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1 Review

The following terminology is used throughout the lecture

• Network: A real pattern of binary relations

• Graph: G = (V,E) where E ⊂ V × V . Typically there are no self-
edges. Edges are possibly asymmetric (i.e. directed).

• Adjacency matrix: Aij = 1 if (i, j) ∈ E, Ai,j = 0 otherwise.

• Degree of i: The number of edges going to i, given by
∑n

j=1Aji. If
the graph is directed, vertices have an in-degree and an out-degree.

• Connected components: The maximal sets of nodes for which the in-
duced subgraph is connected.

• Counts of subgraphs or motifs (e.g. number of triangles)

• Distance between nodes i and j: the number of edges on the shortest
path between i and j (sometimes called the geodesic distance).

• Data collection: keep in mind how the data were collected.

2 Graph Summaries

Graph summaries are statistics (i.e. functions of the random graph) which
can be used to get a sense of the graph. These statistics are not usually
sufficient. Instead, they are used to explore or visualize something about a
node, a subgraph, or the graph itself.
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2.1 Degree Statistics

One simple statistic of a graph is the degrees of its nodes. They can be sum-
marized as a degree sequence (a count of how many vertices have each de-
gree) or a degree distribution. We can calculate all the traditional summary
statistics of the degree distribution such as average degree, the standard
deviation of the degree, quantiles, Kurtosis, etc. In networks, the degree
distribution is typically right-skewed with a heavy-tail.

The degree of a node is sometimes referred to as its degree centrality ;
high-degree nodes are often more important.

2.2 Distance-based Statistics

Unless stated otherwise, the distance between two nodes is taken to be the
geodesic distance. If two nodes are unconnected, the geodesic distance is∞.
Two common distance-based statistics for a graph are:

• Average distance between nodes

• Maximum distance between any two nodes in a graph: this is referred
to as the diameter of the graph.

Typically, the diameter of a graph is low. Some intuition as to why is given
below.

Suppose a graph consists of n nodes. Let d̄ denote the average degree of
the graph. Given an arbitrary starting node i, let N(i, j) denote the number
of nodes which are reachable in a j-step path. Then:
N(i, 1) ≈ d̄.
N(i, 2) ≈ d̄(d̄− 1). Here, the −1 is included to avoid double-counting i.
...
N(i, r) ≈ d̄(d̄− 1)r−1 ≈ (d̄− 1)r.
Figure 1 demonstrates the growing of N(i, r) in a network where d̄ = 3.

The above argument presumes little overlap of a node’s neighbourhood
that of its neighbours. Given this presumption, the diameter of a graph
of n nodes is O(log (n)). This is commonly referred to as the small-world
phenomenon.

Counterexample: Low dimensional lattices do not exhibit the small-
world phenomenon. Instead, p-dimensional lattices have diameters which
are O(n1/p). Figure 2 demonstrates that a two-dimensional lattice with 25
nodes has diameter 8. This a strong argument that real-world networks
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Figure 1: An illustration of N(i, 0) (red node), N(i, 1) (blue nodes), and
N(i, 2) (green nodes) for a graph with average degree 3.

should be thought of as living in a very high-dimensional space. For exam-
ple, each node corresponds to a point in Rd, with nodes connecting if their
corresponding points are nearby.

Figure 2: A two-dimensional lattice with 25 nodes. The dotted red line
demonstrates the diameter of 8.

Distances provide a tool for defining additional centrality scores, such as
closeness and betweenness.

The closeness centrality of node i (denoted Ci) is n times the reciprocal
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of its average distance to other nodes. That is,

Ci =
n(n− 1)∑

j 6=i dij
.

If there are multiple connected components in the graph, there are two
alternate definitions:

1. Use only the component of node i (treat it as the whole graph).

2. Use the harmonic mean Ci =
(∑

j 6=i d
−1
ij

)
/ (n− 1).

The betweenness of a node i (denoted Bi) is a measure pf how many
shortest paths go through it. Let gst denote the number of geodesic paths
linking nodes s and t. Let gsti denote the number of geodesic paths linking
nodes s and t which go through i.

Bi =
∑

(s,t)∈E2

gsti
gst

.

Figure 3 demonstrates a graph with node i (in red) that has low degree
but high betweenness.

Figure 3: The red node has relatively low degree but high betweenness.

3 Eigenvector Centrality

Eigenvector centrality can be thought of as a circular definition. A node
is said to be central if it has links to other central nodes. The eigenvector
centrality vi of node i in a graph can be determined through iterating the
following process to equilibrium.

Let vj(0) = 1 for all j. Update the values using the expression
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vi(t+ 1) = α
n∑
j=1

Aijvj(t).

Under convergence, ~v = αA~v. So ~v must be an eigenvector of αA with
eigenvalue 1.

The Perron-Frobenius theorem states that, when A has non-negative
entries:

• The biggest eigenvector is positive (all this κ).

• The eigenvector corresponding to κ is non-negative.

• There is one such eigenvector for each connected component.

If w let α = κ−1, then ~v is the leading eigenvector of αA. Note that if there
are multiple connected components, the corresponding eigenvectors are zero
for all nodes not included in the component.

The following describes how we know there is a solution to the above
problem. It is also a broadly useful technique.

Start with vector ~u.

~u(t+ 1) = αA~u(t)

= (αA)t+1~u(0)

= (αA)t+1
∑

vi: eigenvecs(αA)

~vi (~vi · ~u(0))

=
∑

(~vi · ~u(0)) (αA)t+1 λi~vi

=
∑

(~vi · ~u(0))λt+1
i ~vi.

We know |λi| ≤ 1. So this converges to only the summand corresponding to
the maximum eigenvalue (1).

Pagerank (of Google fame) is only a slight modification of the above
process process.
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