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1 From last time

Take a graph and its adjacency matrix as fixed. We are interested in the dynamics of some random field
X(t) with value Xi(t) at node i. Contagion nodes can move from being susceptible (S) to infections when
they meet an I. Focus on early stage of spread (I doesn’t go back to R or S). Full mixing:

dI

dt
= rI(N − I) (1)

Solution is given by:

I(t) = I0
ert

N − I0 + I0ert
(2)

Solution is always a logistic.

2 Including Network Structure

Look carefully at how the contagion spreads and track the number of new infections due to each infected
node.

Notation:

• I(t) = Z(0) + Z(1) + · · ·+ Z(t)
1



Figure 1: Exponential growth

• Z(t) = new cases at time t

• Z(t+ 1) =
∑Z(t)
i=1 ζi,t

• ζi,t = number infected by node i at time t

We neglect any overlap. This gives us a branching process.

Query: does I(t)→∞ (or at least large N)? Or does I(t)→ constant << N .

2.1 Basic reproductive number

Basic reproductive number : ”R0” = average new infections caused by inserting one more I into the population
(in one step).

Folklore: R0 < 1: contagion is limited. R0 > 1: contagion spreads over an O(n) part of the population,
”epidemic”.

Correct for random graphs with any degree distribution.

R0 = E[new nodes infected after making one node I]

= P(transmit to neighbor)E[available contacts]

P(transmit to neighbor) = τ

Note E[available contacts] 6= average degree.



Figure 2: Branching Process

2.2 The branching process

Suppose WOLOG I(0) = Z(0) = 1. Then

ζ1,0 = Z(1)

= Binom(num neighbors of initial indiv, τ)

⇒ E [Z(1)] = E [Binom(numn eighbors, τ)]

= τE(degree)

2.3 The paradox of friendship

The 2nd generation nodes are not chosen uniformly at random. We can reach them by a link – so we are
biased towards nodes with high degree. The degree distribution has pmf pk, meaning the probability that a
node of degree k is a neighbor to the initial node ∝ k. Degree distribution of nodes we reach by following
an edge is ∝ kpk.

⇒ degree distribution of reachable nodes qk ∝ kpk. To normalize:

qk =
kpk∑∞
k=0 kpk

=
kpk
E(k)

(3)

E(k) is the expected degree of a random node.

What about Z(2)? Z(2) =
∑Z(1)
i=1 ζi,2. Each ζi,2 = Binom(degree of node i− 1, τ). Thus:

E(ζi,2) = τE(degree of a node reached from a random node − 1) (4)

Call the RHS J:



Figure 3: Infection Progression

E(ζi,2) =

∞∑
j=0

jqj

=

∞∑
j=0

jjpj
E(k)

=

∞∑
j=0

j2pj
E(k)

=

∞∑
k=0

k2pk
E(k)

=
E(k2)

E(k)

=
V(k) + (E(k))

2

E(k)

= E(k) +
V(k)

E(k)

≥ E(k)

This is the “Paradox of Friendship”: your friends have more friends than you do.

So this gives:

E(ζi,2) = τ

[
E(k) +

V(k)

E(k)
− 1

]
(5)

Note in a Poisson graph, V(k) = E(k) so E(ζi,2) = τE(k).



2.4 The epidemic threshold

Same story after 2nd generation. In generation t ≥ 2:

E(ζi,2) = τ

[
E(k) +

V(k)

E(k)
− 1

]
(6)

because 3rd generation etc nodes are also reached via edges and have degree pmf qk:

τ

[
E(k) +

V(k)

E(k)
− 1

]
= τ (E(J)− 1) (7)

In a branching process, if E(ζi,t) < 1, extinction happens with probability 1 (subcritical). If E(ζi,t) > 1,
positive probability of living forever (supercritical):

E [I(t)] = (E(ζi,t))
t

(8)

This E(ζi,t) is the ”basic reproductive number” (after 1st generation).

Moral : In a random graph with arbitrary degree distribution, contagions become epidemics when τ
[
E(k) + V(k)

E(k) − 1
]
>

1, or equivalently τ >
[
E(k) + V(k)

E(k) − 1
]−1

.

The critical level of transmissibility → 0 as E(k)→∞ or V(k)→∞ with E(k) fixed.

2.5 “The web of human sexual contacts”

Observation: if degree distribution is a power law ∝ k−α, then E(k2) =
∑∞
k=0 k

2Cαk
−α = ∞ if α ≤ 3.

Liljeros et al. (2001): the data says that for human sexual contacts, α̂ = 3.2 ± 0.3. ⇒ τc = 0 unless we
”destroy the hubs”.

Some caveats:

• not a good estimation of degree – not a power law (Handcock and Jones, 2004)

• data a self-reporting study of Swedish adults

2.6 Epidemics as giant components in thinned graphs

Flip a coin and thin the graph if ”tails” with probability 1 − τ . Condition for epidemic = new graph has
expected degree greater than 1 ⇒ new graph has a giant connected component.

3 Do fat friends make you fat?

Christakis and Fowler (2007): Obesity is contagious.

• Xi(t) = 0 if not obese at time t

• Xi(t) = 1 if become obese at time t

Logistic regression of Xi(t) on Xj(t − 1) controlling for all sorts of i-covariates Ci and Xi(t − 1) where
Aij = 1.

Finding: having an obese friend increases risk of becoming obese u 7×.



Figure 4: Thinning the graph

Figure 5: Causation



Figure 6: Community Discovery

If we only select neighbors (Aij = 1) we get confounding of contagion with homophily. If we don’t select
neighbors, we don’t get any evidence about social effects. (Shalizi and Thomas, 2011)

”Social networks are machines for creating selection bias” – Unknown

Ways out:

• Actually measure what matters (control for Zi)

• Randomize the network (colleges, prisons, maybe Facebook)

• Inject random variation into Xj(t− 1) ie treat some nodes (Facebook, instrumental variables)

• Measure Zi indirectly from the whole network: Given Aij = 1, Zj is extra likely to be close to
Zj (homophily). So the network should have clusters of tighly linked nodes with similar Zi’s. Use

community discovery to get Ẑi amd control for it. This will work under some assumptions (Shalizi and
McFowland, 2016).
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