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The statistical network models we’ve seen in the previous lectures are models with little ”story”
in the sense that vertices take one latent attribute at the beginning of time and edges are independent
given attributes. Examples of the type include blocks in stochastic block models (SBM) and locations
in constrained latent space models (CLSM). In today’s lecture, we’re going to see models where the
network gets to its state because of explicit mechanisms for adding and removing nodes and edges.
The inference is on the growth process rather than the observed configuration of the graph and the
network characteristics depend on the growth mechanisms.

1 Multiplicative Growth and Power-Law Distribution

Many real world network models have degree distributions that are very right-skewed and heavy-
tailed[1]. For example, consider the scientific citation network using databases provided by the In-
stitute of Scientific Information (ISI). Totally around 5 million scientific papers have been recorded.
Minimum citation number among all these papers is 0. The mean citation number is around 5. There
are a few hundred papers with cititation numbers greater than 1000. The maximum citation number
reaches around 20,000. All these observations demonstrate well the right-skewed and heavy-tailed
behaviors of the real network models, which have actually been well documented as early as 1960’s
[2]. Usually, the familiar distributions (such as Poisson distribution) won’t be such heavy-tailed
and right-skewed. Thus it is natural for people to ask how such heavy-tailed distributions arise.
Multiplicative growth, where continuous-size lumps grow in continuous time (Figure1), is one way.

Figure 1: An illustration of multiplicative growth.
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Consider a simple model where the growth rate is proportional to the size of the object. Denote

Xi(t) = size of object i at time t, so dXi(t)
dt = µXi(t) for some µ > 0. Initially, Xi(0) = x0. Therefore,

at age τi, we have

Xi = x0e
µτi (1)

We further assume that objects appear at uniform rate λ, which means that the appearance
times are a Poisson process with intensity λ. Thus, looking backward from a given observation time,
age distribution is exponential, τi ∼ Exp(λ).

So far we have Xi = x0e
µτi at time of observation, and τ ∼ Exp(λ) (its cdf is 1− e−λτ ). Then

P (X ≥ k) = P (x0e
µτ ≥ k) (2)

= P (eµτ ≥ k

x0
) (note that x0 > 0) (3)

= P (µτ ≥ log k
x0

) (4)

= P (τ ≥ 1

µ
log

k

x0
) (µ > 0) (5)

= 1− P (τ ≤ 1

µ
log

k

x0
) (6)

= 1− (1− e−
λ
µ log

k
x0 ) (plug in the cdf of τ) (7)

= e−
λ
µ log

k
x0 (8)

= (
k

x0
)−

λ
µ (9)

Therefore, X has a power law distribution or Pareto distribution. (Note that continuous power
law distribution is also called Pareto distribution.) If we plot P (X ≥ k) against k, we get a
distribution curve with long tail to the right. The plot of logP (X ≥ k) against logk is a straight
line with slope equals to −λ/µ (Figure2).

Figure 2: Plot of P (X ≥ k) against k on normal scale and log-log scale.

2 Yule-Simon Distribution

Yule-Simon distribution is a discrete distribution named after Udny Yule, a British statistician and
Herbert A. Simon. It arose originally from the study of distribution of biological taxa and subtaxa[3].
Simon, an American political scientist, economist, sociologist, psychologist and computer scientist,
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conducted research over a broad range of fields and was a Nobel Prize laureate because of his work
in economics in 1978.

In above section we’ve considered a simplified ”toy” case where continuous size lumps grow in
continuous time, leading to power law distribution. In the case of Yule-Simon distribution, the vari-
ables have discrete sizes and grow in discrete time. Consider the problem of computing the number
of uses of particular words in a given document as it is written.

Assume that with probability ρ, pick a completely new word from the dictionary at random.
And also assume that with probability of 1− ρ, pick a word you have already used at random from
the text and copy it. Thus, in this case, the probability of picking a particular word type ∝ number
of tokens of that words, i.e. the number of times that word has been used. For example, in the
sentence ”the cat sat on the mat”, the word type ”the” has two tokens.

Denote Nk(t) = number of words used exactly k times in the first t words. Going from t to
t+ 1, we either add a totally new word with probability ρ or copy an existing word with probability
1− ρ, and this will make Nk(t) change by either 1 or −1 or remain the same (in the case of adding
a totally new word from the dictionary). Thus we can calculate that

P (Nk(t+ 1) = Nk(t) + 1) =
(1− ρ)Nk−1(t)(k − 1)

t
for k ≥ 2 (10)

P (Nk(t+ 1) = Nk(t)− 1) =
(1− ρ)Nk(t)k

t
for k ≥ 2 (11)

Therefore,

E(∆Nk(t)|Nk(t), Nk−1(t)) = E(Nk(t+ 1)−Nk(t)|Nk(t), Nk−1(t)) (12)

=
(1− ρ)Nk−1(t)(k − 1)

t
− (1− ρ)Nk(t)k

t
(13)

=
1− ρ
t

(Nk−1(t)(k − 1)−Nk(t)k) (14)

Now claim that Nk(t) → tpk for some time-invariant pk as t → ∞. Then if we substitute in
above equality, we get

(t+ 1)pk − tpk =
1− ρ
t

(tpk−1(k − 1)− tpkk) (15)

⇔ pk = (1− ρ)(pk−1(k − 1)− pkk) (16)

⇔ pk(1 + k(1− ρ)) = (1− ρ)(k − 1)pk−1 (17)

Therefore, we have

pk =
(k − 1)(1− ρ)

1 + (1− ρ)k
pk−1 (18)
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Define α = 1
1−ρ , then we get

pk =
(k − 1)/α

1 + k/α
pk−1 (19)

=
k − 1

k + α
pk−1 notice the nice recursive form in pk (20)

=
k − 1

k + α
· k − 2

k + α− 1
· · · p1 (21)

=
Γ(k)Γ(α+ 1)

Γ(k + α+ 1)
p1 for k ≥ 2 (22)

p1 can be fixed either by normalization or by similar argument to above. As k →∞, according
to Stirling’s approximation for log(Γ(x)), we have

log(Γ(x)) = log(
√

2π)− x+ (x− 1

2
)logx (23)

Therefore, for large k

pk = O(k−(α+1)) where α =
1

1− ρ
(24)

3 Cumulative Advantage Networks and Preferential Attach-
ment

Cumulative advantage processes was first studies intensively by Derek John de Solla Price, who was
a British physicist, historian of science and information scientist, credited as the father of sciento-
metrics. He conducted quantitative studies of the networks of citations between scientific papers[2].
In the model he proposed, each paper cites on average c other papers. For each citation, with prob-
ability ρ it goes to a totally random paper, and with probability 1−ρ it goes to a specific paper with
probability ∝ its in-degree. He found out that the in-degree and also out-degree of a citation network

end up being proportional to Γ(k)
Γ(k+α+1 for large k, which have power-law distribution. Later on in

1976, Price proposed a general mathematical theory of cumulative advantage processes in directed
graph[4].

In 1999, Barabási and Albert, who claimed that they did not know Price, introduced a model
similar to Price’s model which is called preferential attachment nowadays[5]. The graphs they stud-
ied are undirected graphs. In the model, at each time step, a node is added to the network. The
new node has exactly, at least initially c edges. The edges are assigned to existing nodes, and the
probability of attaching to a node with degree k is proportional to k. In other words, the networks
expand continuously by adding new nodes, and the new nodes attach preferentially to sites that are
already well connected. They found out that pk ∝ k−3 for large k. Therefore, it can actually be
turned into a special case of Price model (with α = 2).

To summary, cumulative advantage process/preferential attachment has degree distribution ≈
k−α for large k where α is some positive value. A key feature is that highly linked nodes attract
more nodes, otherwise there’s little correlation in neighborhoods. Of course, there are a variety
of flavors of cumulative advantage process/preferential attachment, such as non-linear preferential
attachment[6], fitness model where each node is assigned a fitness parameter capturing an intrinstic
ability of compete for edges at the expense of other nodes[7], etc.
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4 Duplication or Copying Model

Vertex copying mechanisms are originally motivated by the fact that some web page authors will
note an interesting but novel commonality between certain pages and will link pages exhibiting this
commonality and the also fact that most authors will be interested in certain already represented
topics and will collect pages together to link to pages about these topics.

Consider the simple case where the nodes are never deleted.

• Pick a vertex v uniformly at random.

• Make a copy of v and all its out-going edges.

• For each edge, with probability δ to leave it alone or with probability 1 − δ to re-wine it to a
totally random node.

With such assumptions, the degree distribution turns out to follow the power-law distribution,
which is the same as the cumulative advantage process. Examples of such type of networks include
both directed and undirected networks such as the protein interaction networks, biological networks,
citation networks, etc. As a side note, copying model was actually first proposed for a biological
networks of genes.
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