
Lecture 13: Many Cheerful Facts about the

Laplacian

36-720, Fall 2016

17 October 2016

Abstract

I clean up some of the confusions I inadvertently created during lecture,
and sketch a proof of a key fact.
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1 Linear Dynamical Systems

Suppose we’re dealing with the time-evolution of an n-dimensional vector ~x ∈
Rn. Saying that the evolution operator is linear is saying that there is some
n× n matrix c such that

~x(t+ 1) = c~x(t) (1)

Given the initial condition ~x(0), the trajectory is uniquely determined by iter-
ating Eq. 1.

Since c is an n × n matrix, it has at most n distinct eigenvalues1 If there
are n distinct eigenvalues, there are n orthogonal eigenvectors. If an eigenvalue

1Because the characteristic polynomial giving the eigenvalues is of order n, and hence has
at most n distinct roots.
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is d-fold degenerate, its eigenvectors form a linear subspace2 of dimension at
most d, and this subspace is orthogonal to all the other eigenspaces. Supposing
(what is generically the case) that the dimension of this subspace is indeed d, we
can choose d orthogonal vectors from that space to serve as “the” eigenvectors.
We can also scale all these eigenvectors to have length 1. Thus, we can find n
orthogonal, unit-length vectors, say ~v1 through ~vn, which are eigenvectors of c,
with eigenvalues λ1 through λn (possibly with repetition). These eigenvectors
form a basis for Rn.

Since the eigenvectors form a basis, we can expand any vector in terms of
them. In particular, we can re-write the initial condition ~x(0) as a weighted
sum of eigenvectors:

~x(0) =

n∑
i=1

~vi(~vi · ~x(0)) ≡
n∑
i=1

wi~vi (2)

defining the weights in the last equation.
Now the dynamics are very simple. For one step,

~x(1) = c~x(0) (3)

= c

n∑
i=1

wi~vi (4)

=

n∑
i=1

wic~vi (5)

=

n∑
i=1

wiλi~vi (6)

(7)

using the fact that linear operators commute with summation, and that ~vi is an
eigenvector. Iterating, over arbitrarily many steps,

~x(t) =

n∑
i=1

wiλ
t
i~vi (8)

Notice that if |λi| < 1, then λti → 0. That is, eigenvectors of c which
correspond to eigenvalues within the unit circle represent directions in the state
space which shrink exponentially fast. On the other hand, if |λi| > 1, then
|λti| → ∞ — the corresponding directions in the state space zoom off to infinity
exponentially. Eigenvectors corresponds to eigenvalues on the unit circle are the
only ones which stay constant in magnitude.

2Observe that if ~u and ~v are eigenvectors of c with the same eigenvalue λ, then a~u+ b~v is
also an eigenvector with eigenvalue λ.
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1.1 Related operators and their eigenvalues

The above discussion applies to the eigenvalues of the (linear) evolution operator
in Eq. 1. It is of course equivalent to look at the difference between ~x(t+1) and
~x(t), the increment to the state:

~x(t+ 1)− ~x(t) = c~x(t)− ~x(t) = (c− I)~x ≡ b~x(t) (9)

The difference or increment operator b has the same eigenvectors as the
evolution operator c, but its eigenvalues are all offset by 1. To see this, consider
what happens if ~v is an eigenvector of c with eigenvalue λ. Then

b~v = (c− I)~v = λ~v − ~v = (λ− 1)~v (10)

On the other hand, if ~u is an eigenvector of b with eigenvalue κ, then

κ~u = (c− I)~u (11)

κ~u+ ~u = c~v (12)

(κ+ 1)~u = c~u (13)

In continuous time, instead of the difference or increment operator, we’d
have a differential operator:

d~x

dt
= b~x (14)

The solution is, of course,
~x(t) = etb~x(0) (15)

In this context, b is called the generator of the time-evolution.
Here the exponential of a matrix is to be understood through the power

series:

etb =

∞∑
k=0

(tb)k

k!
(16)

Notice that bk will have the same eigenvectors as b, and its eigenvalues will be
the kth powers of the eigenvalues of b. If ~v is an eigenvector of b with eigenvalue
λ, then

etb~v =

∞∑
k=0

(tb)k

k!
~v (17)

=

∞∑
k=0

(tλ)k

k!
~v (18)

= etλ~v (19)

so ~v is also an eigenvector of etb, with eigenvalue etλ.
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1.2 Evolution of Probability Distributions for Markov Chains

In an n-state (homogeneous) Markov chain, we have an n×n transition matrix
p, where pij is the probability that, when the chain is in state i, it will next
move to state j,

P (X(t+ 1) = j|X(t) = i) = pij (20)

The relationship between X(t+ 1) and X(t) can be very nonlinear3. However,
there is always a linear system buried within this.

We can represent a distribution over the states by a vector ~ρ ∈ Rn, with the
constraints that ρi ≥ 0,

∑n
i=1 ρi = 1. Applying the Markov chain for one step

will transform this distribution to a new one, as follows:

P (X(t+ 1) = i) =
n∑
j=1

P (X(t+ 1) = i,X(t) = j) (21)

=

n∑
j=1

P (X(t+ 1) = i|X(t) = j)P (X(t) = j) (22)

=

n∑
j=1

pjiρj(t) (23)

We can imagine this as telling us about what will happen if we start a large
number of independent, non-interacting copies of the Markov process, with the
proportion of them begun in state i being ρi. In vector form, therefore,

ρ(t+ 1) = ρ(t)p (24)

We have seen equations like Eqs. 23 and 24 before, when looking at cumulative-
advantage processes. They are often (especially in the physics literature) called
master equations. Other names are (Kolomogorov) forward equations, or
Fokker-Planck equations, though those terms, especially the latter, are some-
times reserved for the corresponding differential equations for continuous-time
Markov processes.

Notice that the linear operator is now acting from the right, rather than
the left as before. You can convince yourself that none of the reasoning above
really depended on the linear operator acting from the left, so distributions
over the state space will evolve linearly, with the components projecting on to
eigenvectors within the unit circle shrinking exponentially. Since p is a stochas-
tic matrix, i.e., one with non-negative entries where each row sums to 1, the
Perron-Frobenius theorem tells us that its largest eigenvalue is 1, and the cor-
responding (left) eigenvector has non-negative entries. If the Markov chain is
ergodic, then the eigenvalue 1 is non-degenerate; each ergodic component of the
chain corresponds to a distinct eigenvector of eigenvalue 1.

3In expectation, or for some other measure of central tendency.
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2 Averaging or Diffusion Dynamics on Networks

Suppose we have an undirected graph with adjacency matrix a, and a field over
the network, i.e., a vector ~x ∈ Rn. Let’s suppose that the field evolves according
to a very basic sort of averaging or diffusion dynamic, where if node i is next to
node j and has a higher value of the field, it will re-distribute some of the field
to j. A simple model of this form4 is

xi(t+ 1)− xi(t) = r

n∑
j=1

aij(xj(t)− xi(t)) (25)

There are two things worth noticing about this:

1. This is a linear dynamical system; if we multiply all the x values by any
amount, the increments will multiply by the same factor.

2. The dynamics conserve the x-quantity. To see this, sum up all the changes
to all nodes:

n∑
i=1

xi(t+ 1)− xi(t) =

n∑
i=1

r

n∑
j=1

aij(xj(t)− xi(t)) (26)

= r

n∑
i=1

n∑
j=1

aij(xj(t)− xi(t)) (27)

Since, in an undirected graph, aij = aji, this last sum must always be
exactly zero. But the sum of increments is the increment to the sum, so
the total amount of whatever x measures is left alone.

The conservation of x-stuff is one reason this kind of dynamic is called “dif-
fusion”; think of a finite supply of some dye or perfume spreading out from node
to node.

2.1 The Graph Laplacian

We can write Eq. 25 in vector form; since we’ve seen the dynamics are linear,
for some b,

~x(t+ 1)− ~x(t) = b~x(t) (28)

Since, for each coordinate, the increment is proportional to r, we can say

~x(t+ 1)− ~x(t) = −rL~x(t) (29)

for some L.
Claim: L = d−a, where d is the diagonal matrix of degrees of nodes. Proof:

For node i, there are
∑
j aij = di non-zero terms in the sum in Eq. 25. Each of

them picks up a negative xi(t) term; the minus sign in 29 flips this around, so
we need d− a.

The matrix L is the graph Laplacian.

4But not the only possible one, even for linear dynamics; see Exercise 2.
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2.1.1 Connection to the Laplacian Differential Operator

In 3-D calculus, the Laplacian is a second-order differential operator,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(30)

with counterparts in any number of dimensions. To see how this connects to
the graph Laplacian, let’s drop down to one dimension, where the Laplacian
operator is just the second derivative, d2/dx2. Since differentiation is the limit
of difference slopes,

df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h
(31)

the second derivative is a limit of second differences

d2f

dx2
(x) = lim

h→0

f(x+ h)− f(x)− [f(x)− f(x− h)]

h2
= lim

[f(x+ h)− f(x)] + [f(x− h)− f(x)]

h2
(32)

Clearly, the n-dimensional Laplacian will work the same way, only with more
notation than I feel like writing out at this point.

If our make our graph by setting down a grid of points in Rn with a separa-
tion of h between points, the graph Laplacian will give us the “second difference”
in the numerator of Eq. 32. It is thus intuitively clear that, for such “geometric”
graphs, the Laplacian differential operator is some sort of (scaled) limit of the
graph Laplacians as h → 0; explaining how matrices can have as their limit a
continuous operator is more involved than I feel like going into right now, but
it can be done5, and this can be made rigorous. The argument doesn’t just
work for finite-dimensional Euclidean spaces. On other manifolds, the equiva-
lent of the Laplacian is the Laplace-Beltrami operator, and the Laplacians
of geometric graphs derived from those manifolds approach these differential
operators as the grid size shrinks.

2.1.2 Spectral Properties of the Graph Laplacian

The spectrum — the eigenvalues and eigenvectors — of the Laplacian encodes
an awful lot of information about the graph6. Here are some very basic facts:

1. Since L is symmetric, the eigenvalues of L are all real, i.e., not complex.
Consequently, they can be unambiguously ordered, from the smallest λ1
to the largest λn.

2. The all-ones vector, ~1, is always an eigenvector of L, with eigenvalue 0.
To see this, notice that if xi = 1 for all i, then Eq. 25 is zero (no matter
what r is). Hence L~1 = 0, no matter what the graph.

5See, e.g., Ethier and Kurtz (1986).
6Chung (1997) is a good introduction, though some sections presume a reader who knows

more differential geometry than is typical of statisticians.
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3. If C is a connected component of the graph, write ~1C for the vector which
is 1 on C and 0 elsewhere. It is easy to see that L~1C = 0, so each connected
component of the graph has a corresponding 0 eigenvector.

4. If ~v is a 0 eigenvector of L, then it is either proportional to one of the
~1C , or is a linear combination of those vectors. Thus there is a one-to-one
correspondence between connected components and 0 eigenvectors.

5. All of the eigenvectors of L are positive7. This is mostly easily seen by
verifying (Exercise 1) that for any vector ~x

~xTL~x =
1

2

∑
i,j

aij(xi − xj)2 (33)

Since ~1 is a 0-eigenvector of L, it is also a eigenvector of I−rL with eigenvalue
1. The part of the initial condition which projects onto ~1 is therefore invariant
over time. For sufficiently small r, all the other eigenvectors of I − rL will be
within the unit circle, and so the projections of the initial conditions on to the
other eigenvectors will shrink exponentially fast.

In a graph with one connected component, the second-largest eigenvalue
of L, λ2, goes along with a vector, ~v2. Since this is orthogonal to the zero
eigenvector ~1, we must have ~v2 · ~1 = 0, which in turn implies that ~v2 must
contain entries of alternating signs. At large times t, then, we’ll have

~x(t) ≈ (~x(0) ·~1)~1 + (1− rλ2)t(~x(0) · ~v2)~v2 (34)

since all the terms along other eigenvectors are exponentially smaller. Thus any
initial pattern will converge towards uniformity, and ~v2 tells us abut the most
persistent non-uniformity — the split between nodes with positive and negative
entries in ~v2 is the split which takes the longest time to average away.

2.2 Laplacian-based Smoothing

Suppose we observe a field x over a graph, and we think this represents some
underlying true signal plus noise. If we suppose the signal is smooth over the
graph, i.e., that nearby points have similar values, then we might estimate the
signal by solving the following optimization problem:

min
~f∈Rn

‖~f − ~x‖2 + γ
∑
i,j

aij(fj − fi)2 (35)

By the magic of Lagrange multipliers, this is equivalent to minimizing the sum
of squared errors ‖~f −~x‖2 under a constraint of the form

∑
i,j aij(fj − fi)2 ≤ c;

the penalty factor γ is the Lagrange multiplier enforcing the constraint, i.e., the
“shadow price” (in units of squared error) we’d pay to loosen the constraint.

7I did indeed screw this up in lecture.
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One can show (Exercise 1) that∑
i,j

aij(fj − fi)2 = 2~fTL~f (36)

Thus the optimal vector is

x̂ = argmin
~f∈Rn

‖~f − ~x‖2 + 2γ ~fTL~f (37)

= (I + 2γL)−1~x (38)

This resembles both ridge regression and spline smoothing, especially the latter,
since L is so close to the second derivatives used to define smoothing splines.
See Wehbe et al. (2015) for an application of this idea; Li et al. (2016) for
an extension to allow for node-level covariates; and Corona et al. (2008) for a
proper extension of splines on graphs.

3 Exercises

1. Positive-definiteness of the graph Laplacian To show that the graph Lapla-
cian is positive-definite, i.e., that

~vTL~v ≥ 0 (39)

for any vector ~v, it will be enough to show that this quadratic form is
equal to a weighted sum of squares:

~vTL~v = 2
∑
i,j

aij(vj − vi)2 (40)

There are actually many ways to do this; here is one.

(a) Show that∑
i,j

aij(vj − vi)2 =
∑
i

v2i
∑
j

aij +
∑
j

v2j
∑
i

aij−2
∑
i,j

vivjaij (41)

(b) Show that ∑
i

v2i
∑
j

aij =
∑
j

v2j
∑
i

aij = ~vTd~v (42)

(c) Show that ∑
i,j

aij(vj − vi)2 = 2~vT (d− a)~v (43)

2. For each node i, write xN (i) for the mean value of i’s neighbors, i.e., the
mean of the xj where aij = 1.
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(a) Show that Eq. 25 is equivalent to

xi(t+ 1)− xi(t) = rdi(xN (i)(t)− xi(t)) (44)

Notice that this means that if two nodes are equally far from the
average of their neighbors, the higher-degree node will change more
quickly.

(b) Consider instead the equation

xi(t+ 1)− xi(t) = r(xN (i)(t)− xi(t)) (45)

Write this in matrix form, using the Laplacian and the d matrix.
Call this increment operator b.

(c) Explain how the eigenvalues and eigenvectors of b are related to those
of the Laplacian.

References

Chung, Fan R. K. (1997). Spectral Graph Theory . Providence, Rhode Island:
American Mathematical Society. URL http://www.math.ucsd.edu/~fan/

research/revised.html.

Corona, Eduardo, Terran Lane, Curtis Storlie and Joshua Neil (2008). Using
Laplacian Methods, RKHS Smoothing Splines and Bayesian Estimation as a
framework for Regression on Graph and Graph Related Domains. Tech. Rep.
TR-CS-2008-06, Department of Computer Science, University of New Mexico.
URL http://www.cs.unm.edu/~treport/tr/08-06/laplacian-rkhs.pdf.

Ethier, Stewart N. and Thomas G. Kurtz (1986). Markov Processes: Charac-
terization and Convergence. New York: Wiley.

Li, Tianxi, Elizaveta Levina and Ji Zhu (2016). “Prediction models for network-
linked data.” arxiv:1602.01192. URL https://arxiv.org/abs/1602.01192.

Wehbe, Leila, Aaditya Ramdas, Rebecca C. Steorts and Cosma Rohilla Shalizi
(2015). “Regularized Brain Reading with Shrinkage and Smoothing.” Annals
of Applied Statistics, 9: 1997–2022. URL http://arxiv.org/abs/1401.

6595. doi:10.1214/15-AOAS837.

9

http://www.math.ucsd.edu/~fan/research/revised.html
http://www.math.ucsd.edu/~fan/research/revised.html
http://www.cs.unm.edu/~treport/tr/08-06/laplacian-rkhs.pdf
https://arxiv.org/abs/1602.01192
http://arxiv.org/abs/1401.6595
http://arxiv.org/abs/1401.6595
http://dx.doi.org/10.1214/15-AOAS837

	Linear Dynamical Systems
	Related operators and their eigenvalues
	Evolution of Probability Distributions for Markov Chains

	Averaging or Diffusion Dynamics on Networks
	The Graph Laplacian
	Connection to the Laplacian Differential Operator
	Spectral Properties of the Graph Laplacian

	Laplacian-based Smoothing

	Exercises

