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1 What Variable Selection Is

“Variable selection” means selecting which variables to include in our model
(rather than some sort of selection which is itself variable). As such, it is a special
case of model selection. People tend to use the phrase “variable selection” when
the competing models differ on which variables should be included, but agree on
the mathematical form that will be used for each variable — e.g., temperature
might or might not be included as a predictor, but there is no question about
whether, if it is, we’d use temperature or temperature2 or log temperature.

Since variable selection is a special case of model selection, and we’ve talked
extensively about model selection already (see especially lecture 21), these notes
can be briefer than usual.
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2 Why Variable Selection Using p-Values Is a
Bad Idea

When we assume the linear, constant-variance, independent-Gaussian-noise model
is completely correct, it is easy to test the hypothesis that any particular coef-
ficient is zero. The (Wald) test statistic is

β̂i

ŝe
[
β̂i

]
and, under the null hypothesis that βi = 0, this has a tn−(p+1) distribution,
therefore tending to a z (standard-Gaussian) distribution as n→∞.

It is very, very tempting, and common, to use the p-values which come
from this test to select variables: significant variables get included, insignificant
ones do not, ones with smaller p-values (hence larger test statistics) are higher
priorities to include than ones with smaller test statistics. This pattern of
reasoning shows up over and over again among users of regression, including, I
am ashamed to say, not a few statisticians.

The reasons why this is a bad idea were already gone over in lecture 15,
so, again, I will be brief. Let us think about what will tend to make the test
statistic larger or smaller, by being more explicit about the denominator:

β̂i
σ̂√

nV̂ar[Xi]

√
V IFi

where V̂ar [Xi] is the sample variance of the ith predictor variable, and V IFi
is that variables variance-inflation factor (see Lecture 17). What follows from
this?

1. Larger coefficients will, all else being equal, have larger test statistics and
be more significant (β̂i in the numerator).

2. Reducing the noise around the regression line will increase all the test
statistics, and make every variable more significant (σ̂ in the denominator).

3. Increasing the sample size will increase all the test statistics, and make
every variable more significant (

√
n in the denominator).

4. More variance in a predictor variable will, all else being equal, increase
the test statistic and make the variable more significant (V̂ar [Xi] in the
denominator).

5. More correlation between Xi and the other predictors will, all else being
equal, decrease the test statistic and make the variable less significant
(V IFi in the denominator).
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The test statistic, and thus the p-value, runs together an estimate of the actual
size of the coefficient with how well we can measure that particular coefficient.
This is exactly the right thing to do if our question is “Can we reliably detect
that this coefficient isn’t exactly zero?” That is a very, very different question
from “Is this variable truly relevant to the response?”, or even from “Does
including this variable help us predict the response?” Utterly trivial variables
can show up as having highly significant coefficients, if the predictor has lots
of variance and isn’t very correlated with the other predictors. Very important
(large-coefficient) variables can be insignificant, when their coefficients can’t be
measured precisely with our data. Every variable whose coefficient isn’t exactly
zero will eventually (as n → ∞) have an arbitrarily large test statistic, and an
arbitrarily small p-value1

None of this is even much help in answering the question “Which variables
help us predict the response?”, let alone “Which variables help us explain the
response?”

None of this is fixed by using F -tests on groups of coefficients, rather than
t-tests on individual coefficients.

3 Cross-Validation Instead

If we want to use our models to make predictions, then what we want to know is
how well the model will predict new data. The Cp statistic and AIC attempt to
estimate this, using how well the model predicted the old data, plus adjustments
based on theory. Cross-validation estimates how well the model will predict
new data by predicting new data. This is, unsurprisingly, a very good way of
estimating how well the model will predict.

The two main forms of cross-validation are leave-one-out, which we have
already discussed in detail, and k-fold cross-validation, which we have spent
less time on in class but is described in Lecture 21. They each have their
strengths and weaknesses (which is why we have both).

• k-fold CV is fast (the model gets fit only k times, and typically k is 5 or
10); it is also “consistent for variable selection”, meaning that if one of
the models presented to it contains all the relevant predictors, and only
the relevant predictors, then the probability of picking that right model
→ 1 as n → ∞. On the other hand, it tends to give somewhat worse
predictions than leave-one-out, especially when all the models are wrong.

• Leave-one-out can be slow (because the model must be fit n times), except
for linear regression where there is a short-cut formula. LOOCV is in-
consistent for variable selection: even with unlimited amounts of data, it
tends to include more variables than are necessary, though it will tend to
include all the relevant variables. The model it picks tends to have lower
prediction errors on new data than those picked by k-fold CV.

1“Oh my God, it’s full of stars.” — David Bowman, on increasing his sample size to 2001.
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As discussed in Lecture 21, Cp and AIC are best seen as approximations to
leave-one-out, which avoid the step of re-fitting the model, or even of calculating
the short-cut formula (which still involves summing over every data point).

4 Stepwise Variable Selection

“Stepwise” or “stagewise” variable selection is a family of methods for adding
or removing variables from a model sequentially.

Forward stepwise regression starts with a small model (perhaps just an
intercept), considers all one-variable expansions of the model, and adds the
variable which is best according to some criterion. This criterion might be
“lowest p-value”, “highest adjusted R2”, “lowest Mallow’s Cp”, “lowest AIC”,
“lowest score under cross-validation”, etc. This process is then repeated, always
adding one variable at a time, until the criterion stops improving. In backwards
stepwise regression, we start on the contrary with the largest model we’re willing
ton contemplate, and keep eliminating variables until we no longer improve. The
obvious forward-backward or mixed stepwise variable selection procedure
will contemplating both adding and removing one variable at each step, and
take the best step.

In a forward-backward algorithm we could easily add one variable, then
add or remove another, and then remove the first variable we’d added. This
is because these stepwise algorithms only look at models which are close (one
variable away from) the variable we started with2 In principle, we could just
look at all possible linear models based on a given set of variables, and compute
our criterion (adjusted R2, Cp, AIC, LOOCV, etc.) for each one of them; this
is called all-subsets variable selection, because each model corresponds to a
subset of the variables. With p variables there are 2p possible models, so all-
subsets regression becomes, literally, exponentially more time-consuming with
more variables; this is the only real justification for the stepwise procedures.

4.1 Stepwise Selection in R

The simplest function for stepwise model selection is the step function, which
is built in to R. It can do forward or backward selection, or both, and you
can specify both the smallest model to consider (so those variables are always
included), and the largest. It can, however, only use AIC or BIC as the selection
criteria.

Here’s an example of how it works3, for the real estate data set from home-
work 84.

2As search algorithms, they are “greedy”.
3The trace argument controls how much step prints out as it tries various models. Larger

values print out more information; the default, trace=1, is already a lot. Setting it to zero
suppresses this. I urge you to re-run these examples with trace=1, but I doing so would
substantially lengthen these notes.

4But without any attempt at cleaning the data by removing outliers, etc.; this is just to
illustrate the syntax, not as a full-scale data analysis.
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real.estate <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/hw/08/real-estate.csv")

# Fit a "kitchen sink" model

# But don't try to use the ID numbers as a predictor variable!

(realty.lm.all <- lm(Price ~ . -ID, data=real.estate))

##

## Call:

## lm(formula = Price ~ . - ID, data = real.estate)

##

## Coefficients:

## (Intercept) Sqft Bedroom Bathroom

## -2.390e+06 1.075e+02 -9.712e+03 -1.067e+02

## Airconditioning Garage Pool YearBuild

## -1.222e+04 1.732e+04 1.249e+04 1.279e+03

## Quality Lot AdjHighway

## -5.390e+04 1.422e+00 -2.717e+04

step(realty.lm.all, direction="backward", trace=0)

##

## Call:

## lm(formula = Price ~ Sqft + Bedroom + Garage + YearBuild + Quality +

## Lot, data = real.estate)

##

## Coefficients:

## (Intercept) Sqft Bedroom Garage YearBuild

## -2.233e+06 1.093e+02 -1.007e+04 1.665e+04 1.191e+03

## Quality Lot

## -5.223e+04 1.415e+00

By comparison to the kitchen sink model, this drops bathrooms, air-conditioning,
the pool, and adjacency to highways.

Of course, we could start with a very simple model and expand:

(realty.lm.minimal <- lm(Price ~ 1, data=real.estate))

##

## Call:

## lm(formula = Price ~ 1, data = real.estate)

##

## Coefficients:

## (Intercept)

## 277894

step(realty.lm.minimal, scope=list(upper = realty.lm.all,

lower= realty.lm.minimal), direction="forward",

trace=0)

##

## Call:
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## lm(formula = Price ~ Sqft + Quality + YearBuild + Lot + Garage +

## Bedroom, data = real.estate)

##

## Coefficients:

## (Intercept) Sqft Quality YearBuild Lot

## -2.233e+06 1.093e+02 -5.223e+04 1.191e+03 1.415e+00

## Garage Bedroom

## 1.665e+04 -1.007e+04

This begins with an intercept-only model, and then adds variables. Here
giving a lower limit to the scope is pretty much superfluous, we could just give
it an upper limit, but it doesn’t hurt.

Of course, we can also ask step to consider both adding and subtracting
variables:

step(realty.lm.minimal, scope=list(upper = realty.lm.all,

lower= realty.lm.minimal),

direction="both", trace=0)

##

## Call:

## lm(formula = Price ~ Sqft + Quality + YearBuild + Lot + Garage +

## Bedroom, data = real.estate)

##

## Coefficients:

## (Intercept) Sqft Quality YearBuild Lot

## -2.233e+06 1.093e+02 -5.223e+04 1.191e+03 1.415e+00

## Garage Bedroom

## 1.665e+04 -1.007e+04

(This just so happens to reach the same answer as only doing forward selec-
tion.)

If we want to only consider models which include certain terms, we can do
that through changing the lower limit of the scope:

(realty.lm.comforts <- lm(Price ~ Pool+Airconditioning, data=real.estate))

##

## Call:

## lm(formula = Price ~ Pool + Airconditioning, data = real.estate)

##

## Coefficients:

## (Intercept) Pool Airconditioning

## 188852 64335 101760

step(realty.lm.comforts, scope=list(upper=realty.lm.all,

lower=realty.lm.comforts), direction="both",

trace=0)

01:45 Friday 4th December, 2015



7

##

## Call:

## lm(formula = Price ~ Pool + Airconditioning + Sqft + Quality +

## YearBuild + Lot + Garage + Bedroom, data = real.estate)

##

## Coefficients:

## (Intercept) Pool Airconditioning Sqft

## -2.346e+06 1.279e+04 -1.176e+04 1.080e+02

## Quality YearBuild Lot Garage

## -5.388e+04 1.256e+03 1.389e+00 1.724e+04

## Bedroom

## -9.756e+03

The step function is a simplified version of the function stepAIC in the
MASS package, which works very similarly but is more flexible. The leaps

package contains an even more flexible function, subsetreg, which tries to de-
termine the lowest-MSE model at any given number of variables, and then lets
you chose how to trade the number of parameters against MSE.

5 Inference after Selection, Again

The standard inferential statistics (like the p-values on individual coefficients)
are only valid if the model is chosen independent of the data being used to
calculate them. If there is any sort of data-dependent model selection, whether
stepwise variable selection or something else, they are no longer valid. This
applies even to eliminating variables because their coefficients are insignificant.
If we do go ahead and use the same data twice, once to pick a model and once
to test hypotheses about that model, we will get confidence intervals which are
systematically too narrow, p-values which are systematically too small, etc. (See
Lecture 21 for more discussion, and an example of how doing model selection
on pure noise can lead to apparently highly-significant results.)

The easy cure, as discussed in Lecture 21, is to split the data in half at
random, and use one part to do model selection and the other half to do inference
for your selected model. Again, there is nothing about variable selection which
makes this any different.

6 Further Reading

In general, all the references for Lecture 21 are relevant again.
For a vivid example of just how badly misleading selecting variables based

on statistical significance can be, see ?.
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