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5.1 Review

We begin by quickly re-defining some concepts from previous lectures. Specify a motif f on k nodes, and a
graph g on n nodes.

Definition 5.1 (Homomorphism Density) The homomorphism density of f into g is

t(f, g) =
Hom(f, g)

nk
(5.1)

where Hom(f, g) counts the number of homomorphisms from f into g.

Recall that for any graph g with corresponding adjacency matrix a, we can define a function wg : [0, 1] ×
[0, 1]→ {0, 1} as follows:

wg(u, v) = adnuednve (5.2)

We can think of wg as taking the adjacency matrix and squashing it into the unit square, and sampling a
graph from wg is the same as picking nodes from g, then connecting them if there is an edge between them
in g. This leads to a second (and equivalent) definition for t(f, g),

t(f, g) =

∫
[0,1]k

∏
(i,j)∈E(f)

wg(ui, uj)du1 . . . duk (5.3)

Recall the injective homomorphism density tinj(f, g) = P(f - G[k]) where G[k] is the induced subgraph we
get by randomly sampling k nodes from g. The following proposition bounds the difference between t and
tinj .

Proposition 5.2

|t(f, g)− tinj(f, g)| ≤ k2

2n
(5.4)
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Notice that we can define the homomorphism density for a function w : [0, 1] × [0, 1] → [0, 1] in a similar
manner as we did for a graph.

t(f, w) =

∫
[0,1]k

∏
(i,j)∈E(f)

w(ui, uj)du1...duk (5.5)

and so t(f, g) = t(f, wg). This allows us to talk about the convergence of graph sequences to a graphon
function.

Definition 5.3 (Convergence of Graph Sequences) A sequence g1, g2, ..., gm, ... converges when ∀f , t(f, gm)
converges. The sequence converges to w when ∀f ,

t(f, gm)→ t(f, w) (5.6)

Now we are ready to define a graphon.

Definition 5.4 (Graphon) Two functions w1 and w2 are equivalent iff ∀f, t(f, w1) = t(f, w2). An equiv-
alence class of ws is called a graphon.

For any graphon functon, the w-random graph on n nodes, Gn(w), is the Conditionally Independent Dyad
model with w as the edge probability function.

Finally, we come to the main question for today: does Gn(w)→ w in any useful sense? Recall that we might
be interested in any of the four main types of convergence for random quantities: convergence in probability,
almost sure convergence, convergence in distribution, and convergence in squared mean. We will focus on
the first two today.

5.2 Convergence of w-random graphs

Our first theorem will cover convergence in probability of Gn(w) to w.

Theorem 5.5 For any motif f and any ε ∈ (0, 1),

Pr(|t(f,Gn(w))− t(f, w)| > ε) ≤ 2e
−ε2n
4k2 (5.7)

Proof: To begin with, recall that one way to generate Gn(w) is to say that (i, j) appears in Gn(w) if
ξij > w(Ui, Uj) where the ξij and Ui are independent draws from U(0, 1). Let Zi = {Ui and ξ1,i, ..., ξi−1i}.
Then, changing Zi changes the value of t(f,Gn(w)) by at most k

n . We can therefore use the Bounded
Difference Inequality and say

P (|t(f,Gn(w))− E[t(f,Gn(w))]| > ε) ≤ 2 exp{−ε
2n

k2
} (5.8)
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We then need to bound E[t(f,Gn(w))] − t(f, w). To begin with, we use the previously stated fact that for
any graph g on n nodes,

|t(f, g)− tinj(f, g)| ≤ k2

2n
(5.9)

Also,

E[tinj(f,Gn(w))] = t(f, w) (5.10)

Putting these together yields

|E[t(f,Gn(w))]− t(f, w)| ≤ k2

2n
(5.11)

Moreover, we have that if 2 exp{− ε
2n
4k2 } ≤ 1 and ε ∈ (0, 1), then

k2

2n
≤ ε2

4 log 2
≤ ε

2
(5.12)

Thus, we have that |E[t(f,Gn(w))]− t(f, w)| ≤ ε
2 , and by extension,

P (|t(f,Gn(w))− t(f, w)| > ε) ≤ P
(
|t(f,Gn(w))− E[t(f,Gn(w))]| > ε

2

)
(5.13)

≤ 2 exp{− ε
2n

4k2
} (5.14)

A simple consequence of this theorem is that ∀f, t(f,Gn(w))
p→ t(f, w). However, we can show something

even stronger.

Corollary 5.6 For each f, t(f,Gn(w))
a.s→ t(f, w).

Proof: Since the previous deviation inequality decreases exponentially in n, we have that ∀ε > 0

∞∑
n=1

P (|t(f,Gn(w))− t(f, w)| > ε) <∞ (5.15)

so by the Borel-Cantelli Lemma, we have almost sure convergence. In particular, the Borel-Cantelli Lemma
gives us
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P
(
∩∞m=0

{
|t(f,Gn(w))− t(f, w)| > 2−mf.o.

})
= 1 (5.16)

which is equivalent to P (t(f,Gn(w))→ t(f, w)) = 1.

This leads us to a strong Law of Large Numbers for graphs.

Theorem 5.7 (LLN for graphs) Gn(w)
a.s.→ w

Proof: We want to show that P (∀f, t(f,Gn(w))→ t(f, w)) = 1. Let Bk = {f : |V (f)| = k, t(f,Gn(w)) 6→
t(f, w)}. Then, ∀k > 0,P(Bk) = 0, and there are countably many Bk, so P(∪∞k=1Bk) = 0.


