36-781: Advanced Statistical Network Models	Fall 2016
Lecture 5: November	9
Lecturer: Cosma Shalizi	Scribes: Alden Green

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Review

We begin by quickly re-defining some concepts from previous lectures. Specify a motif f on k nodes, and a graph g on n nodes.

Definition 5.1 (Homomorphism Density) The homomorphism density of f into g is

$$t(f,g) = \frac{Hom(f,g)}{n^k}$$
(5.1)

where Hom(f,g) counts the number of homomorphisms from f into g.

Recall that for any graph g with corresponding adjacency matrix **a**, we can define a function $w_g : [0,1] \times [0,1] \rightarrow \{0,1\}$ as follows:

$$w_g(u,v) = a_{\lceil nu\rceil \lceil nv\rceil} \tag{5.2}$$

We can think of w_g as taking the adjacency matrix and squashing it into the unit square, and sampling a graph from w_g is the same as picking nodes from g, then connecting them if there is an edge between them in g. This leads to a second (and equivalent) definition for t(f, g),

$$t(f,g) = \int_{[0,1]^k} \prod_{(i,j)\in E(f)} w_g(u_i, u_j) du_1 \dots du_k$$
(5.3)

Recall the injective homomorphism density $t_{inj}(f,g) = \mathbb{P}(f \preceq G[k])$ where G[k] is the induced subgraph we get by randomly sampling k nodes from g. The following proposition bounds the difference between t and t_{inj} .

Proposition 5.2

$$|t(f,g) - t_{inj}(f,g)| \le \frac{k^2}{2n}$$
(5.4)

Notice that we can define the homomorphism density for a function $w : [0,1] \times [0,1] \rightarrow [0,1]$ in a similar manner as we did for a graph.

$$t(f,w) = \int_{[0,1]^k} \prod_{(i,j)\in E(f)} w(u_i, u_j) du_1 \dots du_k$$
(5.5)

and so $t(f,g) = t(f,w_g)$. This allows us to talk about the convergence of graph sequences to a graphon function.

Definition 5.3 (Convergence of Graph Sequences) A sequence $g_1, g_2, ..., g_m, ...$ converges when $\forall f, t(f, g_m)$ converges. The sequence converges to w when $\forall f$,

$$t(f, g_m) \to t(f, w) \tag{5.6}$$

Now we are ready to define a graphon.

Definition 5.4 (Graphon) Two functions w_1 and w_2 are equivalent iff $\forall f, t(f, w_1) = t(f, w_2)$. An equivalence class of ws is called a graphon.

For any graphon function, the w-random graph on n nodes, $G_n(w)$, is the Conditionally Independent Dyad model with w as the edge probability function.

Finally, we come to the main question for today: does $G_n(w) \to w$ in any useful sense? Recall that we might be interested in any of the four main types of convergence for random quantities: convergence in probability, almost sure convergence, convergence in distribution, and convergence in squared mean. We will focus on the first two today.

5.2 Convergence of *w*-random graphs

Our first theorem will cover convergence in probability of $G_n(w)$ to w.

Theorem 5.5 For any motif f and any $\epsilon \in (0, 1)$,

$$Pr(|t(f, G_n(w)) - t(f, w)| > \epsilon) \le 2e^{\frac{-\epsilon^2 n}{4k^2}}$$
(5.7)

Proof: To begin with, recall that one way to generate $G_n(w)$ is to say that (i, j) appears in $G_n(w)$ if $\xi_{ij} > w(U_i, U_j)$ where the ξ_{ij} and U_i are independent draws from U(0, 1). Let $Z_i = \{U_i \text{ and } \xi_{1,i}, ..., \xi_{i-1i}\}$. Then, changing Z_i changes the value of $t(f, G_n(w))$ by at most $\frac{k}{n}$. We can therefore use the Bounded Difference Inequality and say

$$\mathbb{P}\left(\left|t(f, G_n(w)) - \mathbb{E}[t(f, G_n(w))]\right| > \epsilon\right) \le 2\exp\{-\frac{\epsilon^2 n}{k^2}\}$$
(5.8)

We then need to bound $\mathbb{E}[t(f, G_n(w))] - t(f, w)$. To begin with, we use the previously stated fact that for any graph g on n nodes,

$$|t(f,g) - t_{inj}(f,g)| \le \frac{k^2}{2n}$$
(5.9)

Also,

$$\mathbb{E}[t_{inj}(f, G_n(w))] = t(f, w) \tag{5.10}$$

Putting these together yields

$$|\mathbb{E}[t(f, G_n(w))] - t(f, w)| \le \frac{k^2}{2n}$$
(5.11)

Moreover, we have that if $2\exp\{-\frac{\epsilon^2 n}{4k^2}\}\leq 1$ and $\epsilon\in(0,1),$ then

$$\frac{k^2}{2n} \le \frac{\epsilon^2}{4\log 2} \le \frac{\epsilon}{2} \tag{5.12}$$

Thus, we have that $|\mathbb{E}[t(f,G_n(w))] - t(f,w)| \le \frac{\epsilon}{2}$, and by extension,

$$\mathbb{P}\left(\left|t(f, G_n(w)) - t(f, w)\right| > \epsilon\right) \le \mathbb{P}\left(\left|t(f, G_n(w)) - \mathbb{E}[t(f, G_n(w))]\right| > \frac{\epsilon}{2}\right)$$
(5.13)

$$2\exp\{-\frac{\epsilon^2 n}{4k^2}\}\tag{5.14}$$

A simple consequence of this theorem is that $\forall f, t(f, G_n(w)) \xrightarrow{p} t(f, w)$. However, we can show something even stronger.

Corollary 5.6 For each $f, t(f, G_n(w)) \xrightarrow{a.s} t(f, w)$.

Proof: Since the previous deviation inequality decreases exponentially in n, we have that $\forall \epsilon > 0$

 \leq

$$\sum_{n=1}^{\infty} \mathbb{P}\left(|t(f, G_n(w)) - t(f, w)| > \epsilon\right) < \infty$$
(5.15)

so by the Borel-Cantelli Lemma, we have almost sure convergence. In particular, the Borel-Cantelli Lemma gives us

$$\mathbb{P}\left(\bigcap_{m=0}^{\infty}\left\{|t(f,G_n(w)) - t(f,w)| > 2^{-m}f.o.\right\}\right) = 1$$
(5.16)

which is equivalent to $\mathbb{P}\left(t(f,G_n(w)) \to t(f,w)\right) = 1.$

This leads us to a strong Law of Large Numbers for graphs.

Theorem 5.7 (LLN for graphs) $G_n(w) \stackrel{a.s.}{\rightarrow} w$

Proof: We want to show that $\mathbb{P}(\forall f, t(f, G_n(w)) \to t(f, w)) = 1$. Let $B_k = \{f : |V(f)| = k, t(f, G_n(w)) \neq t(f, w)\}$. Then, $\forall k > 0, \mathbb{P}(B_k) = 0$, and there are countably many B_k , so $\mathbb{P}(\bigcup_{k=1}^{\infty} B_k) = 0$.