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Let us review1.

1 Basic Model Assumptions (without Gaussian
Noise)

We model one continuous response variable, as a linear function of p numerical
predictors, plus noise:

Y = β0 + β1X1 + . . . βpXp + ε (1)

Linearity is an assumption, which can be wrong.
Further assumptions take the form of restrictions on the noise:

E [ε|X] = 0 (2)

Var [ε|X] = σ2 (3)

(4)

Moreover, we assume ε is uncorrelated across observations.
We convert this to matrix form:

Y = xβ + ε (5)

1All of the theory for simple linear regression is a special case of what follows, with p = 1.
The entire first third of the course was just a warm-up period.
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Y is an n × 1 matrix of random variables; x is an n × (p + 1) matrix, with an
extra column of all 1s; ε is an n× 1 matrix. Beyond linearity, the assumptions
translate to

E [ε|x] = 0 (6)

and
Var [ε|x] = σ2I (7)

We don’t know β. If we guess it is b, we will make an n × 1 vector of
predictions

xb (8)

and have an n× 1 vector of errors

y − xb (9)

The mean squared error, as a function of b, is then

MSE(b) =
1

n
(y − xb)T (y − xb) (10)

2 Least Squares Estimation and Its Properties

The least squares estimate of the coefficients is the one which minimizes the
MSE:

β̂ ≡ argmin
b

MSE(b) (11)

To find this, we need the derivatives:

∇bMSE =
2

n
(xTy − xTxb) (12)

We set the derivative to zero at the optimum:

1

n
xT
(
y − xβ̂

)
= 0 (13)

The term in parentheses is the vector of errors when we use the least-squares
estimate. This is the vector of residuals,

e ≡ y − xβ̂ (14)

so the have the normal, estimating or score equations,

1

n
xTe = 0 (15)

We say “equations”, plural, because this is equivalent to the set of p+1 equations

1

n

n∑
i=1

ei = 0 (16)

1

n

n∑
i=1

eixij = 0 (17)
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(Many people omit the factor of 1/n.) This tells us that while e is an n-
dimensional vector, it is subject to p+ 1 linear constraints, so it is confined to a
linear subspace of dimension n−p−1. Thus n−p−1 is the number of residual
degrees of freedom.

The solution to the estimating equations is

β̂ = (xTx)−1xTy (18)

This is one of the two most important equations in the whole subject. It says
that the coefficients are a linear function of the response vector y. Set all the
responses to 0 and all the coefficients are zero; double all the responses and all
the coefficients are doubled.

Say that x′ is the n× p matrix of predictors, without the column of 1s, and
β′ is the p × 1 vector of slopes. Finally, let x be the 1 × p vector of the mean
values of the predictors. Then

β̂0 = y − xβ̂′ (19)

while
β̂′ = V̂ar [X]

−1
Ĉov [X,Y ] (20)

just as in simple linear regression.
The least squares estimate is always a constant plus noise:

β̂ = (xTx)−1xTY (21)

= (xTx)−1xT (xβ + ε) (22)

= (xTx)−1xTxβ + (xTx)−1xT ε (23)

= β + (xTx)−1xT ε (24)

The least squares estimate is always unbiased:

E
[
β̂
]

= β + (xTx)−1xTE [ε] = β (25)

Its variance always depends just on σ2 and xTx:

Var
[
β̂
]

= σ2(xTx)−1 (26)

Since the entries in xTx are usual proportional to n, it can be helpful to say

Var
[
β̂
]

=
σ2

n

(
1

n
xTx

)−1
(27)

The variance of any one coefficient estimator is

Var
[
β̂i

]
=
σ2

n

(
1

n
xTx

)−1
i+1,i+1

(28)
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The vector of fitted means or conditional values is

m̂ ≡ xβ̂ (29)

This is more conveniently expressed in terms of the original matrices:

m̂ = x(xTx)−1xTy = Hy (30)

The fitted values are thus linear in y: set the responses all to zero and all the
fitted values will be zero; double all the responses and all the fitted values will
double.

The n × n hat matrix H ≡ x(xTx)−1xT , also called the influence, pro-
jection or prediction matrix, controls the fitted values. It is a function of x
alone, ignoring the response variable totally. It is an n× n matrix with several
important properties:

• It is symmetric, HT = H.

• It is idempotent, H2 = H.

• Its trace trH =
∑

iHii = p+ 1, the number of degrees of freedom for the
fitted values.

The variance-covariance matrix of the fitted values is

Var [m̂] = Hσ2IHT = σ2H (31)

To make a prediction at a new point, not in the data used for estimation, we
take its predictor coordinates and group them into a 1×(p+1) matrix xnew (in-

cluding the 1 for the intercept). The point prediction for Y is then xnewβ̂. The

expected value is xnewβ, and the variance is Var
[
xnewβ̂

]
= xnewVar

[
β̂
]
xT
new =

σ2xnew(xTx)−1xT
new.

The residuals are also linear in the response:

e ≡ y − m̂ = (I−H)y (32)

The trace of I−H is n− p− 1. The variance-covariance matrix of the residuals
is thus

Var [e] = σ2(I−H) (33)

The mean squared error is

MSE =
1

n

n∑
i=1

e2i =
1

n
eTe (34)

Its expectation value is slightly below σ2:

E [MSE] = σ2n− p− 1

n
(35)
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(This may be proved using the trace of I −H.) An unbiased estimate of σ2,
which I will call σ̂2 throughout the rest of this, is

σ̂2 ≡MSE
n

n− p− 1
(36)

The leverage of data point i is Hii. This has several interpretations:

1. Var [m̂i] = σ2Hii; the leverage controls how much variance there is in the
fitted value.

2. ∂m̂i/∂yi = Hii; the leverage says how much changing the response value
for point i changes the fitted value there.

3. Cov [m̂i, Yi] = σ2Hii; the leverage says how much covariance there is be-
tween the ith response and the ith fitted value.

4. Var [ei] = σ2(1−Hii); the leverage controls how big the ith residual is.

The standardized residual is

ri =
ei

σ̂
√

1−Hii

(37)

so all the standardized residuals have the same variance.
The only restriction we have to impose on the predictor variables Xi is that

(xTx)−1 needs to exist. This is equivalent to

• x is not collinear: none of its columns is a linear combination of other
columns; which is also equivalent to

• The eigenvalues of xTx are all > 0. (If there are zero eigenvalues, the cor-
responding eigenvectors indicate linearly-dependent combinations of pre-
dictor variables.)

Nearly-collinear predictor variables tend to lead to large variances for coefficient
estimates, with high levels of correlation among the estimates. Sometimes this
uncertainty can be reduced by finding new variables which contain most (or all)
of the same information, but are less correlated with each other.

It is perfectly OK for one column of x to be a function of another, provided it
is a nonlinear function. Thus in polynomial regression we add extra columns
for powers of one or more of the predictor variables. (Any other nonlinear
function is however also legitimate.) This complicates the interpretation of
coefficients as slopes, just as though we had done a transformation of a column;
see the handout on transformations. Estimation and inference for the coefficients
on these predictor variables goes exactly like estimation and inference for any
other coefficient.

One column of x could be a (nonlinear) function of two or more of the
other columns; this is how we represent interactions. Usually the interaction
column is just a product of two other columns, for a product or multiplicative
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interaction; this also complicates the interpretation of coefficients as slopes.
(See the notes on interactions.) Estimation and inference for the coefficients on
these predictor variables goes exactly like estimation and inference for any other
coefficient.

We can include qualitative predictor variables with k discrete categories or
levels by introducing binary indicator variables for k−1 of the levels, and adding
them to x. The coefficients on these indicators tell us about amounts that are
added (or subtracted) to the response for every individual who is a member of
that category or level, compared to what would be predicted for an otherwise-
identical individual in the baseline category. Equivalently, every category gets
its own intercept. Estimation and inference for the coefficients on these predictor
variables goes exactly like estimation and inference for any other coefficient.

Interacting the indicator variables for categories with other variables gives
coefficients which say what amount is added to the slope used for each member
of that category (compared to the slope for members of the baseline level).
Equivalently, each category gets its own slope. Estimation and inference for
the coefficients on these predictor variables goes exactly like estimation and
inference for any other coefficient.

Model selection for prediction aims at picking a model which will predict
well on new data drawn from the same distribution as the data we’ve seen.
One way to estimate this out-of-sample performance is to look at what the
expected squared error would be on new data with the same x matrix, but a
new, independent realization of y. In the notes on model selection, we showed
that

E
[

1

n
(Y′ − m̂)T (Y′ − m̂)

]
= E

[
1

n
(Y − m̂)T (Y − m̂)

]
+ 2

1

n

n∑
i=1

Cov [Yi, m̂i](38)

= E
[

1

n
(Y − m̂)T (Y − m̂)

]
+

2

n
σ2 trH (39)

= E
[

1

n
(Y − m̂)T (Y − m̂)

]
+

2

n
σ2(p+ 1) (40)

Mallow’s Cp estimates this by

MSE +
2

n
σ̂2(p+ 1) (41)

using the σ̂2 from the largest, model being selected among (which includes all
the other models as special cases).

An alternative is leave-one-out cross-validation, which amounts to

1

n

n∑
i=1

(
ei

1−Hii

)2

(42)

CP and LOOCV converge for large n.
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3 Gaussian Noise

The Gaussian noise assumption is added on to the other assumptions already
made. It is that εi ∼ N(0, σ2), independent of the predictor variables and all
other εj . Said otherwise, ε has a multivariate Gaussian distribution,

ε ∼MVN(0, σ2I) (43)

Under this assumption, it follows that, since β̂ is a linear function of ε, it
also has a multivariate Gaussian distribution:

β̂ ∼MVN(β, σ2(xTx)−1) (44)

Also,
m̂ ∼MVN(xβ, σ2H) (45)

It follows from this that

β̂i ∼ N(βi, σ
2(xTx)−1i+1,i+1 (46)

and
m̂i ∼ N(xiβ, σ

2Hii) (47)

The sampling distribution of the estimated conditional mean at a new point
xnew is N(xnewβ, σ

2xnew(xTx)−1xT
new).

The mean squared error follows a χ2-ish distribution:

nMSE

σ2
∼ χ2

n−p−1 (48)

Moreover, the MSE is statistically independent of β̂. We may therefore define

ŝe
[
β̂i

]
= σ̂

√
(xTx)−1i+1,i+1 (49)

and
ŝe [m̂i] = σ̂

√
Hii (50)

and get t distributions:

β̂i − βi
ŝe
[
β̂i

] ∼ tn−p−1 (51)

and
m̂i −mi

ŝe [m̂i]
∼ tn−p−1 (52)

The Wald test for the hypothesis that βi = β∗i therefore forms the test
statistic

β̂i − β∗i
ŝe
[
β̂i

] (53)
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and rejects the hypothesis if it is too large (above or below zero) compared to
the quantiles of a tn−p−1 distribution. The summary function of R runs such a
test of the hypothesis that βi = 0. There is nothing magic or even especially
important about testing for a 0 coefficient, and the same test works for testing
whether a slope = 42 (for example).

Important! The null hypothesis being test is

Y is a linear function of X1, . . . Xp, and of no other predictor
variables, with independent, constant-variance Gaussian noise, and
the coefficient βi = 0 exactly.

and the alternative hypothesis is

Y is a linear function of X1, . . . Xp, and of no other predictor
variables, with independent, constant-variance Gaussian noise, and
the coefficient βi 6= 0.

The Wald test does not test any of the model assumptions (it presumes them
all), and it cannot say whether in an absolutely sense Xi matters for Y ; adding
or removing other predictors can change whether the true βi = 0.

Warning! Retaining the null hypothesis βi = 0 can happen if either the
parameter is precisely estimated, and confidently known to be close to zero, or
if it is im-precisely estimated, and might as well be zero or something huge on
either side. Saying “We can ignore this because we can be quite sure it’s small”
can make sense; saying “We can ignore this because we have no idea what it is”
is preposterous.

To test whether several coefficients are all simultaneously zero, use an F
test. The null hypothesis is

Y is a linear function of X1, . . . Xp, and of no other predictor
variables, with independent, constant-variance Gaussian noise, and
the coefficients for all but q of the variables are exactly 0, βq+1 =
βq+2 . . . βp = 0.

(You can always re-order the predictor variables so that you’re saying coefficients
1 through q are free, and q + 1 through p are fixed to zero.) The alternative
hypothesis is

Y is a linear function of X1, . . . Xp, and of no other predictor
variables, with independent, constant-variance Gaussian noise, and
the coefficient βq+1, βq+2, . . . βq 6= 0.

The smaller, null model leads to an estimate of σ2, σ̂2
null, and the larger, alter-

native model gives us the estimate σ̂2
full. The F statistic is

Fstat =
(σ̂2

null − σ̂2
full)/(p− q)

σ̂2
full/(n− p− 1)

(54)

The numerator is basically about how much the MSE shrinks for each extra pa-
rameter we throw at fitting the data; the denominator is an estimate of how big
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an improvement-per-degree-of-freedom we should see under the null hypothesis.
Under that null hypothesis,

Fstat ∼ Fp−q,n−p−1 (55)

Note that the F test when q = p− 1 becomes identical to a t-test.
If 0 < q < p, we have a “partial” F test. A “full” F test sets q = 0,

i.e., it tests the null hypothesis of an intercept-only model (with independent,
constant-variance Gaussian noise) against the alternative of the linear model
on X1, . . . Xp (and only those variables, with independent, constant-variance
Gaussian noise). This is only of interest under very unusual circumstances.

Once again, no F test is capable of checking any modeling assumptions. This
is because both the null hypothesis and the alternative hypothesis presume that
the all of the modeling assumptions are exactly correct.

Inverting the Wald test yields confidence intervals for each coefficient: a 1−α
confidence interval for βi is

β̂i ± ŝe [βi] tn−p−1(α/2) (56)

Inverting the F test leads to ellipse-shaped (in more than two dimensions,
“ellipsoidal”) confidence regions. (See Lecture 18 for the detailed formula, which
involves matrix inversion.) These make a simultaneous guarantee: either all the
parameters are inside the confidence region, or we were very unlucky when we
got our data. A simpler way to get a simultaneous confidence region for all
p parameters is to use 1 − α/p confidence intervals for each one (“Bonferroni
correction”).

Turning to the fitted values, by entirely parallel reasoning, we may test any
hypothesis of the form mi = m∗i by a t-test. More practically, a 1−α confidence
interval for the fitted value (conditional expectation) is

m̂i ± ŝe [m̂i] tn−p−1(α/2) (57)

The standardized residuals do not quite have a t distribution, because σ̂ is
a function of all the eis, hence the numerator in the definition of ri is not in-
dependent of the denominator. But the cross-validated or studentized residuals
are:

1. Temporarily hold out data point i

2. Re-estimate the coefficients to get β̂(−i) and σ̂(−i)

3. Make a prediction for yi, m̂
(−i)
i

4. Calculate

ti =
yi − m̂(−i)

i

σ̂(−i) + ŝe
[
m̂

(−i)
i

] (58)
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This can be done without recourse to actually re-fitting the model2:

ti = ri

√
n− p− 1

n− p− r2i
(59)

(Note that for large n, this is typically extremely close to ri.) Once we have it,
there is a sampling distribution3 for ti:

ti ∼ tn−p−2 (60)

(The −2 is because we’re using n− 1 data points to estimate p+ 1 coefficients.)
Cook’s distance for point i is the sum of the (squared) changes to all the

fitted values if i was omitted; it is4

Di =
1

p+ 1
e2i

Hii

(1−Hii)2
(61)

There is a tradition of being worried if Di ≥ Fp,n−p−2(0.1), but no hard proofs
behind it.

Under the Gaussian assumption, one can calculate a likelihood for the data.
The log-likelihood is, up to constants independent of the parameters,

L = −n
2

logMSE (62)

since the MSE is the maximum likelihood estimate of σ2 (even though it is
slightly biased). The likelihood ratio test which can be used in place of the F
test has as its test statistic

Λ ≡ log
Lfull

Lnull
(63)

= logLfull − logLnull (64)

=
n

2
(− logMSEfull + logMSEnull) (65)

=
n

2
log

MSEnull

MSEfull
(66)

Under the null hypothesis, 2Λ ∼ χ2
p−q for large n.

The log-likelihood can also be used to calculate a model selection criterion,
the Akaike information criterion (AIC):

AIC = L− (p+ 1) (67)

Sometimes this is written with a factor of 2, or of -1 (so that smaller values of
AIC are preferred), or of -2 (ditto). As n → ∞, the model selected by AIC
becomes identical to the model selected by Cp or LOOCV. (In fact, the AIC
score of the true model converges on its Cp or LOOCV score.) AIC is best
thought of as a very fast (because very simple) approximation to leave-one-out
CV.

2Like the definition of cross-validated or studentized residuals, this next formula does not
need the Gaussian noise assumption.

3Under the Gaussian noise assumption.
4Again, no Gaussian noise assumption is needed for the next formula.
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