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1 Initial Ideology

A network is a configuration of similar, binary relationships among a group of
things, which we will often call “actors” (if we want to sound like sociologists),
“nodes” or “vertices” (if we want to sound like mathematicians) or “entities”
(if we want to sound spooky). Both the “binary” and the “similar” parts are
important.

Binary A binary relationship is one between just two people or entities, as
“Joey likes Irene”, “Irene hates Joey”, “Mark collaborates with Duncan”,
“cats eat voles” or “J. P. Morgan Partners loans money to U.S. Steel”.
More complex relationships are ones which only make sense with three or
more terms, e.g., “Irene is jealous of Joey’s feelings for Karl”, or “Carnegie
guarantees Morgan’s loan to U.S. Steel”. (Coming up with 4-ary emotional
relationships is left as an exercise.) Not all relationships which matter are
binary.

Similar Arguably, everything in the world is related somehow to everything
else. Even if we limit ourselves to binary relationships, if we don’t limit
ourselves to configurations where the relationships all have a pretty similar
nature, we end up including everything in a single tangled heap. The result
is paranoia, rather than a useful scientific theory. It would be metaphysical
and unhelpful to insist on identical relationships (think of any two of your
friends: do you really have ezactly the same relationship to both of them?),
so there’s an element of judgment, as always.

In this course, when we talk about “networks” we mean real networks, with
things in the real world. When we care about mathematical abstractions over
lived reality, we are talking about graphs.

A graph (as in “graph theory”) is a bunch of things (set of verticies or
nodes) V', plus a set of edges, ties or links among them, i.e., aset E CV XV,
a subset of the ordered pairs of V. Figure [I] shows a very basic example.
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Figure 1: A directed graph with a loop

2 Very Basic Graph Definitions

Graphs may have the following characteristics:

e Not all possible links need be present. If all possible links are present, the
graph is complete.

e Nodes need not be tied to themselves. A binary relation which entities
have with themselves is called reflexive; in graph-theoretic terms, we
speak of self-loops. Many graphs are of ir-reflexive relations, and have
no self-loops.

e The relationship need not run both ways, i.e., if (¢,j) € E, the reverse-
directed pair (j,4) may or may not be € E. If (i,5) € E if and only if
(iff) (4,7 € E, then the relation is symmetric, and we often speak of the
graph as being undirected. An a-symmetric relation is not necessarily
anti-symmetric, however.

Graphs can have numeric weights or other attributes on edges. These
might indicate the strength of a relationship, or distinguish different types of
relationships among the same nodes. E.g., in a graph of contacts among teach-
ers, we might have two types of edges, one for “socializes with” and another for
“seeks advice from”, and weights which indicate how often these things happen.
We sometimes also allow, formally, for multiple edges between the same pair
of nodes (a multi-graph), though this can often be represented as a weighted
graph.



Figure 2: A bipartite graph in which oval nodes indicate students a rectangular
nodes indicate classes. Edges indicate that a student is taking the class.

A simple graph is one which contains no self-loops and at most one, un-
weighted, unlabeled edge between any pair of nodes. Simple graphs can be
directed or undirected. Much of the mathematical theory for graphs is tailored
to simple graphs.

A bipartite graph is one where the relationship is between two sharply
distinct kinds of things; the nodes can be divided into two kinds, two parts
(hence “bipartite”) or modes, and edges are only between nodes in different
parts of the graph, never within a part or mode, as in Figure 7?. We might write
the node set here as V.= U NW, and insist that £ C U x W. Historically (see
note below) the oldest studies of social networks in fact focused on bipartite
graphs, with one mode being corporations and the other mode being robber
barons (and their lawyers, bankers, etc.) who sat on corporate boards.

3 Some Properties of Graphs

To sum up, the mathematical abstractions we will work with are graphs G =
(V, E) where V is set of the vertices or nodes, and E C V x V is set of the edges,
ties or links. Typically, we insist that F contain no self-loops.

Since computing over sets is usually inconvenient, but computing over nu-
merical arrays is easy, we often prefer to represent graphs as matrices. Say
that there are n nodes, i.e., |V| = n. Fix an ordering of the nodes. Then the
adjacency matrix A is the n x n matrix where A;; = 1 if (i, j) € E, otherwise
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Figure 3: An undirected graph

(i.e., when (4,5) € E) A;; = 0. The graph is undirected when A is symmetric;
the absence of self-edges means all the diagonal entries A;; = 0.

Once we have the adjacency matrix, we can easily use it to answer questions
like “who does i send ties to?” (read the i*® row) or “who does i receive ties
from?” (read the i*"' column); as sets, these are i’s in- and out- neighbor-
hoods (its neighborhood, in an undirected graph).

A walk is a linked sequence of edges between two nodes, e.g., in Figure
Irene-Karl and Irene-Joey-Karl are both walks. In a walk, repeating and
back-tracking are both allowed. Higher powers of the adjacency matrix count
the number of walks between nodes, i.e., (A¥);; counts the number of walks of
length k between ¢ and j. A stricter notion is that of a path between nodes,
which is a walk with no repeated VerticeSEI

EXERCISE: Prove that there is a path from 7 to j if and only if there is a
walk from ¢ to j.

In a directed graph, the node i is weakly connected to node j when there
is a path from ¢ to j. (For completeness, we say that every node is weakly
connected to itself.) The nodes ¢ and j are strongly connected when there is
also a path back to ¢ from j. (Hence, every node is strongly connected to itself.)
In an undirected graph, every pair of nodes which is weakly connected is also
strongly connected, so we just say that pairs of nodes are connected.

As shown in Figure[4] a is weakly connected to every node except f and only
strongly connected to b.

LCRS got this backward during lecture.
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Figure 4: Groups of strong connected nodes are identified by dashed lines. a
and b are strongly connected to each other but are only weakly connected to c,
d, and e. f is strongly connected only to itself.

Strong connection (or, in an undirected graph, connection) is clearly a sym-
metric relationship. It is also reflexive, and transitive. (That is, if Irene is
connected to Joey, and Joey is connected to Karl, then Irene is connected to
Karl.) Since strong connection is reflexive, symmetric and transitive, it is an
equivalence relation, and the graph partitions into equivalence classes,
here called connected components (Figure [i]). Many graphs for real net-
works tend to either have one very large connected component, or a multitude
of small connected components, for reasons we will explore when we look at our
first stochastic models of networks in lecture 4.

There are multiple ways of defining metrics on graphs, but the overwhelm-
ingly most common one, for undirected graphs, is the geodesic distancdﬂ
d(i,j) = length of the shortest path from 7 to j. Of course d(i,i) = 0 for all
(it’s a metric!), and we say d(i,j) = oo if there is no path between ¢ and j.

One graph H = (U, F) is a subgraph of another, G = (V, E), if H’s node
set is a subset of G’s (U C V') and H’s edge set is also a subset of G (F' C E).
(Said differently, every non-edge in G is also a non-edge in H.) Often we form
subgraphs by picking a subset of the nodes of G and then including all the edges

2Geodesy is the science of measuring the shape of the Earth, hence of determining the
shortest distance over the surface of the Earth between two points, hence the “geodesic path”
between points in other spaces is the one minimizing some notion of distance intrinsic to the
space.
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Figure 5: We can create a subgraph of the graph on the left by keeping only
nodes a, b, e, and f in addition to the edges between these nodes. The resulting
subgraph is shown on the right.

Figure 6: A triangle is shown on the left and the right graph is a 4-star

between them, as done in Figure [5| We need to know abut subgraphs because
they give us a very useful way of talking about repeated patterns in the graph,
and (sometimes) for dividing the graph into significant parts.

We often want to know whether a particular subgraph of G matches the
pattern set by some other graph, or perhaps how many subgraphs of G match
that pattern. (Figure[6]) “Matching” is intuitively reasonably clear, but we
need something more precise for math and/or automation. We say that two
graphs are isomorphic when there is a one-to-one mapping of their nodes which
preserves edges, i.e., G = (V,E) and M = (U, F') are isomorphic when there is
a one-to-one mapping ¢ : V +— U such that (i,5) € E < (¢(i),¢(j)) € F). If a
subgraph H of G is isomorphic to M, we say that G is subisomorphic to M.
The target pattern M being matched is sometimes called a motiiﬂ IfH CGis

3Note however that some authors only use the word “motif” for patterns which are, in
some sense, more common than expected in G.
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(sub)isomorphic to M, we can match up the nodes of H one-for-one with nodes
of M, so that every edge in M has a corresponding edge in H, and no non-edge
in M has a corresponding edge in H.

As an example, take the triangle graph, consisting of three nodes with all
possible edges. These are rare among most mathematically possible graph‘fl, but
very common in actual social networksﬂ “Finding triangles” in G means finding
subgraphs in G which are isomorphic to the left side of Figure [f] Triangles
generalize to complete graphs on more nodes; subgraphs which are (isomorphic
to) complete graphs are called cliques, and subgraphs which cannot be enlarged
without ceasing to be (isomorphic to) complete graphs are called maximal
cliqueﬂ Another graph motif which is often of interest is a star pattern, of
two (or more) nodes which are only linked through a central node; the right-hand
side of Figure [ shows a 4-star. Cliques show all-to-all relations, while stars are
centralized patterns, so they often have very different functional relationships.

(All of this generalizes in the natural way to directed graphs and directed
motifs, of course.)

The degree of a node in an undirected graph is the number of edges it has,
degree(i) = >_; A;j. The degrees of several nodes in the graph on the left in
Figure [ are

degree(a) = 1
degree(b) = 3
degree(e) = 3
degree(g) = 3
degree(f) = 2

The degree sequence of a graph is a vector containing the degrees of each node,
typically sorted to be either increasing or decreasing. The degree distribution
is the probability mass function for all the degrees, i.e., the distribution of degree
we would find by picking randomly and uniformly over nodes.

In a directed graph, we need to distinguish between out-degree, > j Aij,
and in-degree, > j Aj;. Note that the sum of all in-degrees must equal the sum
of all out-degrees, because each edge comes out of one node and into another.

We will see when we consider network models, that different models can
imply very different degree distributions; thus the degree distribution is a clue
to how the graph formed. I emphasize that it is only a clue, because there
are, unsurprisingly, some distributions which can be produced by very different

4A vague statement; we will be more precise in Lecture 4, on random graphs.

50ne suggestion for why they are common in social networks is that triangles make reputa-
tion possible — if Irene and Joey have a common friend Karl, Karl can observe whether Irene
treats Joey well or poorly, and just his behavior towards Irene accordingly. There is good
reason to think that triangles are especially dense in the social networks of those engaged
in risky, long-term endeavors where trust is especially important, e.g., persecuted religious
minorities, scientific collaborators or criminals (Tilly}, [2005).

6Just to be confusing, many writers drop the word “maximal”, so that when they say
“clique”, they mean “set of nodes which are all directly linked to each other, and cannot be
enlarged without adding non-edges”.
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models, and a fair amount of grief, or at least of bad science, has come from
people reasoning along the lines “My favorite model produces such-and-such a
degree distribution; this graph looks (sort of, in dim light, if you squint) like
it has such-and-such a degree distribution; therefore the network follows my
favorite model”.

We should close this lightning review of essential ideas from graph theory
by noting that degree is not really a property of a node, or at the very least
a very funny property. In a social network, for instance, where the nodes are
people, the nodes have many attributes, like height, weight, age, education,
income, etc., which they would have in any social network, or none at alﬂ We
can, at least hypothetically, imagine changing these for any given node without
changing the network, or even imaging manipulating them for all nodes at once.
But “has degree 3” isn’t an attribute of an individual node in the same way;
for example, it makes no logical sense to imagine increasing the degree of only
one node. In fact, many properties of nodes-in-networks are like degree in this
way (e.g., “is not in any triangle”, “is part of a connected component of size
107). At the very least, this is going to affect our interpretation of how these
attributes can work in statistical models. We are really going to want models
which deal with the whole network, rather than regression-style models with a
clear input and output; everything is going to be endogenous and depend on
everything else.

4 Historical note

The only decent history of network analysis I know of is [Freeman| (2004), and
it’s written by a participant, rather than a proper historian. On an even more
amateur basis, I can offer the following points:

e Graph theory, in mathematics, began with Euler solving the Konigsberg
bridge problem in the 1700s, but this remained basically an isolated toy
for a long time.

e Bi-partite networks, of influential people and organizations, were studied
by social scientists and reformers (often the same people) from about the
1890s. The oldest picture of a social network I know of is a bi-partite graph
from 1916, showing prominent Bostonians publicly opposing to the nom-
ination of Louis Brandeis to the Supreme Court, and how they were all
linked through a small number of clubs and other organizations (Rauch-
wayl, [2008)).

e In the 1920s and 1930s, a psychologist named Louis Moreno promulgated
the use of mono-partite social network diagrams to depict ties of friend-
ship, rivalry, etc. His ideas were picked up by a small group of sociolo-
gists, primarily at Harvard, but with ties to quantitatively-minded social

"Though even there, a close inquiry into attributes like “education level” or “income” might
show them to be (complicated) social relations.
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scientists at Columbia and Chicago. At the latter, there was some inter-
section with the “mathematical biophysics” group centered on Nicholas
Rashevskyﬂ The sociologists kept elaborating the notion of social net-
works through the 1950s.

e In the 1950s, several mathematical workers — [Solomonoff and Rapoport
(1951) out of Rashevsky’s group; [Erdos and Rényi| (1960); |Gilbert| (1959)
from Bell Labs — worked out the basic mathematics of random graphs,
as we will study in lecture 4. In violation of priority, but in accordance
with what sociologists of science call the “Matthew Effect”, these came to
be called “Erdos-Renyi graphs”. This initiated an intense and long-term
study of random graphs within pure mathematics.

e Non-random-graphs became objects of mathematical interest in part be-
cause of new applications, many of which arose from logistics, (weighted)
graphs being natural ways of representing transportation links. Questions
like “which links would we have to remove to render the graph discon-
nected?” were not just points of idle curiosity but of real military (and
economic) concern; creating a communications network which would by
design be very hard to disconnect was one of the original impulses that
led to the Interneﬂ Computer networking was another obvious and im-
portant stimulus towards studying networks in general.

e Social network analysis emerged as a recognizable sub-field of sociology
during the 1970s and 1980s, with its own specialized vocabulary, journals,
conferences, internal squabbles, etc.

e Physicists, and certain sorts of physicist-influenced biologists and social
scientists, came to an interest in networks during the 1980s and 1990s,
largely via studying systems of coupled oscillators, “spin glasses”, and
neural networkﬂ Watts and Strogatz| (1998) marked the point where
this interest became detached from studying dynamics on networks to
studying the structure of networks, of all kinds (not just social), and was
quickly followed by a flood of work by physicists and ex-physicists.

8Rashevsky was one of the most eccentric, and subtly influential, figures in the development
of mathematical methods for biological and social phenomena. There is, so far as I know, no
proper biography of him, or even a decent article-length study, though he fully deserves one.
If you have a chance, ask Prof. Fienberg about him.

90ne might thus say that the impulse to put everything “on the cloud”, i.e., on centralized
server farms, undermines the whole point of the Internet, but that’s another story for another
time.

10Though the concept of a neural network is much older. |Sherrington| (1906) already wrote
of “networks” of neurons, and the computational properties of such networks were studied by
McCulloch and Pitts| (1943).
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