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1 Lighting Review of Multiple Linear Regres-
sion

In the multiple linear regression model, we assume that the response Y is a
linear function of all the predictors, plus a constant, plus noise:

Y = β0 + β1X1 + β2X2 + . . . βpXp + ε (1)

We make no assumptions about the (marginal or joint) distributions of the Xi,
but we assume that E [ε|X] = 0, Var [ε|X] = σ2, and that ε is uncorrelated
across measurements. In matrix form, the model is

Y = Xβ + ε (2)

where X includes an initial column of all 1s.
When we add the Gaussian noise assumption, we are making all of the

assumptions above, and further assuming that

ε ∼MVN(0, σ2I) (3)

independently of X.
The least squares estimate of the coefficients is

β̂ = (xTx)−1xTy (4)

Under the Gaussian noise assumption, this is also the maximum likelihood es-
timate.

The fitted values (i.e., estimates of the conditional means at data points used
to estimate the model) are given by the “hat” or “influence” matrix:

m̂ = xβ̂ = Hy (5)
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2 1.1 Point Predictions

which is symmetric and idempotent. The residuals are given by

e = (I−H)y (6)

and I−H is also symmetric and idempotent.
The expected mean squared error, which is the maximum likelihood estimate

of σ2, has a small negative bias:

E
[
σ̂2
]

= E
[

1

n
eTe

]
= σ2n− p− 1

n
= σ2

(
1− p+ 1

n

)
(7)

Since Hxβ = xβ, the residuals can also be written

e = (I−H)ε (8)

hence
E [e] = 0 (9)

and
Var [e] = σ2(I−H) (10)

Under the Gaussian noise assumption, β̂, m̂ and e all have Gaussian distri-
butions (about which more below, §3.1).

1.1 Point Predictions

Say that x′ is the m × (p + 1) dimensional matrix storing the values of the
predictor variables at m points where we want to make predictions. (These
may or may not include points we used to estimate the model, and m may be
bigger, smaller or equal to n.) Similarly, let Y′ be the m× 1 matrix of random
values of Y at those points. The point predictions we want to make are

E [Y′|X′ = x′] = m(x′) = x′β (11)

and we estimate this by
m̂(x′) = x′β̂ (12)

which is to say
m̂(x′) = x′(xTx)−1xTy (13)

(It’s easy to verify that when x′ = x, this reduces to Hy.)
Notice that the point predictions we make anywhere are always weighted

sums (linear combinations) of the values of the response we happened to observe
when we estimated the model. The weights just depend on the values of the
predictors at the original data points, and at the points where we’ll be making
predictions — changing the responses doesn’t change those weights.

2 Diagnostics for Multiple Linear Regression

Before proceeding to detailed statistical inference, we need to check our modeling
assumptions, which means we need diagnostics.

12:39 Saturday 24th October, 2015



3 2.1 Plot All the Things!

2.1 Plot All the Things!

All of the plots we learned how to do for simple linear regression remain valuable:

1. Plot the residuals against the predictors. This now means p distinct plots,
of course. Each of them should show a flat scatter of points around 0
(because E [ε|Xi] = 0), of roughly constant width (because Var [ε|Xi] =
σ2). Curvature or steps to this plot is a sign of potential nonlinearity, or
of an omitted variable. Changing width is a potential sign of non-constant
variance.

2. Plot the squared residuals against the predictors. Each of these p plots
should show a flat scatter of points around σ̂2.

3. Plot the residuals against the fitted values. This is an extra plot, redundant
when we only have one predictor (because the fitted values were linear in
the predictor).

4. Plot the squared residuals against the fitted values.

5. Plot the residuals against coordinates. If observations are dated, time-
stamped, or spatially located, plot the residuals as functions of time, or
make a map. If there is a meaningful order to the observations, plot
residuals from successive observations against each other. Because the εi
are uncorrelated, all of these plots should show a lack of structure.

6. Plot the residuals’ distribution against a Gaussian.

Out-of-sample predictions, with either random or deliberately selected test-
ing sets, also remain valuable.

2.1.1 Collinearity

A linear dependence between two (or more) columns of the x matrix is called
collinearity, and it keeps us from finding a solution by least squares. (In fact,
collinearity at the population level makes the coefficients ill-defined, not just
impossible to estimate.) Collinearity between a pair of variables will show up
in a pairs plot as an exact straight line. Collinearity among more than two
variables will not. For instance, if X3 = (X1 +X2)/2, we can’t include all three
variables in a regression, but we’d not see that from any of the pairs.

Computationally, collinearity will show up in the form of the determinant
of xTx being zero. Equivalently, the smallest eigenvalue of xTx will be zero.
If lm is given a collinear set of predictor variables, it will sometimes give an
error messages, but more often it will decide not to estimate one of the collinear
variables, and return an NA for the offending coefficient.

We will return to the subject of collinearity in lecture 17.
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4 2.1 Plot All the Things!

# Minimal simulation of interactions

# Model: Y = sin(X1*X2) + noise

X <- matrix(runif(200),ncol=2)

Y <- sin(X[,1]*X[,2])+rnorm(200,0,0.1)

df <- data.frame(Y=Y, X1=X[,1], X2=X[,2])

missed.interact <- lm(Y ~ X1+X2, data=df)

Figure 1: Simulating data from the model Y = sinX1X2 + ε, to illustrate detecting
interactions. Self-checks: what is the distribution of X1 and X2? what is σ2?

2.1.2 Interactions

Another possible complication for multiple regression which we didn’t have with
the simple regression model is that of interactions between variables. One of
our assumptions is that each variable makes a distinct, additive contribution to
the response, and the size of this contribution is completely insensitive to the
contributions of other variables. If this is not true — if the relationship between
Y and Xi changes depending on the value of another predictor, Xj — then
there is an interaction between them.

There are several ways of looking for interactions. We will return to this
subject in Lecture 19, but, for now, I’ll stick with describing some diagnostic
procedures.

Sub-divide and re-estimate The simplest thing to do, if you suspect an
interaction between Xi and Xj , is to sub-divide the data based on the value of
Xj , into two or more parts, and re-estimate the model. If there is no interaction,
the coefficient on Xi should be the same, up to estimation error, in each part
of the data. (That is, there should be no significant difference in the estimated
coefficients.) While in principle straightforward, drawbacks to this include hav-
ing to guess how to sub-divide the data (into two parts? three? more?), and at
what values of Xj to make the cuts.

Scatterplot with color or symbols A more visual alternative is to plot
the residuals against Xi, as usual, but to give each point a color which varies
continuously with the value of Xj . In the absence of interactions, there should
be no pattern to the colors. If there are interactions, however, we could predict
what the residuals will be from knowing both variables, so we should tend to
see similarly-colored regions in the plot.

If color is not available, a similar effect can be obtained by using different
plotting symbols, corresponding to different values of Xj .

3D Plots
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5 2.1 Plot All the Things!

coefficients(summary(lm(Y~X1+X2, data=df, subset=which(df$X2 < median(df$X2)))))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.09257462 0.03356206 -2.758311 6.944694e-03

## X1 0.13546201 0.04375679 3.095794 2.566032e-03

## X2 0.50563560 0.08964297 5.640549 1.673144e-07

coefficients(summary(lm(Y~X1+X2, data=df, subset=which(df$X2 > median(df$X2)))))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.3024995 0.04246205 -7.123997 1.851872e-10

## X1 0.6441399 0.03553877 18.124990 6.582246e-33

## X2 0.4539010 0.05363622 8.462584 2.764062e-13

Figure 2: Here we have sub-setted the data based on the value of the second predictor
(dividing it, somewhat arbitrarily, at its median). Notice that the difference in the
two coefficients for X1 is much larger than their standard errors. Can you give a
significance level for the difference in means?
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6 2.1 Plot All the Things!
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# Create a vector of gradually-changing colors, with one entry for

# each data point

the.colors <- rainbow(n=nrow(df))

# For each data point, see how it ranks according to X2, from smallest (1)

# to largest

the.ranks <- rank(df$X2)

# Plot residuals vs. X1, colored according to X2

# Defining the color and rank vectors makes this next line a bit less

# mysterious, but it's not necessary; this could all be a one-liner.

plot(df$X1, residuals(missed.interact), pch=19, col=the.colors[the.ranks],

xlab=expression(X[1]), ylab="Residuals")

Figure 3: Plotting residuals from the linear model against X1, with the color of the
point set by the value of X2. Notice the clumping of points with similar colors: this
means that knowing both X1 and X2 lets us predict the residual. Horizontal bands of
the same color, on the other hand, would show that X2 helped predict the residuals but
X1 did not, pointing to a mis-specification for the dependence of Y on X2.
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7 2.1 Plot All the Things!
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library(scatterplot3d)

# Make a 3D scatterplot of residuals against the two predictor variables

s3d <-scatterplot3d(x=df$X1, y=df$X2, z=residuals(missed.interact),

tick.marks=TRUE, label.tick.marks=TRUE,

xlab=expression(X[1]), ylab=expression(X[2]),

zlab="Residuals")

# Add a plane with intercept 0 and both slopes also 0, for visual

# reference

s3d$plane3d(c(0,0,0), lty.box="solid")

Figure 4: Residuals (vertical axis) vs. predictor variables. Notice that there are
regions where the residuals are persistent positive or negative, but that these are defined
by the value of both variables, not one or the other alone.
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8 2.2 Remedies

2.2 Remedies

All of the remedies for model problems we discussed earlier, for the simple linear
model, are still available to us.

Transform the response We can change the response variable from Y to
g(Y ), in the hope that the assumptions of the linear-Gaussian model are more
nearly satisfied for this new variable. That is, we hope that

g(Y ) = β0 + β1X1 + . . .+ βpXp + ε, ε ∼ N(0, σ02 (14)

The Box-Cox method, if you want to use it, will work as well as it did for simple
linear models. Computationally, we’d just fill the n × 1 response matrix with
[g(y1) g(y2) . . . g(yn)]T , and proceed as with any other multiple regression.

However, see the handout on transformations for cautions on interpretation
after such transformations.

Transform the predictors We can also transform each of the predictors,
making the model

Y = β0 + β1f1(X1) + . . . βpfp(Xp) + ε, ε ∼ N(0, σ2) (15)

As the notation suggests, each Xi could be subject to a different transforma-
tion. Again, it’s just a matter of what we put in the columns of the x matrix
before solving for β̂. Again, see the handout on transformations for cautions on
interpretations.

(A model of this form is called an additive model; in 402 we will look
extensively at how they can be estimated, by automatically searching for near-
optimal transformations.)

An alternative is to transform, not each predictor variable, but their linear
combination:

Y = h (β0 + β1X1 + . . . βpXp) + ε, ε ∼ N(0, σ2) (16)

This is called a “single index” model, because there is only one combination
of the predictors, the weighted sum β1X1 + . . . βpXp, which matters to the
response. Notice that this is not the same model as the transform-Y model,
even if h = g−1, because of the different role of the noise.

Changing the variables used One option which is available to us with
multiple regression is to add in new variables, or to remove ones we’re already
using. This should be done carefully, with an eye towards satisfying the model
assumptions, rather than blindly increasing some score. We will discuss this
extensively in lectures 20 and 26.
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9 2.3 Plot All the Things?

2.3 Plot All the Things?

There is one important caution about exuberant diagnostics plotting. This is
that the more checks you run, the bigger the chance that you will find something
which looks weird just by chance. If we were doing formal hypothesis tests, and
insisted on a uniform false positive rate of α, then after running r tests, we’d
expect to make ≈ rα rejections, even if all of our null hypotheses are true.
(Why?) If you are doing lots of diagnostic plots — say, 20 or 30 or more
— it becomes a very good idea to do some randomization to see whether the
magnitude of the bad-looking things you’re seeing is about what you should be
anticipating from one plot or another, even if everything was absolutely fine.

3 Inference for Multiple Linear Regression

Unless I say otherwise, all results in this section presume that all of the mod-
eling assumptions, Gaussian noise very much included, are correct. Also, all
distributions stated are conditional on x.

3.1 Sampling Distributions

As in the simple linear model, the sampling distributions are the basis of all
inference.

3.1.1 Gaussian Sampling Distributions

Gaussian distribution of coefficient estimators In the simple linear model,
because the noise ε is Gaussian, and the coefficient estimators were linear in the
noise, β̂0 and β̂1 were also Gaussian. This remains true in for Gaussian multiple
linear regression models:

β̂ = (xTx)xTY (17)

= (xTx)xT (xβ + ε) (18)

= β + (xTx)xT ε (19)

Since (xTx)xT ε is a constant times a Gaussian, it is also a Gaussian; adding on
another Gaussian still leaves us with a Gaussian. We saw the expectation and
variance last time, so

β̂ ∼MVN(β, σ2(xTx)−1) (20)

It follows that
β̂i ∼ N

(
βi, σ

2(xTx)−1ii

)
(21)

Gaussian distribution of estimated conditional means The same logic
applies to the estimates of conditional means. In §1.1, we saw that the estimated
conditional means at new observations x′ are given by

m̂(x′) = x′(xTx)−1xTy (22)
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10 3.1 Sampling Distributions

so (Exercise )
m̂(x′) ∼MVN(x′β, σ2x′(xTx)−1(x′)T ) (23)

Gaussian distribution of fitted values Eq. 23 simplifies for the special
case of the fitted values, i.e., the estimated conditional means on the original
data.

m̂(x′) ∼MVN(xβ, σ2H) (24)

Gaussian distribution of residuals Similarly, the residuals have a Gaussian
distribution:

e ∼MVN(0, σ2(I−H) (25)

3.1.2 σ̂2 and Degrees of Freedom

The in-sample mean squared error σ̂2 = n−1eTe has the distribution

nσ̂2

σ2
∼ χ2

n−(p+1) (26)

I won’t prove this here, because it involves the same sort of tedious manip-
ulations of Gaussians as I evaded in showing the special-case χ2

n−2 result for
simple linear models. To give a hint of what’s going on, though, I’ll make two
(related) observations.

Constraints on the residuals The residuals are not all independent of each
other. In the case of the simple linear model, the fact that we estimated the
model by least squares left us with two constraints,

∑
i ei = 0 and

∑
i eixi = 0.

If we had only one constraint, that would let us fill in the last residual if we
knew the other n−1 residuals. Having two constraints meant that knowing any
n− 2 residuals determined the remaining two.

We got those constraints from the normal or estimating equations, which in
turn came from setting the derivative of the mean squared error (or of the log-
likelihood) to zero. In the multiple regression model, when we set the derivative
to zero, we get the matrix equation

xT (y − xβ̂) = 0 (27)

But the term in parentheses is just e, so the equation is

xTe = 0 (28)

Expanding out the matrix multiplication,
∑

i ei∑
i xi1ei

...∑
i xipei

 =


0
0
...
0

 (29)

Thus the residuals are subject to p + 1 linear constraints, and knowing any
n− (p+ 1) of them will fix the rest.
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11 3.2 t Distributions for Coefficient and Conditional Mean Estimators

Geometric interpretation of constraints The vector of residuals e is a
point in an n-dimensional space. As a random vector, without any constraints
it could lie anywhere in that space, as, for instance, ε can. The constraints,
however, for it to live in a lower-dimensional subspace, specifically, a space of
dimension n− (p+ 1).

Bias of σ̂2 As more of a formal manipulation, when we look at the expectation
of σ̂2, we get

E
[
σ̂2
]

=
1

n
E
[
eTe

]
(30)

=
1

n
E
[
((I−H)e)T ((I−H)e)

]
(31)

=
1

n
E
[
eT (IT −HT )(I−H)e

]
(32)

=
1

n
E
[
eT (I−H−HT + HTH)e

]
(33)

=
1

n
E
[
eT (I−H)e

]
(34)

using the easily-checked facts that H = HT , and that H2 = H. We’ve therefore
reduced the expectation to a quadratic form, and so (Lecture 13)

E
[
σ̂2
]

=
1

n
tr ((I−H)Var [e]) (35)

=
1

n
tr ((I−H)σ2(I−H)) (36)

=
σ2

n
tr (I−H)2 (37)

=
σ2

n
tr (I−H) (38)

since we’ve just seen that (I−H)2 = (I−H), and (Eq. 10) Var [e] = σ2(I−H).
Making one last push,

E
[
σ̂2
]

=
σ2

n
(n− p− 1) (39)

since tr I = n while (as you proved in the homework) trH = p+ 1.

3.2 t Distributions for Coefficient and Conditional Mean
Estimators

From Eq. 21, it follows that

β̂i − βi
σ2(xTx)−1ii

∼ N(0, 1) (40)

This would be enough to let us do hypothesis tests and form confidence intervals,
if only we knew σ2, Since that’s estimated itself, and σ̂2 has a distribution
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12 3.3 What, Exactly, Is R Testing?

derived from a χ2
n−p−1, we can go through the same arguments we did in the

simple linear model case to get t distributions. Specifically,

β̂i − βi
ŝe
[
β̂i

] ∼ tn−p−1 (41)

The same applies to the estimated conditional means, and to the distribution
of a new Y ′ around the estimated conditional mean (in a prediction interval).
Thus, all the theory we did for parametric and predictive inference in the simple
model carries over, just with a different number of degrees of freedom.

As with the simple model, tn−p−1 → N(0, 1), so t statistics approach z
statistics as the sample size grows.

3.3 What, Exactly, Is R Testing?

The summary function lists a p-value for each coefficient in a linear model. For
each coefficient, say βi, this is the p-value in testing the hypothesis that βi = 0.
It is important to be very clear about exactly what this means.

The hypothesis being tested is “Y is a linear function of all of the Xi, i ∈ 1 :
p, with constant-variance, independent Gaussian noise, and it just so happens
that βi = 0”. Since, as we saw in Lecture 14, the optimal coefficients for each
predictor variable depend on which other variables are included in the model
(through the off-diagonal terms in (xTx)−1), this is a very specific hypothesis.
In particular, whether the null hypothesis that βi = 0 is true or not can easily
depend on what other variables are included in the regression. What is really
being checked here is, in ordinary language, something like “If you included all
these other variables, would the model really fit that much better if you gave
Xi a non-zero slope?”

3.3.1 Why, on Earth, Would You Want to Test That?

I am afraid that usually the answer is “you do not actually want to test that”.
You should ask yourself, carefully, whether it would really make any difference
to you to know that the coefficient was precisely zero. (See Lecture 8, for some
ideas about when that’s worth testing and when it isn’t.)

3.3.2 What Will Tend to Make a β̂ Significant?

The t statistic for testing βi = 0 is

β̂i

ŝe
[
β̂i

] (42)

We know that β̂i, being unbiased, will have a distribution centered on βi, and

the typical deviation away from that will in fact be about ŝe
[
β̂i

]
in size, so we

need to get a grip on that standard error.
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13 3.3 What, Exactly, Is R Testing?

From the theory above,

ŝe
[
β̂i

]
=

√
σ̂2

n

(
1

n
xTx

)−1
(43)

You showed in the homework (problem 3) that

(
1

n
xTx

)
=


1 x1 x2 . . . xp
x1 x21 x1x2 . . . x1xp
...

...
...

...
...

xp x1xp . . . x2p

 (44)

What will happen when we invert this? You can check (Exercise ??) that
if xixj = x̄ix̄j for all i, j, we’ll get a diagonal matrix. Except for the very
first entry on the diagonal (corresponding to the intercept), the entries will be
inversely proportional to the variances of the predictor variables. If xixj 6= x̄ix̄j ,
the predictors are correlated, and this is going to increase the variance of their
coefficients.

So, to sum up, four things control the standard error in β̂i: σ
2, the variance

around the true regression function, since all standard errors are proportional
to σ; n, since (all else being equal) all the standard errors are proportional to
1/
√
n; the sample variance of Xi (since having data more widely spread on that

axis makes it easier to find the slope); and the sample correlation between Xi

and the other Xj (since strong correlations, positive or negative, make it harder
to find their specific slopes).

What are the consequences?

1. Since, on any one data set, σ2 and n are the same for all coefficients, the
ones which are going to have the biggest test statistics, and so be “most
significant”, are the ones where (i) |βi| is large, (ii) the sample variance of
Xi is large, and (iii) the sample correlation of Xi with other predictors is
small.

2. The coefficients with the smallest p-values aren’t necessarily the largest, let
alone the most important; they may just be the most precisely measured.

3. Two people dealing with the same system, with precisely the same pa-
rameters and even the same n, can find different sets of coefficients to
be significant, if their design matrices x differ. In fact, there need be no
overlap in which coefficients are significant at all1.

4. Adding or removing predictors will change which coefficients are signifi-
cant, not just by changing the βi, but also changing the standard error.

5. Holding all the parameters fixed and letting n grow, the t statistic will go
off to ±∞, unless βi = 0 exactly. Every non-zero coefficient eventually
becomes significant at arbitrarily small levels.

1In this case, the natural thing to do would be to combine the data sets.
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The same reasoning as in lecture 8 shows that p-values will tend to go to
zero exponentially fast as n grows, unless of course βi = 0.

3.3.3 Things It Would Be Very Stupid to Do, So Of Course You
Would Never Even Think of Doing Them

• Saying “βi wasn’t significantly different from zero, so Xi doesn’t matter
for Y ”. After all, Xi could still be an important cause of Y , but we don’t
have enough data, or enough variance on Xi, or enough variance in Xi

uncorrelated with other X’s, to accurately estimate its slope. All of these
would prevent us from saying that βi was significantly different from 0,
i.e., distinguishable from 0 with high reliability.

• Saying “βi was significantly different from zero, so Xi really matters to
Y ”. After all, any βi which is not exactly zero can be made arbitrarily
significant by increasing n and/or the sample variance of Xi. That is, its
t statistic will go to ±∞, and the p-value as small as you have patience to
make it.

• Deleting all the variables whose coefficients didn’t have stars by them, and
re-running the regression. After all, since it makes no sense to pretend
that the statistically significant variables are the only ones which matter,
limiting the regression to the statistically significant variables is even less
sensible.

• Saying “all my coefficients are really significant, so the linear-Gaussian
model must be right”. After all, all the hypothesis tests on individual
coefficients presume the linear Gaussian model, both in the null and in
the alternative. The tests have no power to notice nonlinearities, non-
constant noise variance, or non-Gaussian noise.

4 Further Reading

The marginal figures are taken from Allie Brosh, “This Is Why I’ll Never Be an
Adult”, Hyperbole and a Half, 17 June 2010, without permission but with the
deepest possible respect. If these notes do nothing beyond inspiring you to read
one of the greatest moral psychologists of our age, they will have done more
than many classes.

On a profoundly lower plane, ? has one of the most sensible discussions of
the uses and abuses of statistical inference in multiple regression I know of.

We will discuss additive models (where we automatically search for trans-
formations of the predictors) extensively in 402 (?, ch. 9). Single-index models
are used widely in econometrics; see, for instance, ?.
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5 Exercises

To think through or practice on, not to hand in.

1. Prove Eq. 10.

2. Prove Eq. 23

3. What if all null hypotheses were true? Draw a Y from a standard Gaussian
distribution with 1000 observations. Draw X by setting p = 100, and
giving each Xi a standard Gaussian distribution.

(a) Regress Y on all 100 X’s (plus an intercept). How many of the βis
are significant at the 10% level? At the 5% level? At the 1% level?
What is the R2? The adjusted R2?

(b) Re-run the regression using just the variables which are significant at
the 5% level. Plot a histogram of the change in coefficient for each
variable from the old regression to the new regression. How many
variables are now significant at the 1% level? What is the R2? The
adjusted R2?

(This problem is inspired by an old example of David Freedman’s.)

4. Standard errors and correlations among the predictors Assume that p = 2,
so n−1xTx is a 3× 3 matrix.

(a) Suppose that x1x2 = x̄1x̄2, so there is no sample covariance between

the two predictors. Find ( 1
nxTx)−1 in terms of x̄1, x̄2, x21 and x22.

Simplify, where possible, to eliminate second moments in favor of
variances.

(b) Give the general form of the inverse, ( 1
nxTx)−1, without assuming

x1x2 = x̄1x̄2. How, qualitatively, do the variances of the slope esti-
mates depend on the variances and covariances of the predictors?
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