
02:55 Wednesday 9th December, 2015
See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/

Lecture 28: The Bootstrap

36-401, Fall 2015, Section B

8 December 2015

Contents

1 Statistical Inference, Assuming Gaussian Noise 1
1.1 Other Parametric Distributions of the Noise 2
1.2 Asymptotic Gaussianity . 3
1.3 Summing Up on Gaussian Noise 4

2 The Sampling Distribution as the Source of All Knowledge
about Uncertainty 4

3 The Monte Carlo Principle 5

4 The Bootstrap Principle 6

5 Bootstraps for Regression 6
5.1 The Linear, Gaussian Bootstrap 7
5.2 Linear, Non-Gaussian Noise . 9
5.3 Resampling Residuals . 11
5.4 Resampling Cases . 13

6 Error in the Bootstrap, and Which Bootstrap When? 14

7 Further Reading 15

1 Statistical Inference, Assuming Gaussian Noise

Consider our usual linear model

Y = xβ + ε

For a lot of results, it’s enough to assume that

E [ε|x] = 0

1

http://www.stat.cmu.edu/~cshalizi/mreg/

2 1.1 Other Parametric Distributions of the Noise

and
Var [ε|x] = σ2I

These assumptions are enough to show the consistency of the least squares
estimate

β̂ = (xTx)−1xTy

The reason is that these assumptions let us write

β̂ = β + (xTx)−1xT ε ,

i.e., they let us write the estimate as “true value plus weighted sum of the noise
terms”. Just as with simple linear regression, we can use this trick to get at a lot
of properties of β̂: we can show that it’s unbiased; that it has variance matrix
σ2(xTx)−1; that, from the previous two properties, β̂ → β as n → ∞. But
these assumptions are not enough to get useful hypothesis tests or confidence
intervals.

For those, we have, so far, assumed that

ε ∼ N(0, σ2I)

independent of x. This Gaussian noise assumption is important, because it gives
us the distribution of β̂:

β̂ ∼ N(β, σ2(xTx)−1)

And the reason for that is that if ε is Gaussian, then (xTx)−1xT ε is a linear

transformation of a Gaussian, which is also Gaussian. From knowing that β̂ is
a Gaussian, everything we’ve done by way of statistical inference follows: the
hypothesis tests, the confidence intervals, the prediction intervals, the F tests
for multiple coefficients, etc. Without Gaussian noise, few of the formulas you
memorized for the exam are, strictly, correct.

Looking at Q−Q plots of our residuals is only important because we want
them to be Gaussian. The only justification for every contemplating a Box-Cox
transformation is that we’d like the noise to be Gaussian. We really have little
reason to ever expect Gaussian noise; it’s just very useful when it happens.

1.1 Other Parametric Distributions of the Noise

Suppose we didn’t know think that ε was Gaussian, but still believed it was
independently and identically distributed (IID). We might, for instance, think
it had a “double exponential” (or “Laplacian”) distribution, with probability
density function

f(ε) ∝ e−|ε|/L ,

or was a scaled t distribution with a certain number ν of degrees of freedom,

f(ε) ∝
(

1 +
(x/s)2

ν

)−(ν+1)/2

02:55 Wednesday 9th December, 2015

3 1.2 Asymptotic Gaussianity

Both of these have heavier tails than the Gaussian distribution, so they can be
very useful in practice.

If we think that the deterministic part of the model should still be linear,
we still use least squares to get the estimate β̂, and it’s still true that

β̂ = β + (xTx)−1xT ε (1)

But a linear combination of double-exponential variables is just a mess, as is a
linear combination of t-distributions. A family of distributions where adding two
random variables gives another distribution in the same family is called stable.
The Gaussian distributions are stable, but most others aren’t, and hence trying
to work out an exact sampling theory for most other noise distributions, like the
one we have for Gaussian noise, is pretty hopeless.

1.2 Asymptotic Gaussianity

Still, let’s think about the noisy part of Eq. 1 some more. It’s

(xTx)−1xT ε

Let’s bundle up (xTx)−1xT as a matrix, call it k. Then

β̂i = βi +

n∑
j=1

kijεj (2)

If all of the kij were equal, we’d understand what was going on. After all, the
central limit theorem says that when εj are IID with mean 0 and variance σ2,
their average tends towards a Gaussian distribution:

n∑
j=1

1

n
εj N(0, σ2/n)

This is true whatever the distribution of the εj might be, provided, to repeat,
that they’re IID and they have mean 0 and variance 0 < σ2 < ∞. If instead
of multiplying each εj by 1/n we multiplied them by some other constant, we’d
change the variance but still tend towards a Gaussian:

n∑
j=1

kεj N(0, σ2k2n)

On this basis, we might hope that, as n→∞,

n∑
j=1

kijεj N(0, σ2
∑
j

k2ij)

The difficulty is that the terms in the sum, while still statistically independent,
are no longer identically distributed. There are central limit theorems which

02:55 Wednesday 9th December, 2015

4 1.3 Summing Up on Gaussian Noise

apply to independent, non-identically distributed random variables, with the
basic result being that if none of the kij is too big compared to the others, the
sum is indeed asymptotically Gaussian1.

If the matrix x doesn’t give too much influence to any particular observa-
tions, then these central limit theorems usually apply, and we can say that

β̂ N(β, σ2(xTx)−1) (3)

as n → ∞, if ε is non-Gaussian but IID. From there, of course, all the usual
formulas would also come to hold as n→∞.

How close to infinity does n have to be? You may have been told a bit of
folklore which says that the central limit theorem dominates the behavior of a
sample mean once n > 30. This is badly wrong even for averages, let alone more
complicated functions like regression estimates. There is really no upper limit
on how big n might have to be before Eq. 3 becomes a good approximation.

1.3 Summing Up on Gaussian Noise

To sum up, we have two situations:

1. We can assume that the noise is exactly Gaussian and independent, and
have a nice body of theory for statistical inference, but we hardly ever see
that happen.

2. We can assume that the noise is just independent, and recover the Gaus-
sian theory asymptotically as n→∞, but we don’t know what to do when
n is finite, or even how big n has to get.

Clearly, this is an unsatisfying situation.

2 The Sampling Distribution as the Source of
All Knowledge about Uncertainty

Our data comes from some distribution, let’s say P . We would like to know
some property of this distribution, say θ. (We may think of this as a regression
coefficient, or the whole coefficient vector, or E [Y |X = x] for a particular x,
etc.) Since we do not know P , we can’t just calculate θ. What we can do,
however, is draw a sample D from P , and then we calculate some statistic or
other, T (D). This serves as our estimate of θ. (The same goes for hypothesis
tests, etc.) Because the data D are random, so is T . In fact, the distribution
of T , the sampling distribution of our statistic, is set by the distribution of
D. If we knew the sampling distribution, we’d know basically everything there
is to know for statistical inference:

• The bias would be E [T]− θ
1If you want to follow this up, this is the “Lindeberg” central limit theorem.

02:55 Wednesday 9th December, 2015

5

• The standard error would
√

Var [T]

• Hypothesis tests would come from quantiles of T

• Confidence intervals would come from inverting hypothesis tests

Unfortunately,

• Interesting statistics T are very complicated functions of the data, so their
sampling distribution is complicated even if P is simple;

• Realistic distributions P are usually also complicated; and

• We don’t know P anyway.

Put these together, and we should be surprised we can ever get nice, useful
formulas for the sampling distribution of any statistic, rather than disappointed
that we can’t make it happen for regression without Gaussian noise.

The reason we can work out the sampling distributions for regression with
Gaussian noise is that we (or rather, the ancestors) carefully adjusted the as-
sumptions about the noise, the model, and the statistic just so, and everything
came together. (E.g., we needed both a linear estimator and a noise distribution
which was stable under linear combinations.) What could we do if we can’t, or
won’t, fine-tune all the assumptions?

3 The Monte Carlo Principle

What is sometimes called the Monte Carlo principle is a general strategy for
figuring out the behavior of complicated functions of complicated distributions:
it says to simulate it and see what happens2. If we have samples D1, D2, . . . Db

from P , and we want to know the expectation of T (D), we can approximate
that as

E [T (D)] ≈ 1

b

b∑
i=1

T (Di) ≡ T

If we want to know the variance, we can approximate that by

Var [T (D)] ≈ 1

b

b∑
i=1

(T (Di)− T)2

If we want to know the qth quantile of T , we can order the T (Di) from smallest to
largest, and take the qb value as our estimate. If we want an interval which will

2The name, and to some extent the technique, originated with the physicists designing first
the atomic and then the hydrogen bomb. Those designs required calculating the expectations
of many elaborate functions of complex distributions (Serber, 1992). Rather than trying
to actually do the integrals involved, they just developed efficient ways to sample from the
distributions, and computed sample averages (Metropolis et al., 1953). The spirit of “try it,
and see what happens” went deep at Los Alamos. . .

02:55 Wednesday 9th December, 2015

6

contain T with probability 1− α, we order the T (Di) from smallest to largest,
and exclude those with rank from 1 to bα/2 on one side, and from b(1−α/2) to
b on the other. And so on and so forth. All we need to do to get at any property
of any function of the distribution P is to be able to draw from, or simulate, P .

One limitation of this for statistics is that, of course, we don’t know the true
P .

4 The Bootstrap Principle

The bootstrap principle is that if we have good approximation P̂ to P , we can
simulate from P̂ , and get a good approximation to the sampling distribution we
want. That is, we apply the Monte Carlo principle to a distribution (P̂) which
we hope is close to the distribution we really care about (P).

More specifically, bootstrapping is always an algorithm, which goes, ab-
stractly, as follows:

1. Observe data D, calculate estimate T (D) and get an approximation P̂ to
P

2. Repeat b times:

(a) Simulate surrogate data D̃ from P̂ .

(b) Calculate T̃ = T (D̃), just as those D̃ were real data

3. Approximate the distribution of T under P with the distribution of T̃
under P̂

There are a lot of variants and refinements, some of which we will cover as
this goes on, but in the meanwhile, we really need to be clearer about what “a
good approximation P̂ to P” might mean.

The two basic options are model-based bootstraps and re-sampling boot-
straps3. In a model-based bootstrap, our approximation P̂ is a full model of the
data generating process, which we’ve estimated; we then simulate that model.
In a re-sampling bootstrap, we treat the sample we observed as our best esti-
mate at the distribution of the whole population, and so we draw a new sample
from our original sample — we re-sample it. (If you like, in re-sampling the
empirical distribution is our model.) Both of these ideas can be made a bit
more concrete in the context of regression.

5 Bootstraps for Regression

Any regression model can be written as

Y = m(X) + ε

3Often called these “parametric” and “non-parametric”, respectively, but that’s not quite
as transparent, I think, as the other names.

02:55 Wednesday 9th December, 2015

7 5.1 The Linear, Gaussian Bootstrap

with the caveat that the noise term ε might not have expectation zero4 or be
independent ofX. Specifying the true regression functionm and the distribution
of the noise ε, including its dependence on X, gives us the data-generating
distribution P .

Depending on what we are willing to believe about the true regression func-
tion m and the noise ε, we have different ways of coming up with approximations
P̂ to P , and different ways of simulating from those approximations.

5.1 The Linear, Gaussian Bootstrap

The simplest case we could have is where we think all of our usual modeling
assumptions hold, so that m(x) = xβ and ε ∼ N(0, σ2), IID and independent
of x. Then simulating from the estimated model is very easy.

Simulate from a previously fitted linear model with Gaussian noise

Inputs: model; data frame

Outputs: new data frame with response values replaced

Presumes: all necessary variables are in data frame

sim.lm.gauss <- function(mdl, df) {
What's the response variable called?

Should be the first variable in the vector of all variables

resp.var <- all.vars(formula(mdl))[1]

What value should we expect for the response?

expect.resp <- predict(mdl, newdata=df)

How big is the noise?

sigma2.mle <- mean(residuals(mdl)^2)

Add appropriately-sized Gaussian noise to the response

response <- expect.resp + rnorm(nrow(df),0,sqrt(sigma2.mle))

df[,resp.var] <- response # Won't change df outside this function!

return(df)

}

What we are doing in this function is creating a (very small!) imaginary
or alternative world, the simulation world or bootstrap world, where we
know that the model Y = xβ̂ + ε, ε ∼ N(0, σ̂2) is exactly true. If β̂ ≈ β and
σ̂2 ≈ σ2, and ε is Gaussian, then what we see in the simulation world is (close
to) representative of what would happen in the real world if we could repeat
our experiments many times. The advantage of the simulation world is that it’s
easy to re-run the simulation many times, whereas repeating the experiment
may be expensive, difficult, unethical or flat-out impossible.

Of course, we don’t just want to get a new data set, from an new simulation-
world experiment; we want to know what we’d have concluded from that exper-
iment. This is also easy.

Re-estimate a linear model on a new data set

Inputs: old model; data frame

4For instance, if the m(X) is biased.

02:55 Wednesday 9th December, 2015

8 5.1 The Linear, Gaussian Bootstrap

Output: new lm object

Presumes: data frame contains columns with appropriate names

re.lm <- function(mdl, df) {
return(lm(formula(mdl), data=df))

}

Now if we want to get at the sampling distribution of, say, the estimated
coefficient vector β̂, we just simulate it. We’ll need some particular initial
estimate to work with, so let’s try to predict how much a cat’s heart will weigh,
from the cat’s total body weight and its sex:

library(MASS); data(cats)

cats.lm <- lm(Hwt ~ Sex*Bwt, data=cats)

We now simulate from our cats.lm model many times (10000 is a con-
veniently small number), re-estimate the coefficients each time, and store the
re-estimates in an array:

beta.boots <- replicate(10000,

coefficients(re.lm(cats.lm,

sim.lm.gauss(cats.lm, cats))))

beta.boots is now a 4, 10000 array, with one row for each coefficient, and
10000 columns, because we replicated the simulation 10000 times. Each column
is a separate visit to the bootstrap world, where the true value of β is fixed to
our initial estimate β̂. Symbolically, it looks like

β̃01 β̃02 . . . β̃0b
β̃11 β̃12 . . . β̃1b

...
...

...
...

β̃p1 β̃p2 . . . β̃pb

That being the case, we can get the bias:

rowMeans(beta.boots) - coefficients(cats.lm)

(Intercept) SexM Bwt SexM:Bwt

-0.004367952 0.005832001 0.002542342 -0.003549953

Each row contains all of our samples for one coefficient estimate, so the mean
along each row is our (approximate) expected value of the estimate; we subtract
the truth from that to get the bias.

We can also get the standard errors:

apply(beta.boots, 1, sd)

(Intercept) SexM Bwt SexM:Bwt

1.8048155 2.0222496 0.7596898 0.8205099

02:55 Wednesday 9th December, 2015

9 5.2 Linear, Non-Gaussian Noise

There is no rowSDs function, but the utility (or meta-) function apply lets us
take any array (the first argument) and apply any function (the third argument)
to either all its rows (middle argument 1) or all its columns (middle argument
2), or every entry in the array (middle argument c(1,2)). So the incantation
above takes the standard deviation of each row.

To get a 1− α confidence interval, we (conceptually) take all the values we
got for each coefficient, sort them, and discard the lower and upper α/2 tails.
The appropriate incantation for 95% intervals is

apply(beta.boots, 1, quantile, prob=c(0.05/2, 1-0.05/2))

(Intercept) SexM Bwt SexM:Bwt

2.5% -0.4958377 -8.1368211 1.147514 0.07485683

97.5% 6.5214764 -0.1916686 4.103420 3.27873582

Now, none of this is actually necessary if we assume the truth is linear-and-
Gaussian. We know that the bias is zero; we know that the standard deviations
come from σ̂2(xTx)−1; specifically, for the cats, they’re

coefficients(summary(cats.lm))[,"Std. Error"]

(Intercept) SexM Bwt SexM:Bwt

1.8428394 2.0617552 0.7759022 0.8373255

We also know how to calculate the confidence intervals:

confint(cats.lm, level=0.95)

2.5 % 97.5 %

(Intercept) -0.6620801 6.62470490

SexM -8.2416012 -0.08919944

Bwt 1.1024137 4.17041438

SexM:Bwt 0.0208271 3.33170228

The fact that these numbers are very close to what we got by simulation
tells us two things:

1. Simulation can work to replace intricate probabilistic mathematics with
straightforward (even simple-minded) computations.

2. Simulation is completely redundant in the linear-Gaussian case, where we,
and R, know all the formulas.

Simulation comes into its own when the formulas aren’t available.

5.2 Linear, Non-Gaussian Noise

Suppose that we think the residuals follow some particular non-Gaussian dis-
tribution, which we know up to some set of parameters, e.g., a t distribution.

02:55 Wednesday 9th December, 2015

10 5.2 Linear, Non-Gaussian Noise

(We might have reached this conviction either because of some actual scientific
theory, or by staring at the plot of the residuals.) If we know how to estimate
the parameters of this noise distribution, and we can simulate from it, then we
are in business.

I will illustrate this idea by using a t distribution for the noise in the model
of cat’s hearts. This is not an especially great model for this data, but it’s
only meant as an illustration5. We’ll need to estimate the parameters of the
t distribution; this job is already done for us by the function fitdistr in the
MASS library.

Simulate from a previously fitted linear model with t-distributed noise

Inputs: model; data frame

Outputs: new data frame with response values replaced

Presumes: all necessary variables are in data frame

sim.lm.t <- function(mdl, df) {
What's the response variable called?

resp.var <- all.vars(formula(mdl))[1]

What value should we expect for the response?

expect.resp <- predict(mdl, newdata=df)

Estimate the t parameters, using MASS::fitdistr

stopifnot(require(MASS)) # Make sure the library's available

After the example in help(fitdistr)

mydt <- function(x, s, df) { dt(x/s, df)/s }
t.params <- fitdistr(residuals(cats.lm), mydt, start=list(s=1, df=50),

lower=c(0,1))$estimate

Add appropriately-sized t-noise to the response

response <- expect.resp + t.params["s"]*rt(nrow(df),df=t.params["df"])

df[,resp.var] <- response # Won't change df outside this function

return(df)

}

Having changed the function we use to simulate, absolutely nothing else
needs to change:

beta.boots2 <- replicate(10000,

coefficients(re.lm(cats.lm,

sim.lm.t(cats.lm, cats))))

apply(beta.boots2, 1, quantile, prob=c(0.05/2, 1-0.05/2))

(Intercept) SexM Bwt SexM:Bwt

2.5% -0.5914608 -8.1507654 1.129062 0.04982887

97.5% 6.5309158 -0.1609905 4.147760 3.29761116

5t-distributed noise is a much better idea in areas like finance.

02:55 Wednesday 9th December, 2015

11 5.3 Resampling Residuals

5.3 Resampling Residuals

Suppose we are willing to believe that

Y = xβ + ε

and even that ε is independent of x, but not that we have any good idea about
what the distribution of ε is. What are we to do?

Well, it will still be true that our residuals will give us an estimate of what
the noise ε looks like — of what the true noise distribution is. We can use that.
When we generate new data, we’ll take xβ̂ + ε̃, where ε̃ is our simulated noise.
Every time we need a value for ε̃, we’ll go to our vector of residuals and draw
a random value from it — we will re-sample the residuals, with replacement.
Here’s how it works computationally:

Simulate from a previously fitted linear model, resampling residuals

Inputs: model; data frame

Outputs: new data frame with response values replaced

Presumes: all necessary variables are in data frame

sim.lm.residuals <- function(mdl, df) {
What's the response variable called?

resp.var <- all.vars(formula(mdl))[1]

What value should we expect for the response?

expect.resp <- predict(mdl, newdata=df)

Resample the residuals

new.noise <- sample(residuals(mdl), size=length(expect.resp), replace=TRUE)

Add new noise to the expected response

response <- expect.resp + new.noise

df[,resp.var] <- response # Won't change df outside this function

return(df)

}

When (as is usually the case) we want the re-sample to be exactly as large
as the original sample, we can define a little convenience function:

resample <- function(x) { sample(x, size=length(x), replace=TRUE) }

(Note that, as written, this only works for vectors.) Let’s see what kind of
things this does to a short vector:

head(residuals(cats.lm))

1 2 3 4 5 6

-1.2541405 -0.8541405 1.2458595 -1.3177819 -1.2177819 -0.9177819

resample(head(residuals(cats.lm)))

4 2 6 4 4 1

-1.3177819 -0.8541405 -0.9177819 -1.3177819 -1.3177819 -1.2541405

02:55 Wednesday 9th December, 2015

12 5.3 Resampling Residuals

resample(head(residuals(cats.lm)))

3 3 5 3 5 2

1.2458595 1.2458595 -1.2177819 1.2458595 -1.2177819 -0.8541405

Every time we run this function, we get different results; some samples get
picked more than once, some don’t get picked at all. When we look at the over-
all distribution of each re-sample, it’s somewhat less diverse than the sample we
took it from, just as the sample is less diverse than the population, but it has
the same over-all shape.

par(mfrow=c(1,3))

hist(residuals(cats.lm), main="", xlab="Residuals")

hist(resample(residuals(cats.lm)), main="", xlab="Residuals")

hist(resample(residuals(cats.lm)), main="", xlab="Residuals")

Residuals

F
re

qu
en

cy

−4 −2 0 2 4

0
10

20
30

40

Residuals

F
re

qu
en

cy

−4 −2 0 2 4

0
10

20
30

Residuals

F
re

qu
en

cy

−2 −1 0 1 2 3

0
5

10
15

20
25

With this understood, once we have our simulator for resampling residuals,
we have to make absolutely no changes to how we use it:

02:55 Wednesday 9th December, 2015

13 5.4 Resampling Cases

beta.boots3 <- replicate(10000,

coefficients(re.lm(cats.lm,

sim.lm.residuals(cats.lm, cats))))

apply(beta.boots3, 1, quantile, prob=c(0.05/2, 1-0.05/2))

(Intercept) SexM Bwt SexM:Bwt

2.5% -0.6275111 -8.2046109 1.146750 0.04296844

97.5% 6.5361309 -0.1833857 4.162364 3.28889505

5.4 Resampling Cases

The last bootstrap we’ll look at, here, is what’s variously called the case (or
cases) bootstrap, or the pairs bootstrap, or, more rarely, the rows bootstrap.
The idea here is that our data consists of cases, each of which contains the
predictor variables and the response variables, and we’ll re-sample those whole
points. The other names arise from thinking of each data point as a pair (x, y),
or as a row in a data frame. We’re using as our approximation P̂ to the data-
generating distribution P the joint empirical distribution of the predictors and
the response.

The simulator is now sheer elegance in its simplicity:

Re-sample the rows of a data frame

Inputs: the data frame

Output: a new data frame, contain a random sample, with replacement, of

rows from the input

resample.data.frame <- function(df) { df[resample(1:nrow(df)),] }

Notice that we don’t use the estimated model here at all in the simulation
— the procedure is quite agnostic as to whether our model is good or bad.

Having the simulator in hand, we can use it just like the others, and do
inference using the simulation just like the others:

beta.boots4 <- replicate(10000,

coefficients(re.lm(cats.lm,

resample.data.frame(cats))))

apply(beta.boots4, 1, quantile, prob=c(0.05/2, 1-0.05/2))

(Intercept) SexM Bwt SexM:Bwt

2.5% 0.1996264 -7.7712702 1.483763 0.273226

97.5% 5.7489468 -0.6295797 3.818110 3.103072

Resampling cases makes only very weak assumptions about the data-generating
distribution, that all data points ((x, y) pairs) are independent and identically

02:55 Wednesday 9th December, 2015

14

distributed. It does not assume that any linear regression is correct6, or that
the noise is independent of x, or has constant variance.

6 Error in the Bootstrap, and Which Bootstrap
When?

The bootstrap, remember, is a way of calculating the sampling distribution of
T , under the true data-generating distribution P . There are two main sources
of error in this calculation:

Simulation We’d like to see the full distribution of our statistic T under P̂ , but instead
we only run b simulations under P̂ .

Approximation We’re simulating from P̂ rather than P .

Simulation error (or “Monte Carlo error”) is easy to grasp, and in principle
easy to control: the more simulations we run, the better. As b → ∞, the
simulation goes to zero. The only reason to ever restrict b is that each simulation
does have some cost, in time if nothing else. In fact, for (most) inferential
statistics, we can expect the simulation error to be O(1/

√
b), so if we keep

increasing b we will experience diminishing returns, but never negative returns.
Approximation error comes from the fact that P̂ is not P . This can itself

be broken into two parts: estimation error (roughly, variance), and systematic
distortion (roughly, bias). Estimation error arises because we only have a finite
amount of data, say n observations, with which to estimate P̂ . Even if we
resample cases, and so use the empirical distribution as our P̂ , we still only have
n samples from the full population, which isn’t all of it. Generally, estimation
error will shrink to zero as n → ∞, but it may shrink at different rates for
different approximations. Systematic distortion is basically the approximation
error which would be left even if we had infinite data — it comes from using a
linear-Gaussian simulation when reality isn’t linear or Gaussian, or resampling
residuals when the noise is really heteroskedastic.

There is a trade-off when it comes to the two kinds of approximation er-
ror. The more we constrain P̂ in advance of seeing any data, the stronger the
assumption we put on it, the less we have to estimate, and so the smaller the
estimation error. But, the true P doesn’t obey those constraints, if our as-
sumptions are wrong, the bigger the systematic distortion we’re introducing. If
our assumptions are right, using a more constrained P̂ is pure advantage —
basically, we’re not wasting data figuring out that the constraints hold — but
if those assumptions are wrong, they can easily make things worse.

Which bootstrap to use, then, depends on how strongly you trust your mod-
eling assumptions.

• If you believe that the regression is linear and you know the distribution
of the noise, use the fully model-based bootstraps.

6If the linear model is wrong, then we’re doing statistical inference on the coefficients in
the best linear approximation to the true regression function m(x).

02:55 Wednesday 9th December, 2015

15

• If you believe that the regression is linear and the noise is independent of
x, use resampling of residuals.

• If you are unwilling to believe that the noise is independent of x, and/or
that the regression is truly linear, use resampling of cases.

(We’ll cover the situation where you don’t think the truth is linear but you are,
somehow, convinced the noise is Gaussian when we go over fitting nonlinear
models in 402.)

How do we tell? Well, in the first situation, all of the diagnostics we’ve been
doing should look good, including the appropriate Q-Q plot. In the second
situation, while the residuals should have the same distribution for all x, we
don’t care what that distribution is. Therefore when we plot residuals against
predictors and fitted values, everything should look random, but not necessarily
Gaussian, and the Q-Q plot need show no particular shape. In the third situa-
tion, by resampling cases we’re still assuming independence across data points,
so we should try to check that, but that’s about all that we do need to check.

7 Further Reading

The bootstrap was introduced, by that name, by Efron (1979), in a remarkably
accessible paper which is still worth reading. Related ideas, such as the “jack-
knife” (omit one data point, re-estimate, and look at the variance over all such
re-estimates) go back at least to the 1940s, though they weren’t systematically
developed, or applied, until computing power got cheap enough to make some-
thing like the bootstrap feasible. A good systematic textbook is Davison and
Hinkley (1997).

For the validity of case resampling even when all the usual linear-Gaussian
assumptions fail, see, e.g., Buja et al. (2014). (That paper also shows how this
bootstrap does the same job as the “robust standard errors” of econometrics.)

Next time, we will look at some of the techniques for reducing approximation
error in bootstrap calculations, bootstrap prediction intervals, and what sorts
of things the bootstrap can’t do; all of these are also covered in Davison and
Hinkley (1997).

References

Buja, Andreas, Richard Berk, Lawrence Brown, Edward George, Emil Pitkin,
Mikhail Traskin, Linda Zhao and Kai Zhang (2014). “Models as Ap-
proximations: A Conspiracy of Random Regressors and Model Deviations
Against Classical Inference in Regression.” E-print, arxiv.org. URL http:

//arxiv.org/abs/1404.1578.

Davison, A. C. and D. V. Hinkley (1997). Bootstrap Methods and their Appli-
cations. Cambridge, England: Cambridge University Press.

02:55 Wednesday 9th December, 2015

http://arxiv.org/abs/1404.1578
http://arxiv.org/abs/1404.1578

16 REFERENCES

Efron, Bradley (1979). “Bootstrap Methods: Another Look at the Jackknife.”
Annals of Statistics, 7: 1–26. URL http://projecteuclid.org/euclid.

aos/1176344552.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller
(1953). “Equations of State Calculations by Fast Computing Machines.” Jour-
nal of Chemical Physics, 21: 1087–1092. doi:10.1063/1.1699114.

Serber, Robert (1992). The Los Alamos Primer: The First Lectures on How to
Build the Atomic Bomb. Berkeley: University of California Press. Annotated
by Robert Serber; edited and with an introduction by Richard Rhodes.

02:55 Wednesday 9th December, 2015

http://projecteuclid.org/euclid.aos/1176344552
http://projecteuclid.org/euclid.aos/1176344552
http://dx.doi.org/10.1063/1.1699114

	Statistical Inference, Assuming Gaussian Noise
	Other Parametric Distributions of the Noise
	Asymptotic Gaussianity
	Summing Up on Gaussian Noise

	The Sampling Distribution as the Source of All Knowledge about Uncertainty
	The Monte Carlo Principle
	The Bootstrap Principle
	Bootstraps for Regression
	The Linear, Gaussian Bootstrap
	Linear, Non-Gaussian Noise
	Resampling Residuals
	Resampling Cases

	Error in the Bootstrap, and Which Bootstrap When?
	Further Reading

