Doing statistical inference on the same data we
used to select our model is just broken. It may not always be as spectacularly
broken as in my demo above, but it’s still broken.

There are three ways around this. One is to pretend the issue doesn’t exist;

13Exercise: Explain all the ways in which this is a bad idea. Now imagine explaining the
same thing to your boss, who took econometrics 20 years ago, and wants to know why he
can’t just follow the stars.
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as I said, this is popular, but it’s got nothing else to recommend it. Another,
which is an area of very active research currently in statistics, is to try to come
up with clever technical adjustments to the inferential statistics14. The third
approach, which is in many ways the simplest, is to use different data sets to
select a model and to do inference within the selected model15.

7.1 Data Splitting

Data splitting is (for regression) a very simple procedure:

• Randomly divide your data set into two parts.

• Calculate your favorite model selection criterion for all your candidate
models using only the first part of the data. Pick one model as the winner.

• Re-estimate the winner, and calculate all your inferential statistics, using
only the other half of the data.

(Division into two equal halves is optional, but usual.)
Because the winning model is statistically independent of the second half of

the data, the confidence intervals, hypothesis tests, etc., can treat it as though
that model were fixed a priori. Since we’re only using n/2 data points to
calculate confidence intervals (or whatever), they will be somewhat wider than
if we really had fixed the model in advance and used all n data points, but that’s
the price we pay for having to select a model based on data.

8 R Practicalities

R2 and adjusted R2 are calculated by the summary function for lm objects, if
— Heaven forbid – you should ever need them. So, more practically, is the
in-sample root mean squared error, using the unbiased estimator:

mdl <- lm(something ~ other_things, data=df)

summary(mdl)$r.squared

summary(mdl)$adj.r.squared

summary(mdl)$sigma

The un-adjusted MSE is also easily calculated:

mean(residuals(mdl)^2)

The AIC function knows how to work with models produced by lm; it uses
an alternate definition of AIC which is −2× the one I gave above (so smaller
AIC is preferred). Similarly for the BIC function.

14If you’re curious, ask Profs. Tibshirani or G’Sell about this.
15Technically, there is a fourth possible approach, which is to select the model completely

at random, and then do inference within it. This may sound like a joke, but there are actually
situations, like testing for a difference in means between high-dimensional vectors, where it’s
perfectly reasonable.
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The step function will do stepwise model selection based on AIC, either
forward or backward. Manipulating the arguments also allows for doing BIC.
(See the help file.) Warning: By default this prints out a lot of information
about every model it looks at; consider setting trace=0.

For leave-one-out cross-validation, the most straightforward approach is to
use the following function:

# Calculate LOOCV score for a linear model

# Input: a model as fit by lm()

# Output: leave-one-out CV score

cv.lm <- function(mdl) {
return(mean((residuals(mdl)/(1-hatvalues(mdl)))^2))

}

For k-fold cross-validation, the easiest option at this stage is to use the
cv.glm function in the package boot16. Note that this requires you to fit your
model with the glm function, not with lm, and that you will really only be
interested in the delta component of what cv.glm returns. (See the help file,
especially the examples at the end.)

Nobody seems to have written a function for calculating Cp. Here is one.

# Calculate Mallow's Cp for a list of linear models

# Input: List of models, all fit by lm

# Output: Vector of Cp statistics

# Presumes: All models are nested inside the largest model; all models

# fit on a common data set

Cp.lm <- function(mdl.list) {
# How many samples do we have?

# Presumes all models fit to the same data

n <- nobs(mdl.list[[1]])

# Extract the number of degrees of freedom for each model

DoFs <- sapply(mdl.list, function(mdl) { sum(hatvalues(mdl)) })
# Extract the MSEs of each model

MSEs <- sapply(mdl.list, function(mdl) { mean(residuals(mdl)^2) })
# Which model had the most parameters?

# Presuming that model includes all the others as special cases

biggest <- which.max(DoFs)

# Use the nesting model's MSE to estimate sigma^2

sigma2.hat <- MSEs[[biggest]]*n/(n-DoFs[[biggest]])

Cp <- MSEs + 2*sigma2.hat*DoFs/n

return(Cp)

}

# Example of usage:

Cp.lm(list(mdl1, mdl2, mdl3))

16Later in this course and in 402, we will write our own CV code, partly as character
building and partly because there’s nothing quite like doing this to actually get how it works.
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17 8.1 A Demo

8.1 A Demo

We’ll do polynomial regression with just one X variable; this way we can keep
throwing in as many terms as we need to, in order to make the point. X will
be uniformly distributed on the interval [−2, 2], and when we use a qth order
polynomial, we’ll set

Y =

q∑
i=1

(−1)qXq + ε

with ε having our usual Gaussian distribution with mean 0 and standard devi-
ation 0.1.

Here’s code to simulate from the model:

# Simulate variable-degree polynomial with fixed X and coefficients

# Inputs: Number of points to simulate; degree of polynomial

# Output: Data from with x and y columns

sim.poly <- function(n, degree) {
x <- runif(n, min=-2, max=2)

poly.x <- poly(x, degree=degree, raw=TRUE)

alternating.signs <- rep(c(-1,1),length.out=degree)

sum.poly <- poly.x %*% alternating.signs

y <- x+rnorm(n,0,0.1)

return(data.frame(x=x,y=y))

}

And here is code to fit many polynomials to it:

# Fit multiple univariate polynomials to the same data

# Input: data frame; maximum degree of polynomial

# Output: Liist of estimated models

# Presumes: data frame has columns called x and y; y is response; maximum

# degree is an integer >= 1.

poly.fit <- function(df, max.degree) {
lapply(1:max.degree, function(deg) { lm(y ~ poly(x, degree=deg), data=df) })

}

And to apply multiple selection criteria to a list of models:

# Apply multiply model selection criteria to a list of models

# Inputs: list of models

# Outputs: Vector, indicating which model from the list was picked by

# each criterion

# Presumes: all models are set up to work with all criteria functions applied

# True if all models were fit by lm()

# All models fit on same data set (otherwise, weird)

selectors <- function(mdl.list) {
Rsq <- which.max(sapply(mdl.list, function(mdl) { summary(mdl)$r.sq }))
Rsq.adj <- which.max(sapply(mdl.list, function(mdl) { summary(mdl)$adj.r.sq }))
Cp <- which.min(Cp.lm(mdl.list))
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LOOCV <- which.min(sapply(mdl.list, cv.lm))

AIC <- which.min(sapply(mdl.list, AIC))

BIC <- which.min(sapply(mdl.list, BIC))

choices <- c(Rsq = Rsq, Rsq.adj = Rsq.adj, Cp=Cp, LOOCV=LOOCV,

AIC = AIC, BIC=BIC)

return(choices)

}

To put this all together, let’s see what gets picked if we simulate 20 data
points from the quadratic, and allow models of up to order 10:

selectors(poly.fit(sim.poly(n=20, degree=2), max.degree=10))

## Rsq Rsq.adj Cp LOOCV AIC BIC

## 10 9 1 1 1 1

Of course, one run doesn’t mean much, so let’s do this a bunch of times:

summary(t(replicate(1000,

selectors(poly.fit(sim.poly(n=20, degree=2),

max.degree=10)))))

## Rsq Rsq.adj Cp LOOCV

## Min. :10 Min. : 1.000 Min. : 1.000 Min. : 1.000

## 1st Qu.:10 1st Qu.: 2.000 1st Qu.: 1.000 1st Qu.: 1.000

## Median :10 Median : 6.000 Median : 1.000 Median : 1.000

## Mean :10 Mean : 5.483 Mean : 2.656 Mean : 1.873

## 3rd Qu.:10 3rd Qu.: 9.000 3rd Qu.: 3.000 3rd Qu.: 2.000

## Max. :10 Max. :10.000 Max. :10.000 Max. :10.000

## AIC BIC

## Min. : 1.000 Min. : 1.000

## 1st Qu.: 1.000 1st Qu.: 1.000

## Median : 2.000 Median : 1.000

## Mean : 3.912 Mean : 2.044

## 3rd Qu.: 7.000 3rd Qu.: 2.000

## Max. :10.000 Max. :10.000

This is showing us the summary statistics for the degree of the polynomial
model selected according to each criteria. (Why do I put in the transpose?)
Remember that the right degree here is 2, so R2 is (as usual) useless, and
adjusted R2 little better. The others all at least do something roughly right,
though AIC is worse than the other three.

Of course, n = 20 isn’t very much information17, so let’s increase that to
n = 1000.

summary(t(replicate(1000,

selectors(poly.fit(sim.poly(n=1000, degree=2),

max.degree=10)))))

17Though it seems to be enough for leave-one-out or BIC.
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## Rsq Rsq.adj Cp LOOCV

## Min. :10 Min. : 1.0 Min. : 1.000 Min. : 1.000

## 1st Qu.:10 1st Qu.: 1.0 1st Qu.: 1.000 1st Qu.: 1.000

## Median :10 Median : 4.0 Median : 1.000 Median : 1.000

## Mean :10 Mean : 4.6 Mean : 1.713 Mean : 1.719

## 3rd Qu.:10 3rd Qu.: 8.0 3rd Qu.: 2.000 3rd Qu.: 2.000

## Max. :10 Max. :10.0 Max. :10.000 Max. :10.000

## AIC BIC

## Min. : 1.000 Min. :1.000

## 1st Qu.: 1.000 1st Qu.:1.000

## Median : 1.000 Median :1.000

## Mean : 1.719 Mean :1.015

## 3rd Qu.: 2.000 3rd Qu.:1.000

## Max. :10.000 Max. :2.000

Adjusted R2 is hopeless, leave-one-out does essentially the same as AIC or
Cp (and all have a 25% probability of picking a model which is too big), and
BIC is, as expected, much more conservative.

You can experiment with seeing what happens if you change the true order
of the model, or the range of orders compared by the model selectors, or make
some of the higher-order polynomial terms close to but not quite zero, etc., etc.

9 Further Reading

The best reference on model selection I know of, by far, is Claeskens and Hjort
(2008); unfortunately, much of the theory is beyond the level of this course, but
some of the earlier chapters should not be. Hansen (2005) provides interesting
perspectives based on extensive experience in econometrics.

Cross-validation goes back in statistics into the 1950s, if not earlier, but
did not become formalized as a tool until the 1970s, with the work of Stone
(1974), Geisser (1975) and Geisser and Eddy (1979). (The last paper, written
in 1977, made it perfectly clear the approach could be used on log-likelihood,
mis-classification rates, etc., as well as squared error.) It was adopted, along
with many other statistical ideas, by computer scientists during the period in the
late 1980s–early 1990s when the modern area of “machine learning” emerged
from (parts of) earlier areas called “artificial intelligence”, “pattern recogni-
tion”, “connectionism”, “neural networks”, or indeed “machine learning”. Sub-
sequently, many of the scientific descendants of the early machine learners forgot
where their ideas came from, to the point where many people now think cross-
validation is something computer science contributed to data analysis. For a
recent survey of cross-validation techniques and their uses, see Arlot and Celisse
(2010).

For theoretical results on model selection by cross-validation, and on data
splitting, see Györfi et al. (2002).

This lecture has emphasized model selection criteria which could be applied
automatically. Of course, doing anything automatically is usually somewhat du-
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bious. An alternative, with a lot to recommend it, is to very carefully construct
models, test their implications, and gradually move towards more complicated
models as improvements in data (volume, precision of measurement, range of
variables, etc.) show definite problems with simpler models (Gelman and Shal-
izi, 2013).

10 Exercises

To think through or practice on, not to hand in.

1. Show that Cov [Yi, m̂i] = σ2Hii. (Hint: Write m̂i as a weighted sum of
Yj .)

2. Using the step function, repeat the simulation from §7 and report the
number of selected coefficients, their median p-value (in Wald tests of the
slope being zero), and the p-value of the full F -test. Repeat the simulation
many times, and plot a histogram of the F -test p-values.
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