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Background from previous lecture
A distribution p(x) parameterized by θ is said to be in the exponential family with sufficient statistics
T , {T1, . . . , Td} when

pθ(x) = exp{θ>T (x)}∑
x′ exp{θ>T (x)} = 1

Z(θ) exp
{

d∑
i=0

θiTi(x)
}

= exp
{
θ>T (x)− t(θ)

}
The moment generating function of T is Mθ(φ) = Eθ[exp{θ>T}], so in the exponential family, Mθ(φ) =
Z(θ + φ)/Z(θ). The value of θ that maximizes the likelihood θ̂ , arg maxθ p(x|θ) satisfies

Eθ̂[T ] = T (x).

That is, the most likely θ makes the expected values of the sufficient statistics equal to the observed values.

Exponential family distributions maximize entropy
Def 1. The entropy of a random variable X is defined as

H[X] , −E[logX],

which for discrete X is
∑
x p(x) log p(x) (where the quantity p(x) log p(x) = 0 when p(x) = 0).

Hereafter, we only consider discrete X. The entropy has a number of useful properties:

1. H[X] ≥ 0, with H[X] = 0 if and only if p(x) = 1 for some x (X is degenerate/deterministic),

2. H[X] ≤ log |X | where X is the set of possible values of X,

3. H[X] = log |X | if and only if p(x) = 1
|X | for all x (X is the uniform distribution).

These properties can be demonstrated by observingH[X] = log |X |−D(p(x)||u(x)) where u(x) is the uniform
distribution on X , and D(p||q) is the Kullback-Leibler divergence from distributions q to p.

The maximum entropy problem is to find the distribution for X which maximizes H[X] under the con-
straints E[T1] = t1, E[T2] = t2, . . ., E[Td] = td. The constraints can be written in vectorized form: E[T ] = t.

max
p(x)

H[X] such that E[T ] = t.

We can use Lagrange multipliers to rewrite this as an unconstrained optimization

max
P∈R|X|,λ,θ

L(P, λ, θ) where

L(P, λ, θ) = −
∑
x∈X

Px logPx + λ

(∑
x∈X

Px − 1
)

+ θ>

(∑
x∈X

T (x)Px − t
)
.

∂L
∂Px

= −
(

logPx + Px
Px

)
+ λ+ θ>T (x).
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At the optimal P ∗x , λ∗, and θ∗, we have

0 = − (logP ∗x + 1) + λ∗ + (θ∗)>T (x),
P ∗x = exp

{
(θ∗)>T (x) + λ∗ − 1

}
,

and so exp{λ∗ − 1} = 1∑
x∈X exp{(θ∗)>T (x)} .

Thus, the distribution that maximizes the entropy and satisfies the constraints is

p(x) = 1
Z(θ∗) exp{(θ∗)>T (x)}.

If t are the observed values, then θ∗ is the maximum likelihood estimate θ̂ due to the constraint E[T ] = t.
Therefore, the most random (highest entropy) distribution under the expectation-value constraint E[T ] = t
is always an exponential family

p(x) = 1
Z(θ∗) exp{(θ∗)>T (x)} with Eθ∗ [T ] = t.

The maximum likelihood estimate for the exponential family is the maximum entropy distribution where
the expected value of the sufficient statistics match the observed values. The maximum entropy distribution
can be appealing since, in some sense, it assumes as little as possible about the structure of the underlying
process.

Problems with exponential-family random graph models
Degeneracy: In many typical applications of exponential-family random graph models (ERGMs), Markov
chain Monte Carlo methods for performing inference tended to take a very long time to mix and reach the
stationary distribution. Handcock et al. [1] found that at the MLE, where Eθ̂[T ] = T (x), for real-world data
x, the distribution pθ(t) is frequently multimodal, and the probability mass at the expected value pθ(E[T ])
can be very low.
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Thus, the Monte Carlo algorithm will spend much of its time near the modes of the distribution, but very
little time near the expected value. The probability of the algorithm jumping from one mode to another can
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be very small. The distribution over graphs in these cases has very low entropy. Mark Handcock called this
distribution near-degenerate for this reason.
If pθ[T = tobserved] is very low, then maximizing the likelihood does not help much, as the model effectively

implies that the observed data is incredibly unlikely anyway. This is true even though Eθ[T ] = tobserved.
This behavior suggests that there is no distribution in that model for which your data is a typical output,
and the model does not explain the data well.
Degeneracy occurs when the observed data essentially cannot be fit by the selected model, and the model

attempts to position modes of the distribution around the observed data, which is the best it can do. Often,
but not always, one mode occurs around nearly-full graphs, and another mode occurs around nearly-empty
graphs. [1] has examples, where the sufficient statistics are the number of edges and number of triangles.
They suggest to change the sufficient statistics, and to use “geometrically-weighted” statistics [5, 2]. For
example, a statistic that counts the number of k-stars in a graph tends to greatly overestimate the probability
of graphs with high-degree vertices, under the exponential family random graph model. To alleviate this,
the impact of these features can be reduced with geometrically decreasing weights, which have been found to
work well empirically. Similar geometrically decreasing weights have been proposed for other motif statistics,
such as the number of triangles.

Projectivity: Consider a dataset of two sample sizes, x and (x, y), where the sample size of x is n and
the sample size of (x, y) is m > n. A model is called projective when for all θ and x,

pn,θ(x) =
∑
y

pm,θ(x, y).[4]

Figure 1: An example of a model pn,θ that is projective for a triangle graph x. Note that if the model is
called projective, this property must hold for all x.
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Projectivity provides useful properties that allow the study of the asymptotic and non-asymptotic proper-
ties of the model. For example, it is a necessary condition for the Kolmogorov extension theorem [4, 3].
Many models that we study are projective, such as all models in which the observations are independent
and identically distributed. Projectivity also holds in conditionally-specified models where the conditional
distribution of new observations given the old observations is specified. However, ERGMs do not fall into
either of these categories.
Under what conditions does an ERGM satisfy projectivity? Intuitively, an ERGM with sufficient statistics

T is projective when the sufficient statistics for a supergraph G can be written as a sum of the sufficient
statistics of any partition of G into two subgraphs, along with a term for the edges between the partitions.
To make this more precise, we need a few definitions.

Def 2. The volume factor for a fixed value of a sufficient statistic t is the number of graphs in a set of
graphs X whose sufficient statistic matches the fixed value.

vn(t) , |{x ∈ X : tn(x) = t}|.
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Def 3. The joint volume factor is defined for some δ ∈ R,

vn,m(t, δ) , |{(x, y) ∈ X : tn(x) = t, tm(x, y)− tn(x) = δ}|,

where y can be imagined as subgraphs of (x, y).

Def 4. The conditional volume factor is

vn,m(x, δ) = |{y : tm(x, y)− tn(x) = δ, (x, y) ∈ X}|.

Def 5. A sufficient statistic t is said to have separable increments if tm(x, y)− tn(x) has the same range
for all x ∈ X , and the conditional volume factor is constant in x:

vn,m(x, δ) = vn,m(x′, δ),

for all x, x′ ∈ X , and δ ∈ R.

As an example, this clearly would not hold for a statistic that counts the number of triangles. If we imagine
a k-star graph, the addition of a new vertex can dramatically increase the number of triangles from 0 to k.

Thm 1. An exponential family model is projective if and only if all sufficient statistics T have separable
increments. [4]

Thm 2. No sufficient statistic that counts a motif with at least 3 vertices has separable increments.

Any ERGM where all sufficient statistics are sums over dyads (pairs of nodes) is projective. So for instance,
block models are projective.
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