
00:28 Thursday 29th October, 2015
See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/

Lecture 17: Multicollinearity

36-401, Fall 2015, Section B

27 October 2015

Contents

1 Why Collinearity Is a Problem 1
1.1 Dealing with Collinearity by Deleting Variables 2
1.2 Diagnosing Collinearity Among Pairs of Variables 3
1.3 Why Multicollinearity Is Harder 3
1.4 Geometric Perspective . 5

2 Variance Inflation Factors 5
2.1 Why V IFi ≥ 1 . 5

3 Matrix-Geometric Perspective on Multicollinearity 7
3.1 The Geometric View . 9
3.2 Finding the Eigendecomposition 10
3.3 Using the Eigendecomposition . 10

3.3.1 Example . 10
3.4 Principal Components Regression 14

4 Ridge Regression 15
4.1 Some Words of Advice about Ridge Regression 18
4.2 Penalties vs. Constraints . 19
4.3 Ridge Regression in R . 19
4.4 Other Penalties/Constraints . 20

5 High-Dimensional Regression 20
5.1 Demo . 21

6 Further Reading 23

1 Why Collinearity Is a Problem

Remember our formula for the estimated coefficients in a multiple linear regres-
sion:

β̂ = (xTx)−1xTy

1

http://www.stat.cmu.edu/~cshalizi/mreg/

2 1.1 Dealing with Collinearity by Deleting Variables

This is obviously going to lead to problems if xTx isn’t invertible. Similarly,
the variance of the estimates,

Var
[
β̂
]

= σ2(xTx)−1

will blow up when xTx is singular. If that matrix isn’t exactly singular, but is
close to being non-invertible, the variances will become huge.

There are several equivalent conditions for any square matrix, say u, to be
singular or non-invertible:

• The determinant det u or |u| is 0.

• At least one eigenvalue1 of u is 0. (This is because the determinant of a
matrix is the product of its eigenvalues.)

• u is rank deficient, meaning that one or more of its columns (or rows)
is equal to a linear combination of the other rows2.

Since we’re not concerned with any old square matrix, but specifically with xTx,
we have an additional equivalent condition:

• x is column-rank deficient, meaning one or more of its columns is equal
to a linear combination of the others.

The last explains why we call this problem collinearity: it looks like we
have p different predictor variables, but really some of them are linear combi-
nations of the others, so they don’t add any information. The real number of
distinct variables is q < p, the column rank of x. If the exact linear relation-
ship holds among more than two variables, we talk about multicollinearity;
collinearity can refer either to the general situation of a linear dependence
among the predictors, or, by contrast to multicollinearity, a linear relationship
among just two of the predictors.

Again, if there isn’t an exact linear relationship among the predictors, but
they’re close to one, xTx will be invertible, but (xTx)−1 will be huge, and
the variances of the estimated coefficients will be enormous. This can make it
very hard to say anything at all precise about the coefficients, but that’s not
necessarily a problem.

1.1 Dealing with Collinearity by Deleting Variables

Since not all of the p variables are actually contributing information, a natural
way of dealing with collinearity is to drop some variables from the model. If
you want to do this, you should think very carefully about which variable to
delete. As a concrete example: if we try to include all of a student’s grades as

1You learned about eigenvalues and eigenvectors in linear algebra; if you are rusty, now is
an excellent time to refresh your memory.

2The equivalence of this condition to the others is not at all obvious, but, again, is proved
in linear algebra.

00:28 Thursday 29th October, 2015

3 1.2 Diagnosing Collinearity Among Pairs of Variables

predictors, as well as their over-all GPA, we’ll have a problem with collinearity
(since GPA is a linear function of the grades). But depending on what we want
to predict, it might make more sense to use just the GPA, dropping all the
individual grades, or to include the individual grades and drop the average3.

1.2 Diagnosing Collinearity Among Pairs of Variables

Linear relationships between pairs of variables are fairly easy to diagnose: we
make the pairs plot of all the variables, and we see if any of them fall on a
straight line, or close to one. Unless the number of variables is huge, this is by
far the best method. If the number of variables is huge, look at the correlation
matrix, and worry about any entry off the diagonal which is (nearly) ±1.

1.3 Why Multicollinearity Is Harder

A multicollinear relationship involving three or more variables might be totally
invisible on a pairs plot. For instance, suppose X1 and X2 are independent
Gaussians, of equal variance σ2, and X3 is their average, X3 = (X1 + X2)/2.
The correlation between X1 and X3 is

Cor(X1, X3) =
Cov [X1, X3]√

Var [X1] Var [X3]
(1)

=
Cov [X1, (X1 +X2)/2]√

σ2σ2/2
(2)

=
σ2/2

σ2/
√

2
(3)

=
1√
2

(4)

This is also the correlation between X2 and X3. A correlation of 1/
√

2 isn’t
trivial, but is hardly perfect, and doesn’t really distinguish itself on a pairs plot
(Figure 1).

3One could also drop just one of the individual class grades from the average, but it’s
harder to think of a scenario where that makes sense.

00:28 Thursday 29th October, 2015

4 1.3 Why Multicollinearity Is Harder

x1

30 40 50 60 70 80 90

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

40
50

60
70

80
90

10
0

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

30
40

50
60

70
80

90

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

x2

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

40 50 60 70 80 90 100

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

50 60 70 80 90
50

60
70

80
90

x3

x1 x2 x3

x1 1.00000000 0.03788452 0.7250514

x2 0.03788452 1.00000000 0.7156686

x3 0.72505136 0.71566863 1.0000000

Simulation: two independent Gaussians

x1 <- rnorm(100, mean=70, sd=15)

x2 <- rnorm(100, mean=70, sd=15)

Add in a linear combination of X1 and X2

x3 <- (x1+x2)/2

pairs(cbind(x1,x2,x3))

cor(cbind(x1,x2,x3))

Figure 1: Illustration of a perfect multi-collinear relationship might not show up on
a pairs plot or in a correlation matrix.

00:28 Thursday 29th October, 2015

5 1.4 Geometric Perspective

1.4 Geometric Perspective

The predictors X1, . . . Xp form a p-dimensional random vector X. Ordinarily,
we expect this random vector to be scattered throughout p-dimensional space.
When we have collinearity (or multicollinearity), the vectors are actually con-
fined to a lower-dimensional subspace. The column rank of a matrix is the
number of linearly independent columns it has. If x has column rank q < p,
then the data vectors are confined to a q-dimensional subspace. It looks like
we’ve got p different variables, but really by a change of coordinates we could
get away with just q of them.

2 Variance Inflation Factors

If the predictors are correlated with each other, the standard errors of the coef-
ficient estimates will be bigger than if the predictors were uncorrelated.

If the predictors were uncorrelated, the variance of β̂i would be

Var
[
β̂i

]
=

σ2

ns2Xi

(5)

just as it is in a simple linear regression. With correlated predictors, however,
we have to use our general formula for the least squares:

Var
[
β̂i

]
= σ2(xTx)−1i+1,i+1 (6)

(Why are the subscripts on the matrix i + 1 instead of i?) The ratio between
Eqs. 6 and 5 is the variance inflation factor for the ith coefficient, V IFi. The
average of the variance inflation factors across all predictors is often written
V IF , or just V IF .

Folklore says that V IFi > 10 indicates “serious” multicollinearity for the
predictor. I have been unable to discover who first proposed this threshold, or
what the justification for it is. It is also quite unclear what to do about this.
Large variance inflation factors do not, after all, violate any model assumptions.

2.1 Why V IFi ≥ 1

Let’s take the case where p = 2, so xTx is a 3 × 3 matrix. As you saw in the
homework,

1

n
xTx =

 1 x1 x2
x1 x21 x1x2
x2 x1x2 x22

00:28 Thursday 29th October, 2015

6 2.1 Why V IFi ≥ 1

After tedious but straightforward algebra4, we get for the inverse (deep breath)

(
1

n
xTx

)−1
=

1

V̂ar [X1] V̂ar [X2]− Ĉov [X1, X2]
2

 V̂ar [X1] V̂ar [X2]− Ĉov [X1, X2]
2

+ V̂ar [x2X1 − x1X2] x1V̂ar [X2]− Ĉov [X1, X2]x2 x1Ĉov [X1, X2]− V̂ar [X1]x2
x1V̂ar [X2]− Ĉov [X1, X2]x2 V̂ar [X2] −Ĉov [X1, X2]

x1Ĉov [X1, X2]− V̂ar [X1]x2 −Ĉov [X1, X2] V̂ar [X1]

where the hats on the variances and covariances indicate that they are sample,
not population, quantities.

Notice that the pre-factor to the matrix, which is the determinant of n−1xTx,
blows up when X1 and X2 are either perfectly correlated or perfectly anti-
correlated — which is as it should be, since then we’ll have exact collinearity.

The variances of the estimated slopes are, using this inverse,

Var
[
β̂1

]
=
σ2

n

V̂ar [X2]

V̂ar [X1] V̂ar [X2]− Ĉov [X1, X2]
2

=
σ2

n(V̂ar [X1]− Ĉov [X1, X2]
2
/V̂ar [X2])

and

Var
[
β̂2

]
=
σ2

n

V̂ar [X1]

V̂ar [X1] V̂ar [X2]− Ĉov [X1, X2]
2

=
σ2

n(V̂ar [X2]− Ĉov [X1, X2]
2
/V̂ar [X1])

Notice that if Ĉov [X1, X2] = 0, these reduce to

Var
[
β̂1

]
=

σ2

nV̂ar [X1]
, Var

[
β̂2

]
=

σ2

nV̂ar [X2]

exactly as we’d see in simple linear regressions. When covariance is present,
however, regardless of its sign, it increases the variance of the estimates.

With a great deal of even more tedious algebra, it can be shown that this
isn’t just a weird fact about the p = 2 case, but is true generically. The variance
inflation factor for Xi can be found by regressing Xi on all of the other Xj ,
computing the R2 of this regression5, say R2

i , and setting V IFi = 1/(1−R2
i).

6

The consequence is that V IFi ≥ 1, with the variance inflation factor increas-
ing as Xi becomes more correlated with some linear combination of the other
predictors.

4At least, if you remember how to calculate the determinant of a matrix, a matter on which
I evidently had a brain-fault this afternoon.

5I’d admit this was an exception to my claim that R2 is at best useless, except that we
can get the exact same number, without running all these regressions, just by inverting xTx.

6The trick to showing this involves relating the co-factors which appear when we’re invert-
ing n−1xTx to the coefficients in the regression of Xi on all the other Xj , followed by a mess
of book-keeping.

00:28 Thursday 29th October, 2015

7

3 Matrix-Geometric Perspective on Multicollinear-
ity

Multicollinearity means that there exists (at least) one set of constants a0, a1, . . . ap,
a1, . . . ap not all zero, such that

a1X1 + a2X2 + . . . apXp =

p∑
i=1

aiXi = a0

To simplify this, let’s introduce the p × 1 matrix a =

 a1
...
ap

, so we can write

multicollinearity as
aTX = a0

for a 6= 0.
If this equation holds, then

Var
[
aTX

]
= Var

[
p∑
i=1

aiXi

]
= Var [a0] = 0

Conversely, if Var
[
aTX

]
= 0, then aTX must be equal to some constant, which

we can call a0. So multicollinearity is equivalent to the existence of a vector
a 6= 0 where

Var
[
aTX

]
= 0

I make these observations because we are old hands now at the variances of
weighted sums.

Var
[
aTX

]
= Var

[
p∑
i=1

aiXi

]
(7)

=

p∑
i=1

p∑
j=1

aiajCov [Xi, Xj] (8)

= aTVar [X] a (9)

Multicollinearity therefore means the equation

aTVar [X] a = 0

has a solution a 6= 0.
Solving a quadratic equation in matrices probably does not sound like much

fun, but this is where we appeal to results in linear algebra7. Var [X] is a very
special matrix: it is square (p × p), symmetric, and positive-definite, meaning

7This is also a big part of why we make you take linear algebra.

00:28 Thursday 29th October, 2015

8

that aTVar [X] a ≥ 0. (Since, after all, that expression is the variance of the
scalar

∑p
i=1 aiXi, and variances of scalars are ≥ 0.) We may therefore appeal

to the spectral or eigendecomposition theorem of linear algebra to assert the
following:

1. There are p different p × 1 vectors v1,v2, . . .vp, the eigenvectors of
Var [X], such that

Var [X] vi = λivi

for scalar constants λ1, λ2, . . . λp, the eigenvalues of Var [X]. The order-
ing of the eigenvalues and eigenvectors is arbitrary, but it is conventional
to arrange them so that λ1 ≥ λ2 ≥ . . . ≥ λp.

2. The eigenvalues are all ≥ 0. (Some of them may be equal to each other;
these are called repeated, multiple or degenerate eigenvalues.)

3. The eigenvectors can be chosen so that they all have length 1, and are
orthogonal to each other, so vTj vi = δij .

4. Any vector can be re-written as a sum of eigenvectors:

a =

p∑
i=1

(aTvi)vi

(Here I have used the parentheses to eliminate any ambiguity about the
order in which the matrices are to be multiplied; aTvi is always a scalar.)

5. Var [X] can be expressed as

Var [X] = VDVT

where V is the matrix whose ith column is vi, (and so VT is the matrix
where vi is the ith column), and D is the diagonal matrix whose entries
are λ1, λ2, . . . λp.

Suppose that one or more of the eigenvalues are zero. Since we’ve put
them in order, this means that the positive eigenvalues are λ1, . . . λq (for some
q < p), and λq+1, . . . λp are all zero. It follows that vq+1, . . .vp all give us linear
combinations of the Xi which are multicollinear. So a sufficient condition for
multicollinearity is that Var [X] have zero eigenvalues.

Conversely, suppose aTVar [X] a = 0, and a 6= 0. Let’s re-express this using

00:28 Thursday 29th October, 2015

9 3.1 The Geometric View

the eigendecomposition.

Var [X] a = Var [X]

p∑
i=1

(aTvi)vi (10)

=

p∑
i=1

(aTvi)Var [X] vi (11)

=

p∑
i=1

(aTvi)λivi (12)

aTVar [X] a =

 p∑
j=1

(aTvj)vj

T
p∑
i=1

(aTvi)λivi (13)

=

p∑
i=1

p∑
j=1

(aTvi)(a
Tvj)v

T
j vi (14)

=

p∑
i=1

(aTvi)
2λi (15)

Since (aTvi)
2 ≥ 0, the only way the whole sum can be zero is if (aTvi)

2 > 0
only when λi = 0.

We have therefore established the following:

1. The predictors are multi-collinear if and only if Var [X] has zero eigenval-
ues.

2. Every multi-collinear combination of the predictors is either an eigenvector
of Var [X] with zero eigenvalue, or a linear combination of such eigenvec-
tors.

3.1 The Geometric View

Every eigenvector of Var [X] points out a direction in the space of predictors.
The leading eigenvector v1, the one going along with the largest eigenvalue,
points out the direction of highest variance (and that variance is λ1). The next-
to-leading eigenvector, v2, points out the direction orthogonal to v1 which has
the highest variance, and so forth down the line. The eigenvectors of Var [X]
are also called the principal components of the predictors, because of their
role as the directions of maximum variance.

The eigenvectors going along with zero eigenvalues point out directions in
the predictor space along which there is no variance, precisely because those
directions amount to weighted sums of the original variables which equal con-
stants. The q non-zero eigenvalues mark out the q-dimensional subspace in
which all the data vectors lie. If q < p, then the predictors are rank-deficient,
and the rank of x is just q.

00:28 Thursday 29th October, 2015

10 3.2 Finding the Eigendecomposition

3.2 Finding the Eigendecomposition

Because finding eigenvalues and eigenvectors of matrices is so useful for so many
situations, mathematicians and computer scientists have devoted incredible ef-
forts over the last two hundred years to fact, precise algorithms for computing
them. This is not the place to go over how those algorithms work; it is the
place to say that much of the fruit of those centuries of effort is embodied in
the linear algebra packages R uses. Thus, when you call

eigen(A)

you get back a list, containing the eigenvalues of the matrix A (in a vector),
and its eigenvectors (in a matrix), and this is both a very fast and a very reliable
calculation. If your matrix has very special structure (e.g., it’s sparse, meaning
almost all its entries are zero), there are more specialized packages adapted
to your needs, but we don’t pursue this further here; for most data-analytic
purposes, ordinary eigen will do.

3.3 Using the Eigendecomposition

1. Find the eigenvalues and eigenvectors.

2. If any eigenvalues are zero, the data is multicollinear; if any are very close
to zero, the data is nearly multicollinear.

3. Examine the corresponding eigenvectors. These indicate the linear com-
binations of variables which equal constants (or are nearly constant if the
eigenvalue is only nearly zero). Ideally, these will be combinations of a
reasonably small number of variables (i.e., most of the entries in the eigen-
vector will be zero), so you can ask whether there are substantive reasons
to delete one or more of those predictors.

3.3.1 Example

I’ll make up some data which displays exact multi-collinearity. Let’s say that
X1 and X2 are both Gaussian with mean 70 and standard deviation 15, and are
uncorrelated; that X3 = (X1 + X2)/2; and that Y = 0.7X1 + 0.3X2 + ε, with
ε ∼ N(0, 15).

00:28 Thursday 29th October, 2015

11 3.3 Using the Eigendecomposition

Simulation: two independent Gaussians

x1 <- rnorm(100, mean=70, sd=15)

x2 <- rnorm(100, mean=70, sd=15)

Add in a linear combination of X1 and X2

x3 <- (x1+x2)/2

X4 is somewhat correlated with X1 but not relevant to Y

x4 <- x1+runif(100,min=-100,max=100)

Y is a linear combination of the X's plus noise

y <- 0.7*x1 + 0.3*x2 + rnorm(100, mean=0, sd=sqrt(15))

df <- data.frame(x1=x1, x2=x2, x3=x3, x4=x4, y=y)

Figure 2: Small simulation illustrating exact collinearity.

00:28 Thursday 29th October, 2015

12 3.3 Using the Eigendecomposition

x1

40 60 80 100

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 50 150

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

40
60

80
10

0

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

40
60

80
10

0

●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

● x2
●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●● ●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

x3
●

●

●

●

●
● ●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

40
60

80

●

●

●

●

●
● ●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

0
50

15
0

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

x4

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

40 60 80 100

●
●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●●
●

●

●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

● ●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

40 60 80

●
●

● ●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

● ●
●

●

●

●
● ●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

40 60 80 100

40
60

80
10

0

y

x1 x2 x3 x4 y

x1 1.00000000 -0.01979669 0.7290418 0.29354541 0.8810356

x2 -0.01979669 1.00000000 0.6699024 0.03450894 0.3263256

x3 0.72904178 0.66990244 1.0000000 0.24161019 0.8776559

x4 0.29354541 0.03450894 0.2416102 1.00000000 0.3006694

y 0.88103556 0.32632563 0.8776559 0.30066941 1.0000000

pairs(df)

cor(df)

Figure 3: Pairs plot and correlation matrix for the example of Figure 2. Notice that
neither the pairs plot nor the correlation matrix reveals a problem, which is because it
only arises when considering X1, X2, X3 at once.

00:28 Thursday 29th October, 2015

13 3.3 Using the Eigendecomposition

Create the variance matrix of the predictor variables

var.x <- var(df[,c("x1","x2","x3","x4")])

Find the eigenvalues and eigenvectors

var.x.eigen <- eigen(var.x)

Which eigenvalues are (nearly) 0?

(zero.eigenvals <- which(var.x.eigen$values < 1e-12))

[1] 4

Display the corresponding vectors

(zero.eigenvectors <- var.x.eigen$vectors[,zero.eigenvals])

[1] 4.082483e-01 4.082483e-01 -8.164966e-01 3.330669e-16

Figure 4: Example of using the eigenvectors of Var [X] to find collinear combinations
of the predictor variables. Here, what this suggests is that −X1−X2+2X3 = constant.
This is correct, since X3 = (X1+X2)/2, but the eigen-decomposition didn’t know this;
it discovered it.

00:28 Thursday 29th October, 2015

14 3.4 Principal Components Regression

3.4 Principal Components Regression

Let’s define some new variables:

W1 = vT1X (16)

Wi = vTi X (17)

Wp = vTpX (18)

(19)

W1 is the projection of the original data vector X onto the leading eigenvec-
tor, or the principal component. It is called the score on the first principal
component. It has a higher (sample) variance than any other linear function
of the original predictors. W2 is the projection or score on the second princi-
ple component. It has more variance than any other linear combination of the
original predictors which is uncorrelated with W1. In fact, Ĉov [Wi,Wj] = 0 if
i 6= j.

In principle components regression, we pick some k ≤ p and use the
model

Y = γ0 + γ1W1 + . . . γkWk + ε

where as usual we presume ε has expectation 0, constant variance, and no
correlation from one observation to another. (I use the Greek letter γ, instead
of β, to emphasize that these coefficients are not directly comparable to those
of our original linear model.) We are regressing not on our original variables,
but on uncorrelated linear combinations of those variables.

If k = p, then we get exactly the same predictions and fitted values as in
the original linear model, though the coefficients aren’t the same. This would
amount to doing a change of coordinates in the space of predictors, so that
all of the new coordinates were uncorrelated, but wouldn’t otherwise change
anything.

If there are only q < p non-zero eigenvalues, we should not use k > q.
Using k = q uses all the linear combinations of the original predictors which
aren’t collinear. However, we might deliberately pick k < q so as to simplify
our model. As I said above, the principal components are the directions in
the predictor space with the highest variance, so by using a small k we confine
ourselves to those directions, and ignore all the other aspects of our original
predictors. This may introduce bias, but should reduce the variance in our
predictions. (Remember that the variance in our coefficient estimates, and so
in our predictions, goes down with the variance of the predictor variables.)

There are a number of things to be said about principal components regres-
sion.

1. We need some way to pick k. The in-sample MSE will decrease as k grows
(why?), but this might not be a good guide to out-of-sample predictions,
or to whether the modeling assumptions are fulfilled.

2. The PC regression can be hard to interpret.

00:28 Thursday 29th October, 2015

15

The last point needs some elaboration. Each one of the principal components
is a linear combination of the original variables. Sometimes these are easy to
interpret, other times their meaning (if they have any) is thoroughly obscure.
Whether this matters depends very much on how deeply committed you are to
interpreting the coefficients.

As for picking k, there are two (potentially) rival objectives. One is to pick
the number of components which will let us predict well. The in-sample mean
squared error has to decrease as k grows, so we would really like some measure of
actual out-of-sample or generalization error; the cross-validation method I will
describe below is applicable, but there are other potentially-applicable tech-
niques. The other objective is to have a set of variables which satisfy the
assumptions of the multiple linear regression model. In my experience, it is
not very common for principal components regression to actually satisfy the
modeling assumptions, but it can work surprisingly well as a predictive tool
anyway.

4 Ridge Regression

The real problem with collinearity is that when it happens, there isn’t a unique
solution to the estimating equations. There are rather infinitely many solutions,
which all give the minimum mean squared error. It feels perverse, somehow, to
get rid of predictors because they give us too many models which fit too well. A
better response is to pick one of these solutions, by adding some other criterion
we’d like to see in the model.

There are many ways to do this, but one which works well in practice is the
following: all else being equal, we prefer models with smaller slopes, ones closer
to zero. Specifically, let’s say that we prefer the length of the coefficient vector,
‖β‖, to be small. Now, at least abstractly, we have a situation like that shown
in Figure 5. The black line marks out all of the β1, β2 combinations which give
us exactly the same mean squared error. They all give the same error because
of a collinearity between X1 and X2. But there is a single point on the black
line which comes closest to the origin — it touches the solid grey circle. Other
points on the line, while they have equal MSEs, have larger ‖β‖ (they lie on one
of the dashed grey circles), so we don’t use them.

What if everything else isn’t equal? (Say, for instance, that the data are
only nearly collinear.) We’ll need some way to trade off having a smaller MSE
against having a smaller vector of coefficients. Since we’re looking at squared
error, I hope it is somewhat plausible that we should also look at the squared
length of the coefficient vector; if you don’t buy that, you can at least take my
word for it that it simplifies the math.

Specifically, let’s replace our old optimization problem

min
1

n
(y − xb)T (y − xb)

00:28 Thursday 29th October, 2015

16

Add a circle to an existing plot

R, bizarrely, does not have any built-in function for this

Inputs: x coordinate of center; y coordinate of center; radius;

number of equiangular steps; additional graphical parameters

Outputs: none

Side-effects: a circle is added to the existing plot

circle <- function(x0, y0, r, n=1000, ...) {
theta <- seq(from=0, to=2*pi, length.out=n) # Angles

x <- x0 + r*cos(theta) # x coordinates

y <- y0 + r*sin(theta) # y coordinates

lines(x,y,...) # Draw the lines connecting all the points, in order

}
plot(0,type="n",xlab=expression(beta[1]),ylab=expression(beta[2]),

xlim=c(-10,10), ylim=c(-10,10))

abline(a=10,b=-2)

points(0,0)

circle(0,0,sqrt(20),col="grey")

points(4,2,col="black",pch=19)

circle(0,0,5,col="grey",lty="dashed")

circle(0,0,6,col="grey",lty="dashed")

−10 −5 0 5 10

−
10

−
5

0
5

10

β1

β 2 ●

●

Figure 5: Geometry of ridge regression when the predictors are collinear. The black
line shows all the combinations of β1 and β2 which minimize the MSE. We chose
the coefficient vector (the black point) which comes closest to the origin (the dot).
Equivalently, this is the parameter vector with the smallest MSE among all the points
at equal distance from the origin (solid grey circle). Other coefficient vectors either
have a worse MSE (they don’t lie on the black line), or are further from the origin
(they lie on one of the dashed grey circles).

00:28 Thursday 29th October, 2015

17

with a new, penalized optimization problem

min
1

n
(y − xb)T (y − xb)− λ

n
‖b‖2

Here the penalty factor λ > 0 tells us the rate at which we’re willing to make
a trade-off between having a small mean squared error and having a short vector
of coefficients8. We’d accept ‖b‖2 growing by 1 if it reduced the MSE by more
than λ/n. We’ll come back later to how to pick λ.

It’s easy to pose this optimization problem: can we actually solve it, and
is the solution good for anything? Solving is actually straightforward. We can
re-write ‖b‖2 as, in matrix notation, bTb, so the gradient is

∇b

(
1

n
(y − xb)T (y − xb) +

λ

n
bTb

)
=

2

n

(
−xTy + xTxb + λb

)
Set this to zero at the optimum, β̃λ,

xTy = (xTx + λI)β̃λ

and solve:
β̃λ = (xTx + λI)−1xTy

Notice what we’ve done here: we’ve taken the old matrix xTx and we’ve added
λ to every one of its diagonal entries. (This is the “ridge” that gives ridge
regression its name.) If the predictor variables were centered, this would amount
to estimating the coefficients as though each of them as had a little bit more
variance than they really did, while leaving all the covariances alone. This
would break any exact multicollinearity, so the inverse always exists, and there
is always some solution.

What about the intercept? The intercept is different from the other coef-
ficients; it’s just a fudge factor we put in to make sure that the regression line
goes through the mean of the data. It doesn’t make as much sense to penalize
its length, so ridge regression is usually done after centering all the variables,
both the predictors and the response. This doesn’t change the slopes, but sets
the intercept to zero. Then, after we have β̃λ, we get the intercept by plugging
it in to y = xβ̃λ.

There are two prices to doing this.

1. We need to pick λ (equivalently, c) somehow.

2. Our estimates of the coefficients are no longer unbiased, but are “shrunk”
towards zero.

8λ = 0 means we ignore the length of the coefficient vector and we’re back to ordinary
least squares. λ < 0 would mean we prefer larger coefficients, and would lead to some truly
perverse consequences.

00:28 Thursday 29th October, 2015

18 4.1 Some Words of Advice about Ridge Regression

Point (2) is not as bad as it might appear. If λ is fixed, and we believe
our modeling assumptions, we can calculate the bias and variance of the ridge
estimates:

E
[
β̃λ

]
=

(
xTx + λI

)−1
xTE [Y] (20)

=
(
xTx + λI

)−1
xTxβ (21)

Var
[
β̃λ

]
= Var

[(
xTx + λI

)−1
xTY

]
(22)

= Var
[(

xTx + λI
)−1

xT ε
]

(23)

=
(
xTx + λI

)−1
xTσ2Ix

(
xTx + λI

)−1
(24)

= σ2
(
xTx + λI

)−1
xTx

(
xTx + λI

)−1
(25)

Notice how both of these expressions smoothly approach the corresponding for-
mulas ones for ordinary least squares as λ → 0. Indeed, under the Gaussian
noise assumption, β̃λ actually has a Gaussian distribution with the given expec-
tation and variance.

Of course, if λ is not fixed in advance, we’d have to worry about the ran-
domness in the distribution of λ. A common practice here is data splitting:
randomly divide the data into two parts, and use one to pick λ and the other
to then actually estimate the parameters, which will have the stated bias and
standard errors. (Typically, but not necessarily, the two parts of the data are
equally big.)

As for point (1), picking λ, this is also a solvable problem. The usual ap-
proach is cross-validation: trying a lot of different values of λ, estimate the
model on all but one data point, and then see how well different λ’s predict
that held-out data point. Since there’s nothing special about one data point
rather than another, do this for each data point, and average the out-of-sample
squared errors. Pick the λ which does best at predicting data it didn’t get to
see. (There are lots of variants, some of which we’ll cover later in the course.)

4.1 Some Words of Advice about Ridge Regression

Units and Standardization If the different predictor variables don’t have
physically comparable units9, it’s a good idea to standardize them first, so they
all have mean 0 and variance 1. Otherwise, penalizing βTβ =

∑p
i=1 β

2
i seems to

be adding up apples, oranges, and the occasional bout of regret. (Some people
like to pre-standardize even physically comparable predictors.)

9E.g., if they’re all masses expressed in grams, they’re comparable; if some masses are in
kilograms or pounds, they’re not comparable but they could easily be made so; if some of
them are lengths or prices, they’re not physically comparable no matter what units you use.

00:28 Thursday 29th October, 2015

19 4.2 Penalties vs. Constraints

Stabilization I’ve presented ridge regression as a way of dealing with multi-
collinearity, which it is, but it’s also perfectly possible to use it when that isn’t
an issue. The goal there is to stabilize the estimates — to reduce their vari-
ance, at the cost of a bit of bias. If the linear model is perfectly well-specified,
there’s little point to doing this, but it can often improve predictions a lot when
the model is mis-specified.

4.2 Penalties vs. Constraints

I explained ridge regression above as applying a penalty to long coefficient vec-
tors. There is an alternative perspective which is mathematically equivalent,
where instead we constrain the length of the coefficient vector.

To see how this works, let’s start by setting up the problem: pick some c > 0,
and then ask for

min
b : ‖b‖≤c

1

n
(y − xb)T (y − xb)

Since ‖b‖ ≤ c if and only if ‖b‖2 ≤ c2, we might as well say

min
b : ‖b‖2≤c2

1

n
(y − xb)T (y − xb)

At this point, we invoke the magic of Lagrange multipliers10: we can turn
a constrained problem into an unconstrained problem with an additional term,
and an additional variable:

min
b,λ

1

n
(y − xb)T (y − xb) + λ(bTb− c2)

Minimizing over λ means that either λ = 0, or bTb = c2. The former situation
will apply when the unconstrained minimum is within the ball ‖b‖ ≤ c; other-
wise, the constraint will “bite”, and λ will take a non-zero value to enforce it.
As c grows, the required constraint λ will become smaller11.

When we minimize over b, the precise value of c2 doesn’t matter; only λ
does. If we know λ, then we are effectively just solving the problem

min
b

1

n
(y − xb)T (y − xb) + λbTb

which is the penalized regression problem we solved before.

4.3 Ridge Regression in R

There are several R implementations of ridge regression; the MASS package con-
tains one, lm.ridge, which needs you to specify λ. The ridge package (Cule,
2014) has linearRidge, which gives you the option to set λ, or to select it
automatically via cross-validation. (See the next section for a demo of this in
action.) There are probably others I’m not aware of.

10See further reading, if you have forgotten about Lagrange multipliers.
11In economic terms, λ is the internal or “shadow” price we’d pay, in units of MSE, to

loosen the constraint.

00:28 Thursday 29th October, 2015

20 4.4 Other Penalties/Constraints

4.4 Other Penalties/Constraints

Ridge regression penalizes the mean squared error with ‖b‖2, the squared length
of the coefficient vector. This suggests the idea of using some other measure of
how big the vector is, some other norm. A mathematically popular family of
norms are the `q norms12, defined as

‖b‖q =

(
p∑
i=1

|bi|q
)1/q

The usual Euclidean length is `2, while `1 is

‖b‖1 =

p∑
i=1

|bi|

and (by continuity ‖b‖0 is just the number of non-zero entries in b. When
q 6= 2, penalizing the ‖b‖q does not, usually, have a nice closed-form solution
like ridge regression does. Finding the minimum of the mean squared error
under an `1 penalty is called lasso regression or the lasso estimator, or just
the lasso13. This has the nice property that it tends to give sparse solutions
— it sets coefficients to be exactly zero (unlike ridge). There are no closed
forms for the lasso, but there are efficient numerical algorithms. Penalizing
`0, the number of non-zero coefficients, sounds like a good idea, but there are,
provably, no algorithms which work substantially faster than trying all possible
combinations of variables.

5 High-Dimensional Regression

One situation where we know that we will always have multicollinearity is when
n < p. After all, n points always define a linear subspace of (at most) n − 1
dimensions14. When the number of predictors we measure for each data point
is bigger than the number of data points, the predictors have to be collinear,
indeed multicollinear. We are then said to be in a high-dimensional regime.

This is an increasingly common situation in data analysis. A very large ge-
netic study might sequence the genes of, say, 500 people — but measure 500,000
genetic markers in each person15. If we want to predict some characteristic of
the people from the genes (say their height, or blood pressure, or how quickly
they would reject a transplanted organ), there is simply no way to estimate

12Actually, people usually call them the `p norms, but we’re using p for the number of
predictor variables.

13Officially, “lasso” here is an acronym for “least angle selection and shrinkage operator”.
If you believe that phrase came before the acronym, I would like your help in getting some
money out of Afghanistan.

14Two points define a line, unless the points coincide; three points define a plane, unless
the points fall on a line; etc.

15I take these numbers, after rounding, from an actual study done in the CMU statistics
department a few years ago.

00:28 Thursday 29th October, 2015

21 5.1 Demo

a model by ordinary least squares. Any approach to high-dimensional regres-
sion must involve either reducing the number of dimensions, until it’s < n (as
in principle components regression), or penalizing the estimates to make them
stable and regular (as in ridge regression), or both.

There is a bit of a myth in recent years that “big data” will solve all our prob-
lems, by letting us make automatic predictions about everything without any
need for deep understanding. The truth is almost precisely the opposite: when
we can measure everything about everyone, p/n blows up, and we are in des-
perate need of ways of filtering the data and/or penalizing our models. Blindly
relying on generic methods of dimension reduction or penalization is going to
impose all sorts of bizarre biases, and will work much worse than intelligent
dimension reduction and appropriate penalties, based on actual understanding.

5.1 Demo

Let’s apply ridge regression to the simulated data already created, where one
predictor variable (X3) is just the average of two others (X1 and X2).

library(ridge)

Fit a ridge regression

lambda="automatic" is actually the default setting

demo.ridge <- linearRidge(y ~ x1 + x2 + x3 + x4, data=df, lambda="automatic")

coefficients(demo.ridge)

(Intercept) x1 x2 x3 x4

3.755564075 0.419326727 0.035301803 0.495563414 0.005749006

demo.ridge$lambda

[1] 0.005617822 0.009013389 0.006462562

We may compare the predictions we get from this to the predictions we’d
from dropping, say, X2 (Figure 6). One substantial advantage of ridge regression
is that we don’t have to make any decisions about which variables to remove, but
can match (to extremely high accuracy) what we’d get after dropping variables.

00:28 Thursday 29th October, 2015

22 5.1 Demo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

40 50 60 70 80 90

40
50

60
70

80
90

Predictions from ridge regression

P
re

di
ct

io
ns

 fr
om

 le
as

t s
qu

ar
es

Figure 6: Comparison of fitted values from an ordinary least squares regression where
we drop X2 from our running example (vertical axis) against fitted values from a ridge
regression on all variables (horizontal axis); the two sets of numbers are not exactly
equal, though they are close.

00:28 Thursday 29th October, 2015

23

6 Further Reading

Ridge regression, by that name, goes back to Hoerl and Kennard (1970). Es-
sentially the same idea was introduced some years earlier by the great Soviet
mathematician A. N. Tikhonov in a series of papers about “regularizing ill-
posed optimization problems”, i.e., adding penalties to optimization problems
to make a solution unique, or to make the solution more stable. For this rea-
son, ridge regression is sometimes also called “Tikhonov regularization” of linear
least squares16.

The use of principal components as a technique of dimension reduction goes
back at least to Hotelling in the 1930s, or arguably to Karl Pearson around 1900.
I have not been able to trace who first suggested regressing a response variable
on the principal components of the predictors. Dhillon et al. (2013) establishes a
surprising connection between regression on the principal components and ridge
regression.

On the use of Lagrange multipliers to enforce constraints on optimization
problems, and the general equivalence between penalized and constrained opti-
mization, see Klein (2001), or Shalizi (forthcoming, §E.3).

For high-dimensional regression in general, the opening chapters of Bühlmann
and van de Geer (2011) are very good. Bühlmann (2014); Wainwright (2014)
may be more accessible review articles on basically the same topics.

For a representative example of the idea that big data “makes theory obso-
lete”, see Anderson (2008); for a reply from someone who actually understands
machine learning and high-dimensional statistics, see http://earningmyturns.
blogspot.com/2008/06/end-of-theory-data-deluge-makes.html.

References

Anderson, Chris (June 2008). “The End of Theory: The Data Deluge Makes
the Scientific Method Obsolete.” Wired , 16(17). URL http://www.wired.

com/2008/06/pb-theory/.

Bühlmann, Peter (2014). “High-Dimensional Statistics with a View Toward
Applications in Biology.” Annual Review of Statistics and Its Applications,
1: 255–278. doi:10.1146/annurev-statistics-022513-115545.

Bühlmann, Peter and Sara van de Geer (2011). Statistics for High-Dimensional
Data: Methods, Theory and Applications. Berlin: Springer-Verlag.

Cule, Erika (2014). ridge: Ridge Regression with automatic selection of the
penalty parameter . URL http://CRAN.R-project.org/package=ridge. R
package version 2.1-3.

Dhillon, Paramveer S., Dean P. Foster, Sham M. Kakade and Lyle H. Ungar
(2013). “A Risk Comparison of Ordinary Least Squares vs Ridge Regression.”

16There are a large number of variant transliterations of “Tikhonov”.

00:28 Thursday 29th October, 2015

http://earningmyturns.blogspot.com/2008/06/end-of-theory-data-deluge-makes.html
http://earningmyturns.blogspot.com/2008/06/end-of-theory-data-deluge-makes.html
http://www.wired.com/2008/06/pb-theory/
http://www.wired.com/2008/06/pb-theory/
http://dx.doi.org/10.1146/annurev-statistics-022513-115545
http://CRAN.R-project.org/package=ridge

24 REFERENCES

Journal of Machine Lerning Research, 14: 1505–1511. URL http://jmlr.

org/papers/v14/dhillon13a.html.

Hoerl, Arthur E. and Robert W. Kennard (1970). “Ridge Regression: Biased
Estimation for Nonorthogonal Problems.” Technometrics, 12. URL http:

//www.jstor.org/pss/1267351.

Klein, Dan (2001). “Lagrange Multipliers without Permanent Scar-
ring.” Online tutorial. URL http://dbpubs.stanford.edu:8091/~klein/

lagrange-multipliers.pdf.

Shalizi, Cosma Rohilla (forthcoming). Advanced Data Analysis from an Elemn-
tary Point of View . Cambridge, England: Cambridge University Press. URL
http://www.stat.cmu/~cshalizi/ADAfaEPoV.

Wainwright, Martin J. (2014). “Structured Regularizers for High-Dimensional
Problems: Statistical and Computational Issues.” Annal Review of Statis-
tics and Its Applications, 1: 233–253. doi:10.1146/annurev-statistics-022513-
115643.

00:28 Thursday 29th October, 2015

http://jmlr.org/papers/v14/dhillon13a.html
http://jmlr.org/papers/v14/dhillon13a.html
http://www.jstor.org/pss/1267351
http://www.jstor.org/pss/1267351
http://dbpubs.stanford.edu:8091/~klein/lagrange-multipliers.pdf
http://dbpubs.stanford.edu:8091/~klein/lagrange-multipliers.pdf
http://www.stat.cmu/~cshalizi/ADAfaEPoV
http://dx.doi.org/10.1146/annurev-statistics-022513-115643
http://dx.doi.org/10.1146/annurev-statistics-022513-115643

	Why Collinearity Is a Problem
	Dealing with Collinearity by Deleting Variables
	Diagnosing Collinearity Among Pairs of Variables
	Why Multicollinearity Is Harder
	Geometric Perspective

	Variance Inflation Factors
	Why VIFi 1

	Matrix-Geometric Perspective on Multicollinearity
	The Geometric View
	Finding the Eigendecomposition
	Using the Eigendecomposition
	Example

	Principal Components Regression

	Ridge Regression
	Some Words of Advice about Ridge Regression
	Penalties vs. Constraints
	Ridge Regression in R
	Other Penalties/Constraints

	High-Dimensional Regression
	Demo

	Further Reading

