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1 Contagion, cont’d

Recall:

Take graph and its adjacency matrix as fixed. We’re interested in the dynamic of some

random filed X(t) with value Xi(t) at node i.

Contagion: Nodes can move from being susceptible (S) to infectious (I) when they meet an

I.

We focus on early stage at spread so no time for I to be removed (R) or go back to S.

Under full mixing,

dI

dt
= rI(N − I),

and solution always a logistic curve.

Including network structure:
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Look carefully at how the contagion spread and track number of new infections due to each

node.

I(t) = Z(0) + Z(1) + Z(2) + · · ·+ Z(t),

so, Z(t) = {new cases at time t}.
Z(t+ 1) =

∑z(t)
i=1 ξi,t, where ξi,t = #{infected by the i-th person to get it at time t}.

Neglecting overlapping: we have a branching process.

Query: does I(t)→∞? (or at least N) or does I(t)→ constant << N?

2 Epidemic threshold

2.1 Basic reproductive remember

Basic reproductive number: “R0”= average number of new infections caused by inserting one

more I into the population directly.

Folklore:

• If R0 < 1⇒ contagion is limited

• If R0 > 1⇒ contagion spreads over an O(n) part of the population, “epidemic”.

This is correct for random networks with any degree distribution.

R0 = E[#new noes infected after making one node an “I”]

= P(transmitting disease to neighbours) · E(available contacts).

2.2 The branching process

It’s worthwhile to notice E(available contacts) 6= average degree. We would show this later.

Suppose W.O.L.O.G. that

I(0) = Z(0) = 1

and

ξ1,0 = Z(1) = Binom{#of neighbours of initial individual, τ}.

Then,

E(Z(1)) = E(Binom{#of neighbours, τ}) = τE(degree− 1).

2.3 Degree of nodes reached by the epidemic; the paradox of friendship

But, the second generations nodes are not random nodes. In fact, they are nodes we can reach

by a link, which yields biases towards nodes with high degree.

Suppose degree distribution has p.m.f function pk. The probability that a node of degree k

is neighbour to initial is in proportional to k.

The degree distribution of nodes we reached by following an edge thus is in proportional to

kpk. To be specific,

qk =
kpk∑
k kpk

=
kpk
E(K)

,

where K denotes the degree for a randomly chosen node.
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So, what about Z(2)?

Z(2) =

Z(1)∑
i=1

ξi,2,

where each ξi,2 = −1 +Binom(degree of node i, τ).

E(ξi,2) = −1 + τE(degree of a node reached from a random node).

We call the rightmost term as J .

Therefore,

E(J) =

∞∑
j=0

jqj

=

∞∑
j=0

j2qj/EK

=
EK2

EK

=
V ar(K) + (EK)2

EK

= EK +
V ar(K)

EK
,

where the rightmost term is positive.

In other words,

E(ξi,2) = τ(EK +
V ar(K)

EK
− 1). (2.1)

Now we have the paradox of friendship: Your friends have more friends than you.

In a Poisson graph, V ar(K) = EK, so just

E(ξi,2) = τEK. (2.2)

So it’s the same thing after second generation in Poisson graph. But in other graphs, it’s

different.

2.4 Back to the branching process

In generation, when t ≥ 2,

E(ξi,t) = τ(EK +
V ar(K)

EK
− 1), (2.3)

because third etc. generation nodes are also reached via edges and have degree p.m.f qk.

In a branching process, if E(ξi,t) < 1, then extinction with probability 1 (subcritical). If

E(ξi,t) > 1, then with some positive probability of → ∞, E(It) is E(ξi,t)
t.(super-critical, which

means positive probability of living.)
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Figure 1: Graph of how the variables in their system are related.

2.5 Epidemic threshold on random networks

Moral:

In a random graph with arbitrary degree distribution, contagion become epidemics when

τ(EK +
V ar(K)

EK
− 1) > 1,

Or

τ >
1

(EK + V ar(K)
EK − 1)

,

where τ is critical level of transmissibility → 0 as EK →∞ or V ar(EK)→∞ with EK fixed.

3 “The web of human sexual contacts”.

Observation: if degree distribution is power law in proportional to k−α, then

E(K2) =

+∞∑
k=0

k2Cαk
−α = +∞( if α ≤ 3).

Liljeros et al. (2001): Data says that for the “web of human sexual contacts”: α̂ = 3.2±0.3⇒
τ = 0, unless we “destroy the hubs”.

Counter-point: (1) Data are from one survey, of one country, of self-reported sexual contacts.

(2) As pointed out by Handcock and Jones (2004), there is no way even that data is really a

power law.

4 Do fat friends make you fat?

Christakis and Fowler (2007)): obseity is contagious.

Define Xi(t) = 0 if no obesity at time t and Xi(t) = 1 if obese at time t.

Logistic regression of Xi(t) on Xj(t−1) (where Aij = 1) controlling for all sorts of i-covariates

Ci&Xi(t− 1).

Finding:

Having an obese friend increases risk for becoming obese ≈ 7 folds.

Crucial problem: Irena and Joey are not assigned an edge randomly, since it’s observational

data.

If we select only neighbours, we get confounding of contagion and homophily. If we don’t

select the neighbours, we do not get andy evidence about social effects. (See above figure.)

Shalizi and Thomas (2011) has details.

Hence, “social networks are machines for creating selection bias”.

Ways out:
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• Actually measure what matters, so control for Zi.

• Randomize the network, i.e. assign people at random to sections like colleges, to room-

mates, prisons, etc.

• Inject random variation into Xj(t−1)(facebook, social engineer, “instrumental” variables.)

• Measure Zi indirectly from the whole network.

Given Aij = 1, Z(i) is extra likely to be close to Z(j)(homophily), so the network should

have clusters of tightly-linked nodes with similar Z ′is⇒ Use community discovery to get Ẑi and

control for it (Shalizi and McFowland, 2016).
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