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1 Reminders about linear dynamical systems
Given vector ~x ∈ Rn, linear dynamic has d~x

dt = B~x for some n × n matrix B. In discrete time, this can also be
written as:

~x(t+ 1)− ~x(t) = B~x(t)

or

~x(t+ 1) = (B+ I)~x(t) = C~x(t)

As a nice matrix, C has at most n distinct eigenvalues with orthogonal eigenvectors. That is, C gives a system
of n orthogonal eigenvectors, or a basis for Rn. Let’s call these eigenvectors ~vi and the corresponding eigenvalues
λi where i ∈ 1 : n, then

~x(0) =

n∑
i=1

~vi(~x(0) · ~vi)

and

~x(t) = Ct~x(0)

This is called the evolution operator. Applying this gives us:

~x(1) = C~x(0) = C

n∑
i=1

~vi(~x(0) · ~vi) =
n∑

i=1

(~x(0) · ~vi)C~vi =
n∑

i=1

(~x(0) · ~vi)λi~vi

And after evolving for t times:

~x(t) =

n∑
i=1

(~x(0) · ~vi)λti ~vi
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The eigenvectors where |λi| < 1 go to 0 exponentially fast. The eigenvectors where |λi| > 1 go to∞ exponentially
fast.

2 Dynamics on Network I: Averaging or Diffusion
Think of some field x with a value xi at each node i. The rate of change in xi can be expressed as:

dxi
dt

= r
∑
j 6=i

Aij(xj − xi) (r > 0)

The dynamics behind this is the following. Each node looks at each of its neighbors. If the neighbor has more
“x-stuff”, we transfer some of the “x-stuff” to this node from the neighbor. Otherwise, if this node has more “x-
stuff”, it will transfer some to the neighbor. Overall, the “x-stuff” flows from high concentration to low, and the
flow is along the graph. Eventually we even out the inequality.

2.1 The graph Laplacian
This process can be written equivalently in vector form as the following (for undirected graph):

d~x

dt
= −rL~x

where L = D−A and D = diag(degrees). Similarly, this can be expressed in the form of discrete time.
Here, the matrix L is called the Laplacian of the graph. Recall that in multivariable calculus (continuous form):

L =
∂2f(·)
∂x2

+
∂2f(·)
∂y2

+
∂2f(·)
∂z2

The graph Laplacian on a “geometric” graph (gridded manifold) approaches the continuous L above.

2.2 Properties of the Laplacian
The Laplacian encodes lots of facts about the graph:

• L is symmetric (for undirected graph), which means all eigenvalues are real.

• One of these eigenvalues has to be 0 with eigenvector ~1 regardless of the specific graph, since L~1 = 0 and
Dii =

∑
j

Aij

• All other eigenvalues are positive, i.e. all are going to be increasing.

• 0 can be a degenerate eigenvalue (i.e. having multiple eigenvectors). If w is a connected component, then
~1Iw is also an eigenvector with zero-eigenvalue. This leads to a distinct 0 eigenvector for each connected
component.

• Many, many other graph properties relate to the spectrum of L. See the book Chung (1997) for more
information.

2.3 Dividing the graph with the Laplacian
Assume (for simplicity) there is only one connected component in the graph. In this case, ~1 is an eigenvector of
L with eigenvalue 0. The next largest eigenvalue λ2 < 0, and its eigenvector ~v2 must be orthogonal to ~1. So

~v2 · ~1 =

n∑
i=1

v2i = 0, which means ~v2 has both positive and negative entries. ~v2 divides the graph into two parts

depending on the signs of the v2i entries. This division is the one with the least flow between two parts. If we apply
the evolution operator ~x(t + 1) − ~x(t) = −rL~x(t) repeatedly, eventually we will have ~x(t) → α~1 as the dominant
eigenvector, while the ~v2 component of ~x(0) is the non-uniformity which survives the longest. Intuitively, running
the averaging process will eventually put the graph into total homogeneity; during the process, it will show ~v2 as
this is the longest surviving non-uniformity.
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2.4 Smoothing with the Laplacian
Think of a problem of smoothing values on a graph: given observations x1, . . . , xnon a graph, smooth them by
shrinking each xi towards its neighbors (e.g. for the purpose of de-noise). We can translate the problem to the
following:

min
x̃
‖x̃− x‖22 + γ

∑
i,j

Aij(x̃i − x̃j)2

where the first part is the MSE to minimize, and the second part is a function that penalizes rapid change. This
objective function is equivalent to:

||x̃− x||22 − 2γx̃TLx̃

Solving the minimization problem gives us:

x̂ = (I+ 2γL)−1x

2.5 Laplacian smoothing is conservative
Observation:

0 =
∑
i

dxi
dt

=
∑
i

r
∑
j

Aij(xj − xi) = r
∑
i

∑
j

Aij(xj − xi)

In the expression above, each term appears twice with opposite signs, and the total amount of “x-stuff”,
∑
i

xi

remains constant. This is why the process is also termed “diffusion”.

3 Dynamics on Network II: Random Walk on the Graph
Assume the walker is at one node at each time point. It takes a random neighbor of a current node and moves to
it. This is a Markov Chain on the nodes with transition matrix AD−1, i.e. it takes each row of A and divide it by
the degree of the node (each neighbor gets the same probability of being moved to).

There is an equilibrium distribution ~ρ ∈ Rn s.t.

AD−1~ρ = ~ρ⇒ (I −AD−1)~ρ = 0

⇒(I −AD−1)DD−1~ρ = 0

⇒(D −A)D−1~ρ = 0

⇒LD−1~ρ = 0

So D−1~ρ is a 0-eigenvector of L. We know that, as the 0-eigenvector, D−1~ρ = α~1⇒ ~ρ = αD~1. So if we let the
random walker run forever, the probability of the walker landing on a node is proportional to its degree.

4 Dynamics on Network III: Infectious Processes:
Each node is in one of a discrete, finite set of states, including (at least) two states: “S” (susceptible) and “I”
(infectious). The infection is passed on from I to S with some probability. Other possible states include “R”
(recovered / removed), “E” (incubating), etc. The variants of this model are named by the state patterns it
encodes: S.I.R., S.I.S., etc. But all variants start with everyone in S and a small number (say, 1) of individuals
being infectious I.
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4.1 Classic epidemic model and the logistic curve
If a population is “well-mixed”, as S meets I,

dS

dt
= −rSI

or

dI

dt
= rI(N − I)

where N is the total population size. This indicates a pattern which shows exponential growth initially, but
eventually levels off. The solution to the above ordinary differential equation is:

I(t) =
Nert

N − I0 + I0ert

where I0 = I(0).

4.2 Branching process
A slightly more realistic version of the model is that we don’t just look at the total numbers of S and I, but the
status of each individual. Each node in the graph is, at any time, in one of the disease states. At each time, node
i, if it is an I, has a certain probability of transmitting the disease to its S neighbors (if exist). Similarly, at each
time, node j, if it is an S, has a certain probability of aquiring the disease from its I neighbors (if exist).

But how many individuals are infected at each time t? Assume t is small enough so that no one has yet recovered,
which is equivalent to looking at how many individuals have ever been infected. We have

I(t) = Z(0) + Z(1) + · · ·+ Z(t)

where Z(t) is the number of newly infected at time t. Given that node i is S and its neighbor j is I, we define
the average probability of transmission (“transmissibility”) as τ .

How big is Z(1)? Each of the Z(0) individuals infects Binom(degree, τ) of its neighbors. If we assume negligible
overlaps, then Z(1) is just the sum of all these Z(0) binomials.

Recursively, Z(t) is a sum of Z(t− 1) binomials, each of which being Binom(degree− 1, τ) (note that we need
to subtract the degree by 1 to exclude the individual from whom it got the disease and who is already an I). We
further define u(t, i) to be the number of infections caused by individual i in tth generation. Then
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Z(t) =

Z(t−1)∑
i=1

u(t, i) =

Z(t−1)∑
i=1

Binom(degreei − 1, τ)

This is yet another branching process. This is equivalent to something called edge or bond percolation: take the
original graph and flip a τ -coin for each edge; if it turns out heads (success), keep the edge; else if it turns out tails
(failure), delete the edge. If τ×(expected number of new edges reached by following a random edge)> 1, then we
will have a giant connected component which leads to epidemic. Otherwise, if τ×(expected number of new edges
reached by following a random edge)< 1, the epidemic will die out.
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