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1 From last time

Take a graph and its adjacency matrix as fixed. We are interested in the dynamics of some random field
X (t) with value X;(¢) at node . Contagion nodes can move from being susceptible (S) to infections when
they meet an I. Focus on early stage of spread (I doesn’t go back to R or S). Full mixing:

a v (1)

Solution is given by:

ert

I(t)=Ih——— 2
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Solution is always a logistic.
2 Including Network Structure
Look carefully at how the contagion spreads and track the number of new infections due to each infected

node.

Notation:
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Figure 1: Exponential growth

e Z(t) = new cases at time ¢

o Z(t+1) =20

e (;+ = number infected by node 7 at time ¢

We neglect any overlap. This gives us a branching process.

Query: does I(t) — oo (or at least large N)? Or does I(t) — constant << N.

2.1 Basic reproductive number
Basic reproductive number: ” Ry” = average new infections caused by inserting one more [ into the population
(in one step).

Folklore: Ry < 1: contagion is limited. Ry > 1: contagion spreads over an O(n) part of the population,
”epidemic”.

Correct for random graphs with any degree distribution.

Ry = E[new nodes infected after making one node I]

P(transmit to neighbor)E[available contacts]

P(transmit to neighbor) = 7

Note E[available contacts] # average degree.
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Figure 2: Branching Process

2.2 The branching process

Suppose WOLOG I(0) = Z(0) = 1. Then

Go = Z(1)
= Binom(num neighbors of initial indiv, 7)
=E[Z(1)] = E|[Binom(numn eighbors,7)]
= 7E(degree)

2.3 The paradox of friendship

The 2nd generation nodes are not chosen uniformly at random. We can reach them by a link — so we are
biased towards nodes with high degree. The degree distribution has pmf p,, meaning the probability that a
node of degree k is a neighbor to the initial node oc k. Degree distribution of nodes we reach by following
an edge is < kpy.

= degree distribution of reachable nodes g  kpg. To normalize:

kpy kps, 3)

W= 5= Tpr  E(k)

E(k) is the expected degree of a random node.
What about Z(2)? Z(2) = ZZZ:(P Ci,2- Bach ¢; 2 = Binom(degree of node ¢ — 1, 7). Thus:

E(¢2) = TE(degree of a node reached from a random node — 1) (4)
Call the RHS J:



Figure 3: Infection Progression

E(Ga2) = Y4
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This is the “Paradox of Friendship”: your friends have more friends than you do.

So this gives:
e v(k)
E(Gi2) =7 |E(k) + E(h) (5)

Note in a Poisson graph, V(k) = E(k) so E((;2) = TE(k).



2.4 The epidemic threshold

Same story after 2nd generation. In generation ¢t > 2:

E(G2) =T [E(k) + IZEZ; - }

because 3rd generation etc nodes are also reached via edges and have degree pmf gy:

T []E(k) + m — 1] =7(E(J)-1) (7)

In a branching process, if E((;+) < 1, extinction happens with probability 1 (subcritical). If E((;:) > 1,
positive probability of living forever (supercritical):

E[1(1)] = (E(Gi.))’ (8)

This E((;,¢) is the "basic reproductive number” (after 1st generation).

Moral: In arandom graph with arbitrary degree distribution, contagions become epidemics when 7 [E(k) * %
1
1, or equivalently 7 > [Wk) % B 1} '

The critical level of transmissibility — 0 as E(k) — oo or V(k) — oo with E(k) fixed.

2.5 “The web of human sexual contacts”
Observation: if degree distribution is a power law o< k=%, then E(k?) = Y7 (k*Cok™ = oo if a < 3.

)
Liljeros et al| (2001): the data says that for human sexual contacts, & = 3.2 £ 0.3. = 7. = 0 unless we
”destroy the hubs”.

Some caveats:

e not a good estimation of degree — not a power law (Handcock and Jones| 2004])

e data a self-reporting study of Swedish adults

2.6 Epidemics as giant components in thinned graphs

Flip a coin and thin the graph if ”tails” with probability 1 — 7. Condition for epidemic = new graph has
expected degree greater than 1 = new graph has a giant connected component.

3 Do fat friends make you fat?
Christakis and Fowler| (2007)): Obesity is contagious.

e X;(t) = 0 if not obese at time ¢

e X;(t) =1 if become obese at time ¢

Logistic regression of X;(t) on X;(t — 1) controlling for all sorts of i-covariates C; and X;(t — 1) where
Aij =1.

Finding: having an obese friend increases risk of becoming obese = 7x.



Figure 4: Thinning the graph
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Figure 5: Causation
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Figure 6: Community Discovery

If we only select neighbors (A4;; = 1) we get confounding of contagion with homophily. If we don’t select
neighbors, we don’t get any evidence about social effects. (Shalizi and Thomas, [2011))

”Social networks are machines for creating selection bias” — Unknown

Ways out:

e Actually measure what matters (control for Z;)
e Randomize the network (colleges, prisons, maybe Facebook)
e Inject random variation into X;(¢ — 1) ie treat some nodes (Facebook, instrumental variables)

e Measure Z; indirectly from the whole network: Given A;; = 1, Z; is extra likely to be close to
Z; (homophily). So the network should have clusters of tighly linked nodes with similar Z;’s. Use

community discovery to get Z; amd control for it. This will work under some assumptions (Shalizi and
McFowland, [2016)).
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