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1 Overview

• Definitions

– Graph modeling

– Examples: Erdös-Renyi, p1, 2-star, triangle

• Properties

– Edge prediction

– Moments

• Estimation

– MLE equation

– Stochastic approximation

– MCMCMLE

2 Definitions

Definition For any graph G = (V,E) on n nodes, we refer to its adjacency
matrix as Aij (if viewed as a random variable) or aij (as a realization of Aij).
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We say Aij = 1 if (i, j) ∈ E, and Aij = 0 if (i, j) 6∈ E.

Definition A graph model is a probability distribution over the space of graphs.

1Uppercase letters will be used throughout these notes to refer to random variables, and
lowercase letters will be used to refer to constants or realizations of random variables.
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2.1 How do we model a random graph?

We can start by selecting a subset of features to model. In doing so, we are
hoping that only some of the possible features are actually important, as far as
the probability distribution is concerned.

In other words, we will postulate that a set of statistics {T1, T2, . . . , Td} are
sufficient.

Definition According to Neyman’s factorization theorem, T is sufficient for a
parameter θ if

pθ(x) = h(x)g(θ;T (x)).

In other words, the density of the random variable X can be factored such that
g(·) depends on x only through T (x).

Remark If T is sufficient for θ, then the likelihood ratio can be simplified as:

pθ(x)

pθ0(x)
=

h(x)g(θ;T (x))

h(x)g(θ0;T (x))
(1)

=
g(θ;T (x))

g(θ0;T (x))
. (2)

So the likelihood ratio only depends on x through T (x). Furthermore, if we
wish to maximize the likelihood, there is no information in x that is necessary
apart from what T (x) provides.

One way to create a model where our desired statistics T (·) are sufficient is
by using them in an exponential family distribution.

Definition A model pθ(x) is an exponential family distribution if it can be
written in the form

pθ(x) ∝ exp

{
d∑
i=1

Ti(x)θi

}
(3)

= eT (x)·θ. (4)

This implies that if pθ(x) is an exponential family model,

pθ(x) =
eT (x)·θ∑
x′ e

T (x′)·θ (5)

=
eT (x)·θ

Z(θ)
(6)

= eT (x)·θ−ψ(θ). (7)

Remark If a model has this form, then T is sufficient (by construction).

Remark If T is to be sufficient and its support does not change with θ, then
pθ(x) must be an exponential family distribution. The more precise statement
follows.
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Theorem 2.1 (Fisher-Pitman-Koopman-Darmois). Let T = (T1, T2, . . . , Td) be
a finite set of sufficient statistics for a model pθ(x) with support that does not
depend on θ. Then, pθ(x) must either be an exponential family distribution, or
a uniform distribution.

Definition Exponential-family Random Graph Models (ERGMs) are exponen-
tial families over graphs. In other words, the sufficient statistics are functions
of the graph/adjacency matrix.

A recipe for creating an ERGM is therefore:

1. Pick d (distinct) functions of the graph; they might be chosen through
appeals to theory, experience, guesswork, tradition, referee pressure, trial
and error, etc.

2. Then, calculate these statistics, and forget the original graph for all within-
model work: simulating, testing, estimation, etc.

2.2 Some ERGMs

Example (Random graph/Erdös-Renyi). One parameter θ = probability of an
edge. Assuming a directed graph with self-edges, the sufficient statistic is

T (a) =
∑
i,j

aij ,

so the model is

pθ(a) =

n∏
i=1

n∏
j=1

θaij (1− θ)1−aij (8)

= exp

∑
i,j

aij log θ + (1− aij) log (1− θ)

 (9)

= exp

n2 log(1− θ) +
∑
i,j

aij log
θ

1− θ

 . (10)

Example (Block models). Parameters are the entries of the affinity matrix
b = [brs]rs and the sufficient statistics are the edge counts between the blocks,
[ers]rs.

Example (p1 model). The sufficient statistics are the out-degree of each node
(denoted ai), the in-degree of each node (denoted bi), and the total number of
reciprocated edges (denoted r). An edge is reciprocated if both (i, j) ∈ E and
(j, i) ∈ E.

If we do not include r, this is instead called a configuration model.

3



Example (Graph motif counts). It is common to use both the edge and 2-star
counts, or the edge and triangle counts as the sufficient statistics for an ERGM.
For instance, in the edge-triangle model, we have

pθ(a) ∝ exp{θ1e(a) + θ2t(a)},

where e(a) is the number of edges and t(a) is the number of triangles.

• These small motifs are used for practical reasons only.

• Motif count models can also include attributes on the nodes of the graph,
e.g. the number of edges between nodes of the same type (this is called
homophily).

• Can combine these models with e.g. the node degree, to get something
closer to the p1 model.

• Can include global characteristics (like the graph diameter), but this is
not often seen.

Example (Not SBMs). The stochastic block model (with latent block assign-
ments) is a mixture of exponential families, so it is not itself an exponential
family.

3 Properties

3.1 Edge/link prediction

Assuming we have seen most of the graph, how do we guess whether there is an
edge between a particular pair of nodes? I.e. we want to predict if (i, j) ∈ E or
(i, j) 6∈ E.

Denote by a+ij the adjacency matrix a, but with the edge (i, j) set so that
aij = 1. Likewise, let a−ij be a but with aij = 0. Then,

pθ(a+ij) = eT (a+ij)·θ/Z(θ)

and
pθ(a−ij) = eT (a−ij)·θ/Z(θ)

so that

pθ(a+ij)

pθ(a−ij)
= e(T (a+ij)−T (a−ij))·θ (11)

= e∆ij ·θ (12)

=⇒ log
pθ(a+ij)

pθ(a−ij)
= ∆ij · θ, (13)
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which is a logistic regression. This lends an easy interpretation to the parame-
ters: “For any given configuration of the graph, if I toggle an edge and it leads
to an increase in the statistics, it is more likely to see that configuration.”

However, we cannot apply any causal interpretation, since there is no reason
to think that any given edge (i, j) was generated after all of the other edges in
the graph.

3.2 Moments of the sufficient statistics

As we saw before, the normalization factor of an exponential family is

Z(θ) =
∑
x

exp

{∑
i

Ti(x)θi

}
.

Taking its derivative, we get

∂Z(θ)

∂θi
=
∑
x

∂

∂θi
exp

{∑
i

Ti(x)θi

}
(14)

=
∑
x

exp

∑
j 6=i

Tj(x)θj

 ∂

∂θi
exp {Ti(x)θi} (15)

=
∑
x

exp

∑
j 6=i

Tj(x)θj

Ti(x) exp {Ti(x)θi} (16)

=
∑
x

Ti(x) exp

{∑
i

Ti(x)θi

}
(17)

=
∑
x

Ti(x)

(
exp {

∑
i Ti(x)θi}
Z(θ)

)
Z(θ) (18)

=
∑
x

Ti(x)Z(θ)pθ(x) (19)

= Z(θ)
∑
x

Ti(x)pθ(x) (20)

= Z(θ)Eθ[Ti]. (21)

Hence,

Eθ[Ti] =
1

Z(θ)

∂

∂θi
Z(θ) (22)

=
∂

∂θi
logZ(θ). (23)

Remark We can get the higher moments by taking higher-order derivatives.
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4 Estimation

4.1 MLE equation

The likelihood of an exponential family is

L(θ) = pθ(x) = eT (x)·θ/Z(θ).

We find the MLE by maximizing L(θ):

∂

∂θi

eT (x)·θ

Z(θ)

∣∣∣∣
θ=θ̂

= 0 (24)

⇐⇒
Z(θ) ∂

∂θi
[eT (x)·θ]− ∂

∂θi
[Z(θ)]eT (x)·θ

(Z(θ))2

∣∣∣∣∣
θ=θ̂

= 0 (25)

⇐⇒ Z(θ̂)Ti(x)eT (x)·θ̂ − eT (x)·θ̂Eθ̂[Ti]Z(θ̂) = 0 (26)

⇐⇒ Ti(x) = Eθ̂[Ti]. (27)

Note that all of this applies to general exponential families, not just ERGMs.
So to find the MLE of θ, we “just” need to solve for θ̂ in the equation

Ti(x) = Eθ̂[Ti], where

Eθ[Ti] =
∂

∂θi
logZ(θ) (28)

=
∂

∂θi
log
∑
x

eθ·T . (29)

How big is this sum? For graphs, “x” is a full graph, so there are 2(n
2) terms

in this sum, which is the number of undirected simple graphs on n nodes. This
sum is too large to simply brute-force it.

What can we do to get around this? In some special cases, including the edge-
triangle ERGM, the block model, and the Erdös-Renyi random graph model,
we can get a closed-form solution for the MLE.

4.2 Stochastic approximation

When this fails, we can try simulating:

• Start with an initial graph configuration a(0).

• Pick an edge (i, j) at random.

• Flip that edge with probability

pθ(a
(0)
+ij)

pθ(a
(0)
−ij)

,

which does not involve Z(θ).
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This is a Gibbs sampling procedure for finding the correct equilibrium distri-
bution. In particular, since Z(θ) is not involved, we circumvent the issue of
computing its value.

Now, to solve T (x) = Eθ̂[T ] for θ̂,

(i) Start with a guestimate θ̂(0).

(ii) Use simulation to get many graphs from θ̂(0).

(iii) Approximate Eθ̂[T ] by sample averages.

(iv) Adjust θ̂(0) to θ̂(1) to bring Eθ̂[T ] closer to T (x).

This procedure is stochastic approximation; it can be implemented via the
Robbins-Monro algorithm.

4.3 MCMCMLE

By the definition of the MLE,

θ̂ = argmax
θ

L(θ) = argmax
θ

L(θ)

L(θ0)

where θ0 is some fixed initial guess for θ. We can rewrite the likelihood ratio as

L(θ)

L(θ0)
=

eT (x)·θ/Z(θ)

eT (x)·θ0/Z(θ0)
(30)

= exp {T (x) · (θ − θ0)} / Z(θ)

Z(θ0)
, (31)

and we can rewrite the denominator as

Z(θ)

Z(θ0)
=
∑
x′

eT (x′)·θ

Z(θ0)
(32)

=
∑
x′

eT (x′)·(θ−θ0+θ0)

Z(θ0)
(33)

=
∑
x′

eT (x′)·(θ−θ0) e
T (x′)·θ0

Z(θ0)
(34)

= Eθ0
[
eT (x′)·(θ−θ0)

]
. (35)

We can estimate this by simulating with θ0 only. That is, we never need to use
any of the updates of θ.

However, if θ − θ0 is large, this estimate will oscillate. We would either
need a ton of samples, or to update θ0 to a better value at some point. But
in principle, we do not need anything but our initial guess θ0 to perform this
step.2

2For an implementation of this see the statnet project by Morris, Handcock, et al.

7

https://en.wikipedia.org/wiki/Stochastic_approximation#Robbins.E2.80.93Monro_algorithm
http://statnet.org/

	Overview
	Definitions
	How do we model a random graph?
	Some ERGMs

	Properties
	Edge/link prediction
	Moments of the sufficient statistics

	Estimation
	MLE equation
	Stochastic approximation
	MCMCMLE


