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October 12, 2016

1 Agenda

1. Random Graphs

(a) Giant component and small world

(b) Statistics

(c) Problems: degree distribution, triangles

2. Centralities and display

A Graph G = (V,E) has edges E ⊆ V × V
Adjacency matrix Aij = 1 if (i, j) ∈ E else Aij = 0 if (i, j) /∈ E

2 Random Graphon Model

G(n, p) where n = # nodes, p = probability of an edge
All edges form independently with probability p.

In the directed version Aij
iid∼ Bern(p)

In the undirected version Aji = Aij
iid∼ Bern(p)

All edges are independent and equi-probable.
Degree(i) ∼ Binomial(n− 1, p) so degree →∞ as n→∞ and p constant: ”dense graph (sequence) limit”

Alternate Parametrization
λ = (n− 1)p = mean degree (so p = λ

n−1 )
This gives an alternate limit: n→∞ but λ constant: ”sparse graph (sequence) limit”
In this limit, Degree(i) Pois(λ): ”Poisson Random Graphs”

3 Large Scale Connectivity

How many connected components?
At p = 1, obviously only 1 CC (Connected Component)
At p = 0, no CC’s
Claim: at some magic intermediate value, 1 CC has size O(n), all others are smaller. Below that, all CC’s
will be small and won’t scale with the size of the graph.

Self-Consistency Argument Suppose such a ”giant” CC exists
Say that a fraction S > 0 of all nodes are in the giant CC (call it GC)
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Figure 1: Self-consistent argument solutions

Pick a favorite node, the probability it is in GC is S. So the probability it is not in GC is:

1− S = (1− p+ p(1− S))n−1

= (1− pS)n−1

⇒ 1− S =

(
1− S λ

n− 1

)n−1

⇒ log(1− S) = (n− 1)log

(
1− S λ

n− 1

)
⇒ log(1− S) ≈ −(n− 1)

Sλ

n− 1
⇒ log(1− S) ≈ −Sλ

⇒ 1− S ≈ e−Sλ

⇒ S ≈ 1− e−Sλ

If λ < 1, no self-consistent way to get a GC
If λ > 1 there is a solution s∗ which increases as λ increases

”Epidemic” Picture Start at the favorite node i

Zi first neighbors, Zi ∼ Pois(λ)
Each first neighbor has a random number of neighbors.

Z1 ∼ Pois(λ)⇒ E(Zi) = λ



Figure 2: Phase transition Process

Figure 3: Epidemic Process



Figure 4: Branching Process

Z2 =
∑Zi

j=1(Pois(λ)− 1) Where we are ignoring overlapping neighbors. As λ fixed, n→∞.
Expectation of each term in the sum is λ− 1

E(Z2) = E(Z1)(λ− 1)

= λ(λ− 1)

⇒ E(Z1 + Z2) = λ2

After k steps, E(Zk) = λk

If λ < 1, λk tends to a finite number ( 1
1−λ )

If λ > 1, λk tends to ∞

We have mapped the connected component onto a branching process.
Each object i produces Zi branches to new objects, independently.

Solve for the probability of extinction within a finite time: must have finite total number of nodes in the
tree.
”subcritical branching” E(Z) < 1
”supercritical branching” E(Z) > 1: will live forever with positive probability.
If E(Z) = 1, the tree will also die out but only after a very long time.
This can be used to model processes like nuclear reactions.

Takeaway: λ > 1 means we get a giant component that will keep going.

The number of nodes reached after k steps ≈ O(λk). The size of the giant component ≈ O(n). How big can
you make k? The diameter of GC.

O(λk) = O(n)

⇒ klog(λ) = log(n)

⇒ k = O
(
logn

logλ

)



4 Small-world phenomenon

Diameter is O(logn) in a random graph as long as λ > 1
Cool: Giant component, small world property
Easy: Poisson degree distribution
Stats:

L(p) = P (A;n, p)

=
∏
i<j

pAij (1− p)1−Aij

⇒ log(L(p)) =
∑
i<j

l(p)

=
∑
i<j

log(1− p) +Aij log(
p

1− p
)

⇒ p̂MLE =

∑
i<j Aij(
n
2

)
This is an exponential family so the sufficient statistic is the total number of edges. p̂MLE is strongly con-
sistent and efficient.

5 Problems

This is a horrible model of any real network know to science. There are 2 main issues:

1. Degree distributions are not Binomial or Poisson: much too light-tailed and unskewed

2. Hardly any triangles

(a) Proportion of triples forming triangles = p3

(b) Probability we have a triangle given two nodes are connected to a third is p. In a random graph,
this is λ

n−1

(c) In lots of networks, triangles are very common

(d) In some networks, like routers, they are rare

Lesson for model criticism: find things where

1. the model makes predictions

2. you didn’t fit them to

3. check them against data

Random graph model: all edges are independent with equal probabilities and all nodes are exchangeable.

1. Dependent edges: stochastic block and latent-space, and exponential family models

2. Unequal probabilities: inhomogeneous random graphs; block models; p1 models; configuration model;
β model

3. Differentiating nodes: covariate-based link prediction; block model; some sorts of ”degree correction”

Next time: simplest extensions


