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Network Growth Models

1 Introduction

To date we have focused on static graphs where the edges are indepen-
dent given the attributes of the nodes they connect (what block/community/location
those nodes are labeled). We would like to further explore how net-
works are formed over time. We are interested in models in which
networks arrive at a specific state due to explicit mechanisms for
adding (or removing) nodes and edges. One way of going about find-
ing such models is to infer something about the growth mechanism
based on the observed configuration of the network at a given time.

An important observation about real networks from earlier in the
class is that the degree distributions of real networks are typically
very right-skewed and heavy tailed. Take for example the directed
network of scientific citations from the ISI: there are approximately
5 million recorded nodes (papers), but the modal number of citations
is 0, the mean is around 5, the maximum citations is around 20,000,
and there are a few hundred papers with over 1,000 citations. This
is similar to other real networks that have various constraints such
as friendship or biophysical networks. You can’t get these types of
distributions through combinations of Poisson’s, so the question is
what type of underlying model might explain how these networks
came about.

2 Proposed Mechanisms

2.1 Simple Multiplicative Growth Model

In this type of model, we imagine continuous-sized objects growing
in continous time.
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In the simplest form:

Xi(t) = size of object i at time t,

δXi(t)
δt = µXi(t) = growth ∝ size, large objects grow faster than small

Xi = X0initially, and at age τi, Xi = X0e
µτi

Objects appear at uniform rate λ so looking backward from a given
time, the age distribution is exponential:τi ∼ Exp(λ).

Altogether:
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or Pr(X ≥ k) ∝ k−α(pareto/power law distribution)

This helps to match the skewness of real networks, but something
more is needed to explain heavy tails of real distributions.

2.2 Yule-Simon Model

Alternatively in this model, we imagine discrete-sized groups being
formed in discrete time. An example would be the number of times
a particular word is used in a given document as it is being written:

1. With probability ρ, pick a completely new word from the dictionary at
random.

2. With probability (1-ρ), pick a word you have already used at random and
copy it.

This results in the probabilty of picking a particular word type being
proportional to the number of times the word is used (tokens). These
word frequencies are some of the best robust power law distributions.
For large k:

Pk = O(k(−α+1)) which is a power law distribution
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2.3 Cumulative Advantage Models

The main concept behind this group of models is that the more con-
nected a node is, the more likely it is to form connections to new
nodes (example: when a paper is cited more times it is more likely
to be cited in the future as well). It is a more specific form of the
above model in which c steps are taken at once.

The preferential attachement version from Barabsi and Albert:

1. At each time step, add a node.

2. The new node has c edges (initially).

3. Assign edges to existing nodes at random, but with the probability of
attachment to a degree k node ∝k (for undirected graphs).

This results in degree distributions ∼ k−αfor some α. But, also results
in little correlation in neighborhoods.

There are some addtions to these models: non-linear preferential
attachment, fitness to nodes (adds to the probability of attachment).

2.4 Vertex Copying Model

An alternative mechanism that results in networks with the same
degree distribution as those formed by cumulative advantage is based
on copying nodes (real world examples: genomes, errors in citations).
How it works:

1. Pick node v uniformly at random.

2. Make a copy of v, and ensure that the copy has all of the same out-going
edges.

3. For each edge attached to the copy of v, leave the edge in the network
with probability δ, otherwise re-wire to totally random node.

This model results in networks with the same degree distribution as
cumulative advantage but with the additional of correlated neighbor-
hoods.
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